A lightweight deep learning model for mobile eye fundus image quality assessment

Image acquisition and automatic quality analysis are fundamental stages and tasks to support an accurate ocular diagnosis. In particular, when eye fundus image quality is not appropriate, it can hinder the diagnosis task performed by experts. Portable, smart-phone-based eye fundus image acquisition...

Full description

Autores:
Perdomo Charry, Oscar Julian
Gonzalez Osorio, Fabio
Perez Perez, Andrés
Tipo de recurso:
Article of investigation
Fecha de publicación:
2020
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1488
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1488
https://doi.org/10.1117/12.2547126
Palabra clave:
Aprendizaje profundo (Aprendizaje automático)
Calidad de imagen
Diagnóstico por imagen
Image quality
Deep Learning (Machine Learning)
Diagnostic imaging
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id ESCUELAIG2_3f3800b331f518e533c822f553310882
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1488
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.spa.fl_str_mv A lightweight deep learning model for mobile eye fundus image quality assessment
title A lightweight deep learning model for mobile eye fundus image quality assessment
spellingShingle A lightweight deep learning model for mobile eye fundus image quality assessment
Aprendizaje profundo (Aprendizaje automático)
Calidad de imagen
Diagnóstico por imagen
Image quality
Deep Learning (Machine Learning)
Diagnostic imaging
title_short A lightweight deep learning model for mobile eye fundus image quality assessment
title_full A lightweight deep learning model for mobile eye fundus image quality assessment
title_fullStr A lightweight deep learning model for mobile eye fundus image quality assessment
title_full_unstemmed A lightweight deep learning model for mobile eye fundus image quality assessment
title_sort A lightweight deep learning model for mobile eye fundus image quality assessment
dc.creator.fl_str_mv Perdomo Charry, Oscar Julian
Gonzalez Osorio, Fabio
Perez Perez, Andrés
dc.contributor.author.none.fl_str_mv Perdomo Charry, Oscar Julian
Gonzalez Osorio, Fabio
Perez Perez, Andrés
dc.contributor.researchgroup.spa.fl_str_mv GiBiome
dc.subject.armarc.spa.fl_str_mv Aprendizaje profundo (Aprendizaje automático)
Calidad de imagen
Diagnóstico por imagen
topic Aprendizaje profundo (Aprendizaje automático)
Calidad de imagen
Diagnóstico por imagen
Image quality
Deep Learning (Machine Learning)
Diagnostic imaging
dc.subject.armarc.eng.fl_str_mv Image quality
Deep Learning (Machine Learning)
Diagnostic imaging
description Image acquisition and automatic quality analysis are fundamental stages and tasks to support an accurate ocular diagnosis. In particular, when eye fundus image quality is not appropriate, it can hinder the diagnosis task performed by experts. Portable, smart-phone-based eye fundus image acquisition devices have the advantage of their low cost and easy deployment, however, their main disadvantage is the sacrifice of image quality. This paper presents a deep-learning-based model to assess the eye fundus image quality which is small enough to be deployed in a smart phone. The model was evaluated in a public eye fundus dataset with two sets of annotations. The proposed method obtained an accuracy of 0.911 and 0.856, in the binary classification task and the three-classes classification task respectively. Besides, the presented method has a small number of parameters compared to other state-of-the-art models, being an alternative for a mobile-based eye fundus quality classification system.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-05-25T22:30:24Z
2021-10-01T17:16:47Z
dc.date.available.none.fl_str_mv 2021-05-25T22:30:24Z
2021-10-01T17:16:47Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0277-786X
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1488
dc.identifier.doi.none.fl_str_mv 10.1117/12.2547126
dc.identifier.url.none.fl_str_mv https://doi.org/10.1117/12.2547126
identifier_str_mv 0277-786X
10.1117/12.2547126
url https://repositorio.escuelaing.edu.co/handle/001/1488
https://doi.org/10.1117/12.2547126
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 6
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 113300
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.spa.fl_str_mv Proceedings Of Spie, The International Society For Optical Engineering
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv SPIE
dc.publisher.place.spa.fl_str_mv Estados Unidos
dc.source.spa.fl_str_mv https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11330/2547126/A-lightweight-deep-learning-model-for-mobile-eye-fundus-image/10.1117/12.2547126.short?SSO=1
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1488/5/A%20lightweight%20deep%20learning%20model%20for%20mobile%20eye%20fundus%20image%20quality%20assessment.png
https://repositorio.escuelaing.edu.co/bitstream/001/1488/6/A%20lightweight%20deep%20learning%20model%20for%20mobile%20eye%20fundus%20image%20quality%20assessment.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/1488/4/A%20lightweight%20deep%20learning%20model%20for%20mobile%20eye%20fundus%20image%20quality%20assessment.pdf
https://repositorio.escuelaing.edu.co/bitstream/001/1488/1/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1488/3/A%20lightweight%20deep%20learning%20model%20for%20mobile%20eye%20fundus%20image%20quality%20assessment.pdf.txt
bitstream.checksum.fl_str_mv c99afd2c883d3e0dd78cdc37b7216d2c
670eb81af476fdb94cbaa4170f881dbc
c183bb49eed5cfcaaad2b7bbadba8d4c
5a7ca94c2e5326ee169f979d71d0f06e
ce17bbb4d4f1cbe9a2413e4ea88bb0b2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355630372159488
spelling Perdomo Charry, Oscar Julianc280ba13fd48e8dbf9cdbc8179aa9c94600Gonzalez Osorio, Fabioafbb77c7b853278c83659a12e1b8dbe6600Perez Perez, Andrésf7dc553cf07a8c597ce4dd05c31dac00600GiBiome2021-05-25T22:30:24Z2021-10-01T17:16:47Z2021-05-25T22:30:24Z2021-10-01T17:16:47Z20200277-786Xhttps://repositorio.escuelaing.edu.co/handle/001/148810.1117/12.2547126https://doi.org/10.1117/12.2547126Image acquisition and automatic quality analysis are fundamental stages and tasks to support an accurate ocular diagnosis. In particular, when eye fundus image quality is not appropriate, it can hinder the diagnosis task performed by experts. Portable, smart-phone-based eye fundus image acquisition devices have the advantage of their low cost and easy deployment, however, their main disadvantage is the sacrifice of image quality. This paper presents a deep-learning-based model to assess the eye fundus image quality which is small enough to be deployed in a smart phone. The model was evaluated in a public eye fundus dataset with two sets of annotations. The proposed method obtained an accuracy of 0.911 and 0.856, in the binary classification task and the three-classes classification task respectively. Besides, the presented method has a small number of parameters compared to other state-of-the-art models, being an alternative for a mobile-based eye fundus quality classification system.La adquisición de imágenes y el análisis automático de la calidad son etapas y tareas fundamentales para apoyar un diagnóstico ocular preciso. En particular, cuando la calidad de la imagen del fondo del ojo no es adecuada, puede dificultar la tarea de diagnóstico realizada por los expertos. Los dispositivos portátiles de adquisición de imágenes de fondo de ojo basados en teléfonos inteligentes tienen la ventaja de su bajo coste y fácil despliegue, sin embargo, su principal desventaja es el sacrificio de la calidad de la imagen. Este artículo presenta un modelo basado en el aprendizaje profundo para evaluar la calidad de la imagen del fondo del ojo que es lo suficientemente pequeño como para ser desplegado en un teléfono inteligente. El modelo fue evaluado en un conjunto de datos de fondo de ojo público con dos conjuntos de anotaciones. El método propuesto obtuvo una precisión de 0,911 y 0,856, en la tarea de clasificación binaria y en la de tres clases, respectivamente. Además, el método presentado tiene un número reducido de parámetros en comparación con otros modelos del estado de la técnica, siendo una alternativa para un sistema de clasificación de la calidad del fondo del ojo basado en el móvil. Traducción realizada con la versión gratuita del traductor www.DeepL.com/Translator© (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.Andrés D. Pérez, Oscar Perdomo, and Fabio A. González "A lightweight deep learning model for mobile eye fundus image quality assessment", Proc. SPIE 11330, 15th International Symposium on Medical Information Processing and Analysis, 113300K (3 January 2020); https://doi.org/10.1117/12.2547126application/pdfengSPIEEstados Unidoshttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/11330/2547126/A-lightweight-deep-learning-model-for-mobile-eye-fundus-image/10.1117/12.2547126.short?SSO=1A lightweight deep learning model for mobile eye fundus image quality assessmentArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a8561113300N/AProceedings Of Spie, The International Society For Optical Engineeringinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAprendizaje profundo (Aprendizaje automático)Calidad de imagenDiagnóstico por imagenImage qualityDeep Learning (Machine Learning)Diagnostic imagingTHUMBNAILA lightweight deep learning model for mobile eye fundus image quality assessment.pngA lightweight deep learning model for mobile eye fundus image quality assessment.pngimage/png127749https://repositorio.escuelaing.edu.co/bitstream/001/1488/5/A%20lightweight%20deep%20learning%20model%20for%20mobile%20eye%20fundus%20image%20quality%20assessment.pngc99afd2c883d3e0dd78cdc37b7216d2cMD55open accessA lightweight deep learning model for mobile eye fundus image quality assessment.pdf.jpgA lightweight deep learning model for mobile eye fundus image quality assessment.pdf.jpgGenerated Thumbnailimage/jpeg13832https://repositorio.escuelaing.edu.co/bitstream/001/1488/6/A%20lightweight%20deep%20learning%20model%20for%20mobile%20eye%20fundus%20image%20quality%20assessment.pdf.jpg670eb81af476fdb94cbaa4170f881dbcMD56metadata only accessORIGINALA lightweight deep learning model for mobile eye fundus image quality assessment.pdfA lightweight deep learning model for mobile eye fundus image quality assessment.pdfArtículo de revistaapplication/pdf8917456https://repositorio.escuelaing.edu.co/bitstream/001/1488/4/A%20lightweight%20deep%20learning%20model%20for%20mobile%20eye%20fundus%20image%20quality%20assessment.pdfc183bb49eed5cfcaaad2b7bbadba8d4cMD54metadata only accessLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1488/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessTEXTA lightweight deep learning model for mobile eye fundus image quality assessment.pdf.txtA lightweight deep learning model for mobile eye fundus image quality assessment.pdf.txtExtracted texttext/plain4https://repositorio.escuelaing.edu.co/bitstream/001/1488/3/A%20lightweight%20deep%20learning%20model%20for%20mobile%20eye%20fundus%20image%20quality%20assessment.pdf.txtce17bbb4d4f1cbe9a2413e4ea88bb0b2MD53open access001/1488oai:repositorio.escuelaing.edu.co:001/14882022-11-25 03:01:48.193metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK