A lightweight deep learning model for mobile eye fundus image quality assessment
Image acquisition and automatic quality analysis are fundamental stages and tasks to support an accurate ocular diagnosis. In particular, when eye fundus image quality is not appropriate, it can hinder the diagnosis task performed by experts. Portable, smart-phone-based eye fundus image acquisition...
- Autores:
-
Perdomo Charry, Oscar Julian
Gonzalez Osorio, Fabio
Perez Perez, Andrés
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2020
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/1488
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/1488
https://doi.org/10.1117/12.2547126
- Palabra clave:
- Aprendizaje profundo (Aprendizaje automático)
Calidad de imagen
Diagnóstico por imagen
Image quality
Deep Learning (Machine Learning)
Diagnostic imaging
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
ESCUELAIG2_3f3800b331f518e533c822f553310882 |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/1488 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.spa.fl_str_mv |
A lightweight deep learning model for mobile eye fundus image quality assessment |
title |
A lightweight deep learning model for mobile eye fundus image quality assessment |
spellingShingle |
A lightweight deep learning model for mobile eye fundus image quality assessment Aprendizaje profundo (Aprendizaje automático) Calidad de imagen Diagnóstico por imagen Image quality Deep Learning (Machine Learning) Diagnostic imaging |
title_short |
A lightweight deep learning model for mobile eye fundus image quality assessment |
title_full |
A lightweight deep learning model for mobile eye fundus image quality assessment |
title_fullStr |
A lightweight deep learning model for mobile eye fundus image quality assessment |
title_full_unstemmed |
A lightweight deep learning model for mobile eye fundus image quality assessment |
title_sort |
A lightweight deep learning model for mobile eye fundus image quality assessment |
dc.creator.fl_str_mv |
Perdomo Charry, Oscar Julian Gonzalez Osorio, Fabio Perez Perez, Andrés |
dc.contributor.author.none.fl_str_mv |
Perdomo Charry, Oscar Julian Gonzalez Osorio, Fabio Perez Perez, Andrés |
dc.contributor.researchgroup.spa.fl_str_mv |
GiBiome |
dc.subject.armarc.spa.fl_str_mv |
Aprendizaje profundo (Aprendizaje automático) Calidad de imagen Diagnóstico por imagen |
topic |
Aprendizaje profundo (Aprendizaje automático) Calidad de imagen Diagnóstico por imagen Image quality Deep Learning (Machine Learning) Diagnostic imaging |
dc.subject.armarc.eng.fl_str_mv |
Image quality Deep Learning (Machine Learning) Diagnostic imaging |
description |
Image acquisition and automatic quality analysis are fundamental stages and tasks to support an accurate ocular diagnosis. In particular, when eye fundus image quality is not appropriate, it can hinder the diagnosis task performed by experts. Portable, smart-phone-based eye fundus image acquisition devices have the advantage of their low cost and easy deployment, however, their main disadvantage is the sacrifice of image quality. This paper presents a deep-learning-based model to assess the eye fundus image quality which is small enough to be deployed in a smart phone. The model was evaluated in a public eye fundus dataset with two sets of annotations. The proposed method obtained an accuracy of 0.911 and 0.856, in the binary classification task and the three-classes classification task respectively. Besides, the presented method has a small number of parameters compared to other state-of-the-art models, being an alternative for a mobile-based eye fundus quality classification system. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-05-25T22:30:24Z 2021-10-01T17:16:47Z |
dc.date.available.none.fl_str_mv |
2021-05-25T22:30:24Z 2021-10-01T17:16:47Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0277-786X |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/1488 |
dc.identifier.doi.none.fl_str_mv |
10.1117/12.2547126 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.1117/12.2547126 |
identifier_str_mv |
0277-786X 10.1117/12.2547126 |
url |
https://repositorio.escuelaing.edu.co/handle/001/1488 https://doi.org/10.1117/12.2547126 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
6 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
113300 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofjournal.spa.fl_str_mv |
Proceedings Of Spie, The International Society For Optical Engineering |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
SPIE |
dc.publisher.place.spa.fl_str_mv |
Estados Unidos |
dc.source.spa.fl_str_mv |
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11330/2547126/A-lightweight-deep-learning-model-for-mobile-eye-fundus-image/10.1117/12.2547126.short?SSO=1 |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/1488/5/A%20lightweight%20deep%20learning%20model%20for%20mobile%20eye%20fundus%20image%20quality%20assessment.png https://repositorio.escuelaing.edu.co/bitstream/001/1488/6/A%20lightweight%20deep%20learning%20model%20for%20mobile%20eye%20fundus%20image%20quality%20assessment.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/1488/4/A%20lightweight%20deep%20learning%20model%20for%20mobile%20eye%20fundus%20image%20quality%20assessment.pdf https://repositorio.escuelaing.edu.co/bitstream/001/1488/1/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/1488/3/A%20lightweight%20deep%20learning%20model%20for%20mobile%20eye%20fundus%20image%20quality%20assessment.pdf.txt |
bitstream.checksum.fl_str_mv |
c99afd2c883d3e0dd78cdc37b7216d2c 670eb81af476fdb94cbaa4170f881dbc c183bb49eed5cfcaaad2b7bbadba8d4c 5a7ca94c2e5326ee169f979d71d0f06e ce17bbb4d4f1cbe9a2413e4ea88bb0b2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355630372159488 |
spelling |
Perdomo Charry, Oscar Julianc280ba13fd48e8dbf9cdbc8179aa9c94600Gonzalez Osorio, Fabioafbb77c7b853278c83659a12e1b8dbe6600Perez Perez, Andrésf7dc553cf07a8c597ce4dd05c31dac00600GiBiome2021-05-25T22:30:24Z2021-10-01T17:16:47Z2021-05-25T22:30:24Z2021-10-01T17:16:47Z20200277-786Xhttps://repositorio.escuelaing.edu.co/handle/001/148810.1117/12.2547126https://doi.org/10.1117/12.2547126Image acquisition and automatic quality analysis are fundamental stages and tasks to support an accurate ocular diagnosis. In particular, when eye fundus image quality is not appropriate, it can hinder the diagnosis task performed by experts. Portable, smart-phone-based eye fundus image acquisition devices have the advantage of their low cost and easy deployment, however, their main disadvantage is the sacrifice of image quality. This paper presents a deep-learning-based model to assess the eye fundus image quality which is small enough to be deployed in a smart phone. The model was evaluated in a public eye fundus dataset with two sets of annotations. The proposed method obtained an accuracy of 0.911 and 0.856, in the binary classification task and the three-classes classification task respectively. Besides, the presented method has a small number of parameters compared to other state-of-the-art models, being an alternative for a mobile-based eye fundus quality classification system.La adquisición de imágenes y el análisis automático de la calidad son etapas y tareas fundamentales para apoyar un diagnóstico ocular preciso. En particular, cuando la calidad de la imagen del fondo del ojo no es adecuada, puede dificultar la tarea de diagnóstico realizada por los expertos. Los dispositivos portátiles de adquisición de imágenes de fondo de ojo basados en teléfonos inteligentes tienen la ventaja de su bajo coste y fácil despliegue, sin embargo, su principal desventaja es el sacrificio de la calidad de la imagen. Este artículo presenta un modelo basado en el aprendizaje profundo para evaluar la calidad de la imagen del fondo del ojo que es lo suficientemente pequeño como para ser desplegado en un teléfono inteligente. El modelo fue evaluado en un conjunto de datos de fondo de ojo público con dos conjuntos de anotaciones. El método propuesto obtuvo una precisión de 0,911 y 0,856, en la tarea de clasificación binaria y en la de tres clases, respectivamente. Además, el método presentado tiene un número reducido de parámetros en comparación con otros modelos del estado de la técnica, siendo una alternativa para un sistema de clasificación de la calidad del fondo del ojo basado en el móvil. Traducción realizada con la versión gratuita del traductor www.DeepL.com/Translator© (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.Andrés D. Pérez, Oscar Perdomo, and Fabio A. González "A lightweight deep learning model for mobile eye fundus image quality assessment", Proc. SPIE 11330, 15th International Symposium on Medical Information Processing and Analysis, 113300K (3 January 2020); https://doi.org/10.1117/12.2547126application/pdfengSPIEEstados Unidoshttps://www.spiedigitallibrary.org/conference-proceedings-of-spie/11330/2547126/A-lightweight-deep-learning-model-for-mobile-eye-fundus-image/10.1117/12.2547126.short?SSO=1A lightweight deep learning model for mobile eye fundus image quality assessmentArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a8561113300N/AProceedings Of Spie, The International Society For Optical Engineeringinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAprendizaje profundo (Aprendizaje automático)Calidad de imagenDiagnóstico por imagenImage qualityDeep Learning (Machine Learning)Diagnostic imagingTHUMBNAILA lightweight deep learning model for mobile eye fundus image quality assessment.pngA lightweight deep learning model for mobile eye fundus image quality assessment.pngimage/png127749https://repositorio.escuelaing.edu.co/bitstream/001/1488/5/A%20lightweight%20deep%20learning%20model%20for%20mobile%20eye%20fundus%20image%20quality%20assessment.pngc99afd2c883d3e0dd78cdc37b7216d2cMD55open accessA lightweight deep learning model for mobile eye fundus image quality assessment.pdf.jpgA lightweight deep learning model for mobile eye fundus image quality assessment.pdf.jpgGenerated Thumbnailimage/jpeg13832https://repositorio.escuelaing.edu.co/bitstream/001/1488/6/A%20lightweight%20deep%20learning%20model%20for%20mobile%20eye%20fundus%20image%20quality%20assessment.pdf.jpg670eb81af476fdb94cbaa4170f881dbcMD56metadata only accessORIGINALA lightweight deep learning model for mobile eye fundus image quality assessment.pdfA lightweight deep learning model for mobile eye fundus image quality assessment.pdfArtículo de revistaapplication/pdf8917456https://repositorio.escuelaing.edu.co/bitstream/001/1488/4/A%20lightweight%20deep%20learning%20model%20for%20mobile%20eye%20fundus%20image%20quality%20assessment.pdfc183bb49eed5cfcaaad2b7bbadba8d4cMD54metadata only accessLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1488/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessTEXTA lightweight deep learning model for mobile eye fundus image quality assessment.pdf.txtA lightweight deep learning model for mobile eye fundus image quality assessment.pdf.txtExtracted texttext/plain4https://repositorio.escuelaing.edu.co/bitstream/001/1488/3/A%20lightweight%20deep%20learning%20model%20for%20mobile%20eye%20fundus%20image%20quality%20assessment.pdf.txtce17bbb4d4f1cbe9a2413e4ea88bb0b2MD53open access001/1488oai:repositorio.escuelaing.edu.co:001/14882022-11-25 03:01:48.193metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |