Natural hazards, vulnerability and structural resilience: tsunamis and industrial tanks

The paper presents an integrated framework which deals with natural hazards (tsunamis), physical vulnerability modelling, risk of failure for industrial structures (metal structures) and structural resilience provided by plastic adaptation. Simplified models are proposed to describe the run-up and w...

Full description

Autores:
Mebarkia, Ahmed
Jerez, Sandra
Prodhomme, Gaetan
Reimeringer, Mathieu
Tipo de recurso:
Article of investigation
Fecha de publicación:
2016
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1530
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1530
https://doi.org/10.1080/19475705.2016.1181458
Palabra clave:
Resistencia de materiales
Tsunamis
Ingeniería de estructuras
Strength of materials
Tsunamis
Structural engineering
Hazards
Tsunamis
Resilience
Structures
Industrial tank
Sfragility curves
Vulnerability
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id ESCUELAIG2_366e4fe711fc7e999db983c0f21cbda1
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1530
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Natural hazards, vulnerability and structural resilience: tsunamis and industrial tanks
title Natural hazards, vulnerability and structural resilience: tsunamis and industrial tanks
spellingShingle Natural hazards, vulnerability and structural resilience: tsunamis and industrial tanks
Resistencia de materiales
Tsunamis
Ingeniería de estructuras
Strength of materials
Tsunamis
Structural engineering
Hazards
Tsunamis
Resilience
Structures
Industrial tank
Sfragility curves
Vulnerability
title_short Natural hazards, vulnerability and structural resilience: tsunamis and industrial tanks
title_full Natural hazards, vulnerability and structural resilience: tsunamis and industrial tanks
title_fullStr Natural hazards, vulnerability and structural resilience: tsunamis and industrial tanks
title_full_unstemmed Natural hazards, vulnerability and structural resilience: tsunamis and industrial tanks
title_sort Natural hazards, vulnerability and structural resilience: tsunamis and industrial tanks
dc.creator.fl_str_mv Mebarkia, Ahmed
Jerez, Sandra
Prodhomme, Gaetan
Reimeringer, Mathieu
dc.contributor.author.none.fl_str_mv Mebarkia, Ahmed
Jerez, Sandra
Prodhomme, Gaetan
Reimeringer, Mathieu
dc.contributor.researchgroup.spa.fl_str_mv Estructuras y Materiales
dc.subject.armarc.spa.fl_str_mv Resistencia de materiales
Tsunamis
Ingeniería de estructuras
topic Resistencia de materiales
Tsunamis
Ingeniería de estructuras
Strength of materials
Tsunamis
Structural engineering
Hazards
Tsunamis
Resilience
Structures
Industrial tank
Sfragility curves
Vulnerability
dc.subject.armarc.eng.fl_str_mv Strength of materials
Tsunamis
Structural engineering
dc.subject.proposal.eng.fl_str_mv Hazards
Tsunamis
Resilience
Structures
Industrial tank
Sfragility curves
Vulnerability
description The paper presents an integrated framework which deals with natural hazards (tsunamis), physical vulnerability modelling, risk of failure for industrial structures (metal structures) and structural resilience provided by plastic adaptation. Simplified models are proposed to describe the run-up and wave height attenuation in case of tsunamis. The results are calibrated in the case of important tsunamis having taken place in Asian region. The mechanical vulnerability of cylindrical metal tanks erected near the shoreline is also investigated. The fragility curves are then developed in order to describe the multimodal failure: overturning, rupture of anchorages and sliding, buoyancy, excessive bending effects or buckling. Corresponding fragility curves are developed under various conditions: height of tsunami waves, filling ratios and service conditions of the tanks, friction tank/ground as well as dimensions effects. Probabilistic description of the natural hazard and the fragility curves are presented. Sensitivity analysis is also performed in order to investigate the effect of various governing parameters. Furthermore, resilience concepts and metrics are proposed. Theoretical description of the damages and post-disaster recovery functions are discussed: plastic adaptation as well as elastic and plastic attractors.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2021-05-31T15:47:35Z
2021-10-01T17:46:33Z
dc.date.available.none.fl_str_mv 2021-05-31T15:47:35Z
2021-10-01T17:46:33Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1947-5705
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1530
dc.identifier.doi.none.fl_str_mv 10.1080/19475705.2016.1181458
https://doi.org/10.1080/19475705.2016.1181458
identifier_str_mv 1947-5705
10.1080/19475705.2016.1181458
url https://repositorio.escuelaing.edu.co/handle/001/1530
https://doi.org/10.1080/19475705.2016.1181458
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Natural Hazards and Risk, 7:sup1, 5-17.
dc.relation.citationendpage.spa.fl_str_mv 17
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.spa.fl_str_mv 5
dc.relation.citationvolume.spa.fl_str_mv 7
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.spa.fl_str_mv Geomatics, Natural Hazards and Risk
dc.relation.references.spa.fl_str_mv Abe K. 1993. Estimate of tsunami heights from earthquake magnitudes. Proceedings of the IUGG/IOC International Tsunami Symposium TSUNAMI'93; Wakayama, Japan.
Abe K. 1995. Modeling of the runup heights of the Hokkaido-Nansei-Oki tsunami of 12 July 1993. Pure Appl Geophys. 144:113–124.
Aldunce P, Beilin R, Howden M, Handmer J. 2015. Resilience for disaster risk management in a changing climate: practitioners’ frames and practices. Global Environ Change. 30:1–11.
Angeon V, Bates S. 2015. Reviewing composite vulnerability and resilience indexes: a sustainable approach and application. World Dev. 72:140–162.
Barker K, Ramirez-Marquez JE, Rocco CM. 2012. Resilience-based network component important measures. Reliab Eng Syst Safety. 117:89–97.
Bond A, Morrison-Saunders A, Gunn JAE, Pope J, Retief F. 2015. Managing uncertainty, ambiguity and ignorance in impact assessment by embedding evolutionary resilience, participatory modeling and adaptive management. J Environ Manag. 151:97–104.
Burwell D, Tolkova E, Chawla A. 2007. Diffusion and dispersion characterization of a numerical tsunami model. Ocean Model. 19:10–30.
Cardoso SR, Barbosa-Póvoa AP, Relvas S, Novais AQ. 2015. Resilience metrics in the assessment of complex supply-chains performance operating under demand uncertainty. Omega. 56:53–73.
Chen L, Rotter M. 2012. Buckling of anchored cylindrical shells of uniform thickness under wind load. Eng Struct. 41:199–208.
Cheung KF, Wei Y, Yamazaki Y, Yim SCS. 2011. Modeling of 500-year tsunamis for probabilitistic design of coastal infrastructures in the Pacific Northwest. Coastal Eng. 58:970–985.
Chopra SS, Khanna V. 2015. Interconnectedness and interdependencies of critical infrastructures in the US economy: implications for resilience. Physica A. 436:865–877.
Constantin A. 2009. On the relevance of soliton theory to tsunami modelling. Wave Motion. 46:420–426.
Demetracopoulos AC, Hadjitheodorou C, Antonopoulos JA. 1994. Statistical and numerical analysis of tsunami wave heights in confined waters. Ocean Eng. 21:629–643.
Dijkstra HA, Viebahn JP. 2015. Sensitivity and resilience of the climate system: a conditional nonlinear optimization approach. Commun Nonlinear Sci Numer Simulat. 22:13–22.
Dinh LTT, Pasman H, Gao X, Mannan MS. 2012. Resilience engineering of industrial processes: principles and contributing factors. J Loss Prev Proc Ind. 25:233–241.
Flouri ET, Kalligeris N, Alexandrakis G, Kampanis NA, Synolakis CE. 2013. Application of a finite difference computational model to the simulation of earthquake generated tsunamis. Appl Num Math. 67:111–125.
Francis R, Bekera B. 2014. A metric and framework for resilience analysis of engineered and infrastructure systems. Reliab Eng Sys Safety. 121:90–103.
GEBCO. 2012. General bathymetric chart of the oceans. Available 15/06/2012, from www.gebco.net.
Godoy LA. 2007. Performance of storage tanks in oil facilities damaged by Hurricanes Katrina and Rita. J Perform Constructed Facil. 21:441–449.
Goto K, Chagué-Goff C, Fujino S, Goff J, Jaffe B, Nishimura Y, Richmond B, Sugawara D, Szczucinski W, Tappin DR, et al. 2011. New insights of tsunami hazard from the 2011 Tohoku-oki event. Mar Geol. 290:46–50.
Goto Y. 2008. Tsunami damage to oil storage tanks. In The 14 World Conference on Earthquake Engineering; Beijing, China.
Haugen KB, Lovholt F, Harbitz CB. 2005. Fundamental mechanisms for tsunami generation by submarine mass flows in idealised geometries. Mar Pet. Geol. 22:209–217.
Heidarzadeh M, Pirooz MD, Zaker NH. 2009. Modeling of the near-field effects of the worst-case tsunami in the Makran subduction zone. Ocean Eng. 36:368–376.
Helal MA, Mehanna MS. 2008. Tsunamis from nature to physics. Chaos Solitons Fractals. 36:787–796.
Hollnagel E, Nemeth CP, Dekker S. 2008. Resilience engineering perspectives: remaining sensitive to the possibility of failure. Vol.1, Ashgate Studies in Resilience Engineering, Ashgate Publishing Limited. Burlington: Ashgate.
Hollnagel E, Pariès J, Woods DD, Wreathall J. 2011. Resilience engineering in practice: a guidebook. Ashgate Studies in Resilience Engineering, Ashgate Publishing Limited. Burlington: Ashgate.
Johnston MC, Porteous T, Crilly MA, Burton CD, Elliott A, Iversen L, McArdle K, Murray A, Phillips LH, Black C. 2008. Physical disease and resilient outcomes: a systematic review of resilience definitions and study methods. Psychosomatics. 56:168–180.
Kelman I, Gaillard JC, Mercer J. 2015. Climate change's role in disaster risk reduction's future: beyond vulnerability and resilience. Int J Disaster Risk Sci. 6:21–27.
Khalili S, Harre M, Morley P. 2015. A temporal framework of social resilience indicators of communities to flood, case studies: Wagga wagga and Kempsey, NSW, Australia. Int J Dis Risk Reduc. 13:48–254.
Koshimura S, Namegaya Y, Yanagisawa H. 2009. Tsunami fragility - a new measure to identify Tsunami damage. J Dis Res. 4:479–490.
Labaka L, Hernantes J, Sarriegi JM. 2015. Resilience framework for critical infrastructures: An empirical study in a nuclear plant. Reliab Eng Syst Safety. 141:92–105.
Leone F, Lavigne F, Paris R, Denain J-C, Vinet F. 2011. A spatial analysis of the December 26th, 2004 tsunami-induced damages: lessons learned for a better risk assessment integrating buildings vulnerability. Appl Geogr. 31:363–375.
Lindbom H, Tehler H, Eriksson K, Aven T. 2015. The capability concept – on how to define and describe capability in relation to risk, vulnerability and resilience. Reliab Eng Syst Safety. 135:45–54.
Liu PL-F, Wang X, Salisbury AJ. 2009. Tsunami hazard and early warning system in South China Sea. J Asian Earth Sci. 36:2–12.
Lovholt F, Glimsdal S, Harbitz CB, Zamora N, Nadim F, Peduzzi P, Dao H, Smebye H. 2012. Tsunami hazard and exposure on the global scale. Earth Sci Rev. 110:58–73.
Lukkunaprasit P, Thanasisathit N, Yeh H. 2009. Experimental verification of FEMA P646 Tsunami loading. J Disaster Res. 4:410–418.
Lundberg J, Johansson BJE. 2015. Systemic resilience model. Reliab. Eng Sys. Saf. 141:22–32.
Madsen PA. 2010. On the evolution and run-up of tsunamis. J Hydrodynamics. 22:1–6. doi:10.1016/S1001-6058(09)60160-8.
Manyena SB. 2014. Disaster resilience: a question of ‘multiple faces’ and ‘multiple spaces’? Int J Disaster Risk Reduct. 8:1–9.
Matthews EC, Sattler M, Friedland CJ. 2014. A critical analysis of hazard resilience measures within sustainability assessment frameworks. Env Impact Assess Rev. 49:59–69.
Mebarki A. 2009. A comparative study of different PGA attenuation and error models: case of 1999 Chi-Chi earthquake. Tectonophysics. 466:300–306.
Mebarki A, Barroca B. 2015. Resilience and vulnerability analysis for restoration after tsunamis and floods: the case of dwellings and industrial plants. In Santiago-Fandiño V et al. editors. Post-Tsunami hazard reconstruction and restoration. Advances in Natural and Technological Hazards Research, Springer (ISBN: 978-3-319-10201-6).
Mebarki A, Jerez S, Matasic I, Prodhomme G, Reimeringer M, Pensée V, Vu QA, Willot A. 2014a. Domino effects and industrial risks: integrated probabilistic framework – case of tsunamis effects. In Kontar YA et al., editors. Tsunami events and lessons learned : environnemental and societal significance. Advances in Natural and Technological Hazards Research 35, doi:10.1007/978-94-007-7269-4_15, Springer.
Mebarki A, Willot A, Jerez S, Reimeringer M, Prodhomme G. 2014b. Vulnerability and resilience under effects of tsunamis: case of industrial plants. Procedia Eng. 84:116–121.
Miller-Hooks E, Zhang X, Faturechi R. 2012. Measuring and maximizing resilience of freight transportation networks. Comput Oper Res. 39:1633–1643.
Mugume SN, Gomez DE, Fu G, Farmani R, Butler D. 2015. A global analysis approach for investigating structural resilience in urban drainage systems. Water Res. 81:15–26.
Naito C, Cox D, Yu Q, Brooker H. 2013. Fuel Storage Container Performance during the 2011 Tohoku Japan Tsunami. J Perform Constructed Facilities. 27:373–380.
Nandasena NAK, Paris R, Tanaka N. 2011. Reassessment of hydrodynamic equations: minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis). Mar. Geol. 281:70–84.
Nistor I, Palermo D, Nouri Y, Murty T, Saatcioglu M. 2010. Tsunami-Induced forces on structures. In: Kim YC, editor. Handbook of coastal and ocean engineering. Singapore: World Scientific Publishing Co. Pte. Ltd.; p. 261–286.
Norio O, Ye T, Kajitani Y, Shi P, Tatano H. 2011. The 2011 Eastern Japan great earthquake disaster: overview and comments. Int J Disaster Risk Sci. 2:34–42.
Oken BS, Chamine I, Wakeland W. 2015. A systems approach to stress, stressors and resilience in humans. Behav Brain Rese. 282:144–154
Ouyang M, Wang Z. 2015. Resilience assessment of interdependent infrastructure systems: with a focus on joint restoration modeling and analysis. Reliab Eng Syst Safety. 141:74–82.
Pant R, Barker K, Ramirez-Marquez JE, Rocco CM. 2014. Stochastic measures of resilience and their application to container terminals. Comput Ind Eng. 70:183–194.
Pophet N, Kaewbanjak N, Asavanant J, Ioualalen M. 2011. High grid resolution and parallelized tsunami simulation with fully nonlinear Boussinesq equations. Comput Fluids. 40:258–268.
Righi AW, Saurin TA, Wachs P. 2015. A systematic literature review of resilience engineering: research areas and a research agenda proposal. Reliab Eng Syst Saf. 141:142–152.
Roege PE, Collier ZA, Mancillas J, McDonagh JA, Linkov I. 2014. Metrics for energy resilience. Energy Policy. 72:249–256.
Sahebjamnia N, Torabi SA, Mansouri SA. 2015. Integrated business continuity and disaster recovery planning: towards organizational resilience. Eur J Oper Res. 242:261–273.
Sakakiyama T, Matsuura S, Matsuyama M. 2009. Tsunami force acting on oil tanks and buckling analysis for Tsunami pressure. J Disaster Res. 4:427–435.
Shafieezadeh A, Burden LI. 2014. Scenario-based resilience assessment framework for critical infrastructure systems: case study for seismic resilience of seaports. Reliab Eng Syst Saf. 132:207–219.
Shirali GHA, Motamedzade M, Mohammadfam I, Ebrahimpour V, Moghimbeigi A. 2012. Challenges in building resilience engineering (RE) and adaptive capacity: a field study in chemical plant. Process Saf. Environ Prot. 90:83–90.
Stewart DE, Yuen T. 2011. A systematic review of resilience in the physically Ill. Psychosomatics. 52:199–209.
Wijetunge JJ. 2006. Tsunami on 26 December 2004: spatial distribution of tsunami height and the extent of inundation in Sri Lanka. SciTsunami Hazards. 24:225–240.
Zhang DH, Yip TL, Ng C-O. 2009. Predicting tsunami arrivals: estimates and policy implications. Mar Policy. 33:643–650.
Zhao BB, Duan WY, Webster WC. 2011. Tsunami simulation with Green-Naghdi theory. Ocean Eng. 3:389–296.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional (CC BY 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 14 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Taylor and Francis Ltd.
dc.publisher.place.spa.fl_str_mv Reino Unido.
dc.source.spa.fl_str_mv https://www.tandfonline.com/doi/full/10.1080/19475705.2016.1181458
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1530/3/10.108019475705.2016.1181458.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1530/5/Natural%20hazards%2c%20vulnerability%20and%20structural%20resilience%3a%20tsunamis%20and%20industrial%20tanks.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1530/6/Natural%20hazards%2c%20vulnerability%20and%20structural%20resilience%3a%20tsunamis%20and%20industrial%20tanks.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/1530/1/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1530/2/Natural%20hazards%2c%20vulnerability%20and%20structural%20resilience%3a%20tsunamis%20and%20industrial%20tanks.pdf
bitstream.checksum.fl_str_mv e4dc606679405945f93a70e35d65d7c2
e4dc606679405945f93a70e35d65d7c2
c8cf23684e50ea51f3f55a78561f8bdd
5a7ca94c2e5326ee169f979d71d0f06e
41c901db77877378a146e292b9556374
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355592035172352
spelling Mebarkia, Ahmedfbbd6928486dc10e5583ba23d0567507600Jerez, Sandra2af5002c82e4cb65ea2b3038c0ace2df600Prodhomme, Gaetan592eb88d080b48c191afddc6f92c5450600Reimeringer, Mathieu40bfb8130b110801191331d1d7c0f24f600Estructuras y Materiales2021-05-31T15:47:35Z2021-10-01T17:46:33Z2021-05-31T15:47:35Z2021-10-01T17:46:33Z20161947-5705https://repositorio.escuelaing.edu.co/handle/001/153010.1080/19475705.2016.1181458https://doi.org/10.1080/19475705.2016.1181458The paper presents an integrated framework which deals with natural hazards (tsunamis), physical vulnerability modelling, risk of failure for industrial structures (metal structures) and structural resilience provided by plastic adaptation. Simplified models are proposed to describe the run-up and wave height attenuation in case of tsunamis. The results are calibrated in the case of important tsunamis having taken place in Asian region. The mechanical vulnerability of cylindrical metal tanks erected near the shoreline is also investigated. The fragility curves are then developed in order to describe the multimodal failure: overturning, rupture of anchorages and sliding, buoyancy, excessive bending effects or buckling. Corresponding fragility curves are developed under various conditions: height of tsunami waves, filling ratios and service conditions of the tanks, friction tank/ground as well as dimensions effects. Probabilistic description of the natural hazard and the fragility curves are presented. Sensitivity analysis is also performed in order to investigate the effect of various governing parameters. Furthermore, resilience concepts and metrics are proposed. Theoretical description of the damages and post-disaster recovery functions are discussed: plastic adaptation as well as elastic and plastic attractors.El artículo presenta un marco integrado que aborda los peligros naturales (tsunamis), la modelización de la vulnerabilidad física, el riesgo de fallo de las estructuras industriales (estructuras metálicas) y la resistencia estructural que proporciona la adaptación plástica. Se proponen modelos simplificados para describir el run-up y la atenuación de la altura de las olas en caso de tsunami. Los resultados se calibran para los principales tsunamis de la región asiática. También se investiga la vulnerabilidad mecánica de tanques cilíndricos de metal erigidos cerca de la costa. A continuación se desarrollan curvas de fragilidad para describir el fallo multimodal: vuelco, rotura de anclajes y deslizamiento, flotación, efectos de flexión excesiva o pandeo. Se desarrollan las correspondientes curvas de fragilidad para diversas condiciones: alturas de las olas del tsunami, ratios de llenado del tanque y condiciones de servicio, fricción tanque/suelo, así como efectos dimensionales. Se presenta una descripción probabilística del peligro natural y de las curvas de fragilidad. También se realiza un análisis de sensibilidad para investigar el efecto de varios parámetros de gobierno. Además, se proponen conceptos y métricas de resiliencia. Se discute la descripción teórica de las funciones de daño y recuperación tras el desastre: adaptación plástica y atractores elásticos y plásticos.a Laboratoire Modelisation et Simulation Multi Echelle, University Paris-Est, Marne-La-Vallee, France; b Grupo de Investigación en Estructuras y Materiales, Escuela Colombiana de Ingeniería, Bogotá, Colombia; c Unit Securite des Structures, Institut National de l’Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France14 páginasapplication/pdfengTaylor and Francis Ltd.Reino Unido.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAtribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_abf2https://www.tandfonline.com/doi/full/10.1080/19475705.2016.1181458Natural hazards, vulnerability and structural resilience: tsunamis and industrial tanksArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Natural Hazards and Risk, 7:sup1, 5-17.17157N/AGeomatics, Natural Hazards and RiskAbe K. 1993. Estimate of tsunami heights from earthquake magnitudes. Proceedings of the IUGG/IOC International Tsunami Symposium TSUNAMI'93; Wakayama, Japan.Abe K. 1995. Modeling of the runup heights of the Hokkaido-Nansei-Oki tsunami of 12 July 1993. Pure Appl Geophys. 144:113–124.Aldunce P, Beilin R, Howden M, Handmer J. 2015. Resilience for disaster risk management in a changing climate: practitioners’ frames and practices. Global Environ Change. 30:1–11.Angeon V, Bates S. 2015. Reviewing composite vulnerability and resilience indexes: a sustainable approach and application. World Dev. 72:140–162.Barker K, Ramirez-Marquez JE, Rocco CM. 2012. Resilience-based network component important measures. Reliab Eng Syst Safety. 117:89–97.Bond A, Morrison-Saunders A, Gunn JAE, Pope J, Retief F. 2015. Managing uncertainty, ambiguity and ignorance in impact assessment by embedding evolutionary resilience, participatory modeling and adaptive management. J Environ Manag. 151:97–104.Burwell D, Tolkova E, Chawla A. 2007. Diffusion and dispersion characterization of a numerical tsunami model. Ocean Model. 19:10–30.Cardoso SR, Barbosa-Póvoa AP, Relvas S, Novais AQ. 2015. Resilience metrics in the assessment of complex supply-chains performance operating under demand uncertainty. Omega. 56:53–73.Chen L, Rotter M. 2012. Buckling of anchored cylindrical shells of uniform thickness under wind load. Eng Struct. 41:199–208.Cheung KF, Wei Y, Yamazaki Y, Yim SCS. 2011. Modeling of 500-year tsunamis for probabilitistic design of coastal infrastructures in the Pacific Northwest. Coastal Eng. 58:970–985.Chopra SS, Khanna V. 2015. Interconnectedness and interdependencies of critical infrastructures in the US economy: implications for resilience. Physica A. 436:865–877.Constantin A. 2009. On the relevance of soliton theory to tsunami modelling. Wave Motion. 46:420–426.Demetracopoulos AC, Hadjitheodorou C, Antonopoulos JA. 1994. Statistical and numerical analysis of tsunami wave heights in confined waters. Ocean Eng. 21:629–643.Dijkstra HA, Viebahn JP. 2015. Sensitivity and resilience of the climate system: a conditional nonlinear optimization approach. Commun Nonlinear Sci Numer Simulat. 22:13–22.Dinh LTT, Pasman H, Gao X, Mannan MS. 2012. Resilience engineering of industrial processes: principles and contributing factors. J Loss Prev Proc Ind. 25:233–241.Flouri ET, Kalligeris N, Alexandrakis G, Kampanis NA, Synolakis CE. 2013. Application of a finite difference computational model to the simulation of earthquake generated tsunamis. Appl Num Math. 67:111–125.Francis R, Bekera B. 2014. A metric and framework for resilience analysis of engineered and infrastructure systems. Reliab Eng Sys Safety. 121:90–103.GEBCO. 2012. General bathymetric chart of the oceans. Available 15/06/2012, from www.gebco.net.Godoy LA. 2007. Performance of storage tanks in oil facilities damaged by Hurricanes Katrina and Rita. J Perform Constructed Facil. 21:441–449.Goto K, Chagué-Goff C, Fujino S, Goff J, Jaffe B, Nishimura Y, Richmond B, Sugawara D, Szczucinski W, Tappin DR, et al. 2011. New insights of tsunami hazard from the 2011 Tohoku-oki event. Mar Geol. 290:46–50.Goto Y. 2008. Tsunami damage to oil storage tanks. In The 14 World Conference on Earthquake Engineering; Beijing, China.Haugen KB, Lovholt F, Harbitz CB. 2005. Fundamental mechanisms for tsunami generation by submarine mass flows in idealised geometries. Mar Pet. Geol. 22:209–217.Heidarzadeh M, Pirooz MD, Zaker NH. 2009. Modeling of the near-field effects of the worst-case tsunami in the Makran subduction zone. Ocean Eng. 36:368–376.Helal MA, Mehanna MS. 2008. Tsunamis from nature to physics. Chaos Solitons Fractals. 36:787–796.Hollnagel E, Nemeth CP, Dekker S. 2008. Resilience engineering perspectives: remaining sensitive to the possibility of failure. Vol.1, Ashgate Studies in Resilience Engineering, Ashgate Publishing Limited. Burlington: Ashgate.Hollnagel E, Pariès J, Woods DD, Wreathall J. 2011. Resilience engineering in practice: a guidebook. Ashgate Studies in Resilience Engineering, Ashgate Publishing Limited. Burlington: Ashgate.Johnston MC, Porteous T, Crilly MA, Burton CD, Elliott A, Iversen L, McArdle K, Murray A, Phillips LH, Black C. 2008. Physical disease and resilient outcomes: a systematic review of resilience definitions and study methods. Psychosomatics. 56:168–180.Kelman I, Gaillard JC, Mercer J. 2015. Climate change's role in disaster risk reduction's future: beyond vulnerability and resilience. Int J Disaster Risk Sci. 6:21–27.Khalili S, Harre M, Morley P. 2015. A temporal framework of social resilience indicators of communities to flood, case studies: Wagga wagga and Kempsey, NSW, Australia. Int J Dis Risk Reduc. 13:48–254.Koshimura S, Namegaya Y, Yanagisawa H. 2009. Tsunami fragility - a new measure to identify Tsunami damage. J Dis Res. 4:479–490.Labaka L, Hernantes J, Sarriegi JM. 2015. Resilience framework for critical infrastructures: An empirical study in a nuclear plant. Reliab Eng Syst Safety. 141:92–105.Leone F, Lavigne F, Paris R, Denain J-C, Vinet F. 2011. A spatial analysis of the December 26th, 2004 tsunami-induced damages: lessons learned for a better risk assessment integrating buildings vulnerability. Appl Geogr. 31:363–375.Lindbom H, Tehler H, Eriksson K, Aven T. 2015. The capability concept – on how to define and describe capability in relation to risk, vulnerability and resilience. Reliab Eng Syst Safety. 135:45–54.Liu PL-F, Wang X, Salisbury AJ. 2009. Tsunami hazard and early warning system in South China Sea. J Asian Earth Sci. 36:2–12.Lovholt F, Glimsdal S, Harbitz CB, Zamora N, Nadim F, Peduzzi P, Dao H, Smebye H. 2012. Tsunami hazard and exposure on the global scale. Earth Sci Rev. 110:58–73.Lukkunaprasit P, Thanasisathit N, Yeh H. 2009. Experimental verification of FEMA P646 Tsunami loading. J Disaster Res. 4:410–418.Lundberg J, Johansson BJE. 2015. Systemic resilience model. Reliab. Eng Sys. Saf. 141:22–32.Madsen PA. 2010. On the evolution and run-up of tsunamis. J Hydrodynamics. 22:1–6. doi:10.1016/S1001-6058(09)60160-8.Manyena SB. 2014. Disaster resilience: a question of ‘multiple faces’ and ‘multiple spaces’? Int J Disaster Risk Reduct. 8:1–9.Matthews EC, Sattler M, Friedland CJ. 2014. A critical analysis of hazard resilience measures within sustainability assessment frameworks. Env Impact Assess Rev. 49:59–69.Mebarki A. 2009. A comparative study of different PGA attenuation and error models: case of 1999 Chi-Chi earthquake. Tectonophysics. 466:300–306.Mebarki A, Barroca B. 2015. Resilience and vulnerability analysis for restoration after tsunamis and floods: the case of dwellings and industrial plants. In Santiago-Fandiño V et al. editors. Post-Tsunami hazard reconstruction and restoration. Advances in Natural and Technological Hazards Research, Springer (ISBN: 978-3-319-10201-6).Mebarki A, Jerez S, Matasic I, Prodhomme G, Reimeringer M, Pensée V, Vu QA, Willot A. 2014a. Domino effects and industrial risks: integrated probabilistic framework – case of tsunamis effects. In Kontar YA et al., editors. Tsunami events and lessons learned : environnemental and societal significance. Advances in Natural and Technological Hazards Research 35, doi:10.1007/978-94-007-7269-4_15, Springer.Mebarki A, Willot A, Jerez S, Reimeringer M, Prodhomme G. 2014b. Vulnerability and resilience under effects of tsunamis: case of industrial plants. Procedia Eng. 84:116–121.Miller-Hooks E, Zhang X, Faturechi R. 2012. Measuring and maximizing resilience of freight transportation networks. Comput Oper Res. 39:1633–1643.Mugume SN, Gomez DE, Fu G, Farmani R, Butler D. 2015. A global analysis approach for investigating structural resilience in urban drainage systems. Water Res. 81:15–26.Naito C, Cox D, Yu Q, Brooker H. 2013. Fuel Storage Container Performance during the 2011 Tohoku Japan Tsunami. J Perform Constructed Facilities. 27:373–380.Nandasena NAK, Paris R, Tanaka N. 2011. Reassessment of hydrodynamic equations: minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis). Mar. Geol. 281:70–84.Nistor I, Palermo D, Nouri Y, Murty T, Saatcioglu M. 2010. Tsunami-Induced forces on structures. In: Kim YC, editor. Handbook of coastal and ocean engineering. Singapore: World Scientific Publishing Co. Pte. Ltd.; p. 261–286.Norio O, Ye T, Kajitani Y, Shi P, Tatano H. 2011. The 2011 Eastern Japan great earthquake disaster: overview and comments. Int J Disaster Risk Sci. 2:34–42.Oken BS, Chamine I, Wakeland W. 2015. A systems approach to stress, stressors and resilience in humans. Behav Brain Rese. 282:144–154Ouyang M, Wang Z. 2015. Resilience assessment of interdependent infrastructure systems: with a focus on joint restoration modeling and analysis. Reliab Eng Syst Safety. 141:74–82.Pant R, Barker K, Ramirez-Marquez JE, Rocco CM. 2014. Stochastic measures of resilience and their application to container terminals. Comput Ind Eng. 70:183–194.Pophet N, Kaewbanjak N, Asavanant J, Ioualalen M. 2011. High grid resolution and parallelized tsunami simulation with fully nonlinear Boussinesq equations. Comput Fluids. 40:258–268.Righi AW, Saurin TA, Wachs P. 2015. A systematic literature review of resilience engineering: research areas and a research agenda proposal. Reliab Eng Syst Saf. 141:142–152.Roege PE, Collier ZA, Mancillas J, McDonagh JA, Linkov I. 2014. Metrics for energy resilience. Energy Policy. 72:249–256.Sahebjamnia N, Torabi SA, Mansouri SA. 2015. Integrated business continuity and disaster recovery planning: towards organizational resilience. Eur J Oper Res. 242:261–273.Sakakiyama T, Matsuura S, Matsuyama M. 2009. Tsunami force acting on oil tanks and buckling analysis for Tsunami pressure. J Disaster Res. 4:427–435.Shafieezadeh A, Burden LI. 2014. Scenario-based resilience assessment framework for critical infrastructure systems: case study for seismic resilience of seaports. Reliab Eng Syst Saf. 132:207–219.Shirali GHA, Motamedzade M, Mohammadfam I, Ebrahimpour V, Moghimbeigi A. 2012. Challenges in building resilience engineering (RE) and adaptive capacity: a field study in chemical plant. Process Saf. Environ Prot. 90:83–90.Stewart DE, Yuen T. 2011. A systematic review of resilience in the physically Ill. Psychosomatics. 52:199–209.Wijetunge JJ. 2006. Tsunami on 26 December 2004: spatial distribution of tsunami height and the extent of inundation in Sri Lanka. SciTsunami Hazards. 24:225–240.Zhang DH, Yip TL, Ng C-O. 2009. Predicting tsunami arrivals: estimates and policy implications. Mar Policy. 33:643–650.Zhao BB, Duan WY, Webster WC. 2011. Tsunami simulation with Green-Naghdi theory. Ocean Eng. 3:389–296.Resistencia de materialesTsunamisIngeniería de estructurasStrength of materialsTsunamisStructural engineeringHazardsTsunamisResilienceStructuresIndustrial tankSfragility curvesVulnerabilityTEXT10.108019475705.2016.1181458.pdf.txt10.108019475705.2016.1181458.pdf.txtExtracted texttext/plain36118https://repositorio.escuelaing.edu.co/bitstream/001/1530/3/10.108019475705.2016.1181458.pdf.txte4dc606679405945f93a70e35d65d7c2MD53open accessNatural hazards, vulnerability and structural resilience: tsunamis and industrial tanks.pdf.txtNatural hazards, vulnerability and structural resilience: tsunamis and industrial tanks.pdf.txtExtracted texttext/plain36118https://repositorio.escuelaing.edu.co/bitstream/001/1530/5/Natural%20hazards%2c%20vulnerability%20and%20structural%20resilience%3a%20tsunamis%20and%20industrial%20tanks.pdf.txte4dc606679405945f93a70e35d65d7c2MD55metadata only accessTHUMBNAILNatural hazards, vulnerability and structural resilience: tsunamis and industrial tanks.pdf.jpgNatural hazards, vulnerability and structural resilience: tsunamis and industrial tanks.pdf.jpgGenerated Thumbnailimage/jpeg9958https://repositorio.escuelaing.edu.co/bitstream/001/1530/6/Natural%20hazards%2c%20vulnerability%20and%20structural%20resilience%3a%20tsunamis%20and%20industrial%20tanks.pdf.jpgc8cf23684e50ea51f3f55a78561f8bddMD56open accessLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1530/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALNatural hazards, vulnerability and structural resilience: tsunamis and industrial tanks.pdfapplication/pdf1452365https://repositorio.escuelaing.edu.co/bitstream/001/1530/2/Natural%20hazards%2c%20vulnerability%20and%20structural%20resilience%3a%20tsunamis%20and%20industrial%20tanks.pdf41c901db77877378a146e292b9556374MD52open access001/1530oai:repositorio.escuelaing.edu.co:001/15302022-08-09 12:23:10.668open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK