Fretting-corrosion behavior of electroless Ni-P/Ni-P-TiO2 coatings obtained on AZ91D magnesium alloy by a chromium-free process
Ni-P electroless coatings are widely applied for protection of magnesium alloys and other materials due to the low energy consumption of the process and high resistance to corrosion and wear, properties that can be improved with the incorporation of particulate materials. Despite the attractive comb...
- Autores:
-
Carrillo, Diego F.
Bermudez, Angela
Gómeza, Maryory A.
Zuleta, Alejandro A.
Castaño, Juan G.
Mischler, S.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/3328
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/3328
https://repositorio.escuelaing.edu.co/
- Palabra clave:
- Electricity
Electricidad
Tuberías de calor
Heat pipes
Electronic industries
Industrias electrónicas
Fretting-corrosion
Magnesium alloys
AZ91D
Composite electroless coatings
Ni-P
TiO2
Corrosión por contacto
Aleaciones de magnesio
Recubrimientos compuestos no electrolíticos
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
ESCUELAIG2_3399299471cdbe9125359a3c6676ad3b |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/3328 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Fretting-corrosion behavior of electroless Ni-P/Ni-P-TiO2 coatings obtained on AZ91D magnesium alloy by a chromium-free process |
title |
Fretting-corrosion behavior of electroless Ni-P/Ni-P-TiO2 coatings obtained on AZ91D magnesium alloy by a chromium-free process |
spellingShingle |
Fretting-corrosion behavior of electroless Ni-P/Ni-P-TiO2 coatings obtained on AZ91D magnesium alloy by a chromium-free process Electricity Electricidad Tuberías de calor Heat pipes Electronic industries Industrias electrónicas Fretting-corrosion Magnesium alloys AZ91D Composite electroless coatings Ni-P TiO2 Corrosión por contacto Aleaciones de magnesio Recubrimientos compuestos no electrolíticos |
title_short |
Fretting-corrosion behavior of electroless Ni-P/Ni-P-TiO2 coatings obtained on AZ91D magnesium alloy by a chromium-free process |
title_full |
Fretting-corrosion behavior of electroless Ni-P/Ni-P-TiO2 coatings obtained on AZ91D magnesium alloy by a chromium-free process |
title_fullStr |
Fretting-corrosion behavior of electroless Ni-P/Ni-P-TiO2 coatings obtained on AZ91D magnesium alloy by a chromium-free process |
title_full_unstemmed |
Fretting-corrosion behavior of electroless Ni-P/Ni-P-TiO2 coatings obtained on AZ91D magnesium alloy by a chromium-free process |
title_sort |
Fretting-corrosion behavior of electroless Ni-P/Ni-P-TiO2 coatings obtained on AZ91D magnesium alloy by a chromium-free process |
dc.creator.fl_str_mv |
Carrillo, Diego F. Bermudez, Angela Gómeza, Maryory A. Zuleta, Alejandro A. Castaño, Juan G. Mischler, S. |
dc.contributor.author.none.fl_str_mv |
Carrillo, Diego F. Bermudez, Angela Gómeza, Maryory A. Zuleta, Alejandro A. Castaño, Juan G. Mischler, S. |
dc.contributor.researchgroup.spa.fl_str_mv |
Diseño Sostenible en Ingeniería Mecánica (DSIM) |
dc.subject.armarc.none.fl_str_mv |
Electricity Electricidad Tuberías de calor Heat pipes Electronic industries Industrias electrónicas |
topic |
Electricity Electricidad Tuberías de calor Heat pipes Electronic industries Industrias electrónicas Fretting-corrosion Magnesium alloys AZ91D Composite electroless coatings Ni-P TiO2 Corrosión por contacto Aleaciones de magnesio Recubrimientos compuestos no electrolíticos |
dc.subject.proposal.eng.fl_str_mv |
Fretting-corrosion Magnesium alloys AZ91D Composite electroless coatings Ni-P TiO2 |
dc.subject.proposal.spa.fl_str_mv |
Corrosión por contacto Aleaciones de magnesio Recubrimientos compuestos no electrolíticos |
description |
Ni-P electroless coatings are widely applied for protection of magnesium alloys and other materials due to the low energy consumption of the process and high resistance to corrosion and wear, properties that can be improved with the incorporation of particulate materials. Despite the attractive combination of properties of electroless coatings, studies in the tribocorrosion field, such as fretting-corrosion behavior of Ni-P electroless coatings, are very scarce. In this work, Ni–P-TiO2 composite electroless coatings with several variations on particles size and content applied on AZ91D magnesium alloys were analyzed under fretting-corrosion conditions in 3.5 wt.% NaCl. Coatings were obtained by direct electroless technique in multiple steps. Procedures were chromium-free and no activation pretreatment was needed. The tests were carried out using a fretting-corrosion tribometer from where open circuit potential and coefficient of friction were analyzed, as well as wear tracks on coatings surfaces were observed by SEM. The results obtained indicate that an improvement in the tribochemical behavior of Ni-P coatings can be achieved with the TiO2 codeposit, which modify the contact between body and counter body, the elastic accommodation and the dissipation of energy in the contact area |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2024-10-17T16:10:11Z |
dc.date.available.none.fl_str_mv |
2024-10-17T16:10:11Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
2468-0230 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/3328 |
dc.identifier.eissn.spa.fl_str_mv |
2468-0230 |
dc.identifier.instname.spa.fl_str_mv |
Escuela Colombiana de Ingeniería Julio Garavito |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio digital |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.escuelaing.edu.co/ |
identifier_str_mv |
2468-0230 Escuela Colombiana de Ingeniería Julio Garavito Repositorio digital |
url |
https://repositorio.escuelaing.edu.co/handle/001/3328 https://repositorio.escuelaing.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
8 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
21 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Superficies e interfaces |
dc.relation.references.spa.fl_str_mv |
] B.L. Mordike, K.U. Kainer, Magnesium Alloys and their Applications, Wiley-VCH, Weinheim, 2000. E. Ghali, W. Dietzel, K.U. Kainer, General and localized corrosion of magnesium alloys: a critical review, J. Materi. Eng. Perform. 13 (2004) 7–23, https://doi.org/ 10.1361/10599490417533. ] S. Schumann, The paths and strategies for increased magnesium applications in vehicles, Mater. Sci. Forum. 488-489 (2005) 1–9, https://doi.org/10.4028/www. scientific.net/MSF.488-489.1. W. Huang, B. Hou, Y. Pang, Z. Zhou, Fretting wear behavior of AZ91D and AM60B magnesium alloys, Wear 260 (2006) 1173–1178, https://doi.org/10.1016/j.wear. 2005.07.023. D. Landolt, S. Mischler, M. Stemp, Electrochemical methods in tribocorrosion: a critical appraisal, Electrochim. Acta 46 (2001) 3913–3929, https://doi.org/10. 1016/S0013-4686(01)00679-X. R. Offoiach, M. Lekkaa, A. Lanzutti, V. Martínez-Nogués, J.M. Vega, E. GarcíaLecina, L. Fedrizzi, Tribocorrosion study of Ni/B electrodeposits with low B content, Surf. Coat. Technol. 369 (2019) 1–15, https://doi.org/10.1016/j.surfcoat.2019.04. 047 C.T. Dervos, J. Novakovic, P. Vassiliou, Electroless Ni-B and Ni-P coatings with high-fretting resistance for electrical contact applications, Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts, Seattle, WA, USA, 2004, pp. 281–288, , https:// doi.org/10.1109/HOLM.2004.1353131. R.B. Waterhouse, Fretting wear, Wear 100 (1984) 107–118, https://doi.org/10. 1016/0043-1648(84)90008-5. J. Esguerra-Arce, A. Bermúdez-Castañeda, A. Esguerra-Arce, Y. Aguilar, S. Mischler, Fretting corrosion between bone and calcium phosphate-calcium titanate coatings, Wear 414-415 (2018) 366–375, https://doi.org/10.1016/j.wear.2018.08.021. ] N. Diomidis, S. Mischler, Third body effects on friction and wear during fretting of steel contacts, Tribol. Int. 44 (2011) 1452–1460, https://doi.org/10.1016/j. triboint.2011.02.013. ] S. Barril, Fretting corrosion of Ti6Al4V : contribution to the in-vitro simulation of the femoral stem-bone cement interface, PhD Thesis EPFL, 2003. ] J. Beard, The avoidance of fretting, Mater. Des. 9 (1988) 220–227, https://doi.org/ 10.1016/0261-3069(88)90034-9. A.D. Forero López, I.L. Lehr, S.B. Saidman, Anodisation of AZ91D magnesium alloy in molybdate solution for corrosion protection, J. Alloys Compd 702 (2017) 338–345, https://doi.org/10.1016/j.jallcom.2017.01.030. L.P. Wu, J. Zhao, Y. Xie, Z. Yang, Progress of electroplating and electroless plating on magnesium alloy, Trans. Nonferrous Met. Soc. China 20 (2010) s630–s637, https://doi.org/10.1016/S1003-6326(10)60552-3. H. Huo, Y. Li, F. Wang, Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer, Corr. Sci. 46 (2004) 1467–1477, https://doi.org/10.1016/j.corsci.2003.09.023. C.S. Lin, H.C. Lin, K.M. Lin, W.C. Lai, Formation and properties of stannate conversion coatings on AZ61 magnesium alloys, Corr. Sci. 48 (2006) 93–109, https:// doi.org/10.1016/j.corsci.2004.11.023. E.E. Demirci, E. Arslan, K.V. Ezirmik, Ö. Baran, Y. Totik, İ. Efeoglu, Investigation of wear, corrosion and ribocorrosion properties of AZ91 Mg alloy coated by micro arc oxidation process in the different electrolyte solutions, Thin Solid Films 528 (2013) 116–122, https://doi.org/10.1016/j.tsf.2012.07.145 Ch. Zhong, F. Liu, Y. Wu, J. Le, L. Liu, M. He, J. Zhu, W. Hu, Protective diffusion coatings on magnesium alloys: a review of recent developments, J. Alloys Compd 520 (2012) 11–21, https://doi.org/10.1016/j.jallcom.2011.12.124 E. Correa, J.F. Mejía, J.G. Castaño, F. Echeverría, M. Gómez, Tribological characterization of electroless Ni-B coatings formed on commercial purity magnesium, J. Tribol. 139 (2017), https://doi.org/10.1115/1.4036169 051302-1–051302-9. ] H. Zhao, Z. Huang, J. Cui, A new method for electroless Ni–P plating on AZ31 magnesium alloy, Surf. Coat. Technol. 202 (2007) 133–139, https://doi.org/10. 1016/j.surfcoat.2007.05.001. W.X. Zhang, J.G. He, Z.H. Jiang, Q. Jiang, J.S. Lian, Electroless Ni-P layer with a chromium-free pretreatment on AZ91D magnesium alloy, Surf. Coat. Technol. 201 (2007) 4594–4600, https://doi.org/10.1016/j.surfcoat.2006.09.312. J. Sudagar, J. Lian, W. Sha, Electroless nickel, alloy, composite and nano coatings – A critical review, J. Alloys Compd. 571 (2013) 183–204, https://doi.org/10.1016/j. jallcom.2013.03.107 A.A. Zuleta, E. Correa, J.G. Castaño, F. Echeverria, A. Baron-Wiechec, P. Skeldon, G.E. Thompson, Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy, Surf. Coat. Technol. 321 (2017) 309–320, https://doi.org/10.1016/j.surfcoat.2017.04.059 A.A. Zuleta, E. Correa, M. Sepúlveda, L. Guerra, J.G. Castaño, F. Echeverría, P. Skeldon, G.E. Thompson, Effect of NH4HF2 on deposition of alkaline electroless Ni–P coatings as a chromium-free pre-treatment for magnesium, Corr. Sci. 55 (2012) 194–200, https://doi.org/10.1016/j.corsci.2011.10.028 M.A. Rahmat, R.N. Ibrahim, R.H. Oskouei, A stress-based approach to analyse fretting fatigue life behaviour of electroless Ni–P coated Al 7075-T6, Mat. Sci. Eng. A 631 (2015) 126–138, https://doi.org/10.1016/j.msea.2015.02.033. K. Hari Krishnan, S. John, K.N. Srinivasan, J. Praveen, M. Ganesan, P.M. Kavimani, An overall aspect of electroless Ni-P depositions—A review article, Metall Mat Trans A 37 (2006) 1917–1926, https://doi.org/10.1007/s11661-006-0134-7. S. Zhang, K. Han, L. Cheng, The effect of SiC particles added in electroless Ni-P plating solution on the properties of composite coatings, Surf. Coatings Technol. 202 (2008) 2807–2812, https://doi.org/10.1016/j.surfcoat.2007.10.015 P.A. Gay, J.M. Limat, P.A. Steinmann, J. Pagetti, Characterisation and mechanical properties of electroless NiP-ZrO2 coatings, Surf. Coatings Technol 202 (2007) 1167–1171, https://doi.org/10.1016/j.surfcoat.2007.05.081 ] P. Gadhari, P. Sahoo, Effect of process parameters on microhardness of Ni-P-Al2O3 composite coatings, Procedia Mater. Sci. 6 (2014) 623–632, https://doi.org/10. 1016/j.mspro.2014.07.077. ] J. Novakovic, P. Vassiliou, E. Georgiza, Electrocatalytic Properties of Electroless NiP- RuO2/TiO2 Composite Coatings, Int. J. Electrochem. Sci. 8 (2013) 3615–3627. E. Georgiza, J. Novakovic, P. Vassiliou, Characterization and corrosion resistance of duplex electroless Ni-P composite coatings on magnesium alloy, Surf. Coat. Technol. 232 (2013) 432–439, https://doi.org/10.1016/j.surfcoat.2013.05.047. W. Chen, W. Gao, Y. He, A novel electroless plating of Ni-P-TiO2 nano-composite coatings, Surf. Coat. Technol. 204 (2010) 2493–2498, https://doi.org/10.1016/j. surfcoat.2010.01.032 J.A. Calderón, J.P. Jiménez, A.A. Zuleta, Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni(OH)2-ceramic nanoparticle composite coatings, Surf. Coat. Technol. 304 (2016) 167–178, https://doi.org/10.1016/ j.surfcoat.2016.04.063 T.R. Tamilarasan, R. Rajendran, M. Siva shankar, U. Sanjith, G. Rajagopal, J. Sudagar, Wear and scratch behaviour of electroless Ni-P-nano-TiO2: effect of surfactants, Wear 346–347 (2016) 148–157, https://doi.org/10.1016/j.wear.2015. 11.015 T.R. Tamilarasan, R. Rajendran, G. Rajagopal, J. Sudagar, Effect of surfactants on the coating properties and corrosion behaviour of Ni-P-nano-TiO2 coatings, Surf. Coatings Technol. 276 (2015) 320–326, https://doi.org/10.1016/j.surfcoat.2015. 07.008 ] N. Promphet, P. Rattanawaleedirojn, N. Rodthongkum, Electroless NiP-TiOsol-RGO: a smart coating for enhanced corrosion resistance and conductivity of steel, Surf. Coatings Technol. 325 (2017) 604–610, https://doi.org/10.1016/j.surfcoat.2017. 07.018. ] M. Sabzi, S.H. Mousavi Anijdan, Microstructural analysis and optical properties evaluation of sol-gel heterostructured NiO-TiO2 film used for solar panels, Ceram. Int. 45 (2019) 3250–3255, https://doi.org/10.1016/j.ceramint.2018.10.229 D.F. Carrillo, A.C. Santa, A. Valencia-Escobar, A. Zapata, F. Echeverría, M.A. Gómez, A.A. Zuleta, J.G. Castaño, Tribological behavior of electroless Ni–P/ Ni–P–TiO2 coatings obtained on AZ91D magnesium alloy by a chromium-free process, Int. J. Adv. Manuf. Technol. 1-4 (2019) 1745–1756, https://doi.org/10. 1007/s00170-019-04381-y. P. Gadhari, P. Sahoo, Optimization of Coating Process Parameters to Improve Microhardness of Ni-P-TiO2 Composite Coatings, Mater. Today Proc. 2 (2015) 2367–2374, https://doi.org/10.1016/j.matpr.2015.07.303 P. Gadhari, P. Sahoo, Study of wear behavior of Ni-P-TiO2 composite coatings by optimizing coating parameters, Mater. Today Proc. 4 (2017) 1883–1892, https:// doi.org/10.1016/j.matpr.2017.02.033 P. Makkar, R.C. Agarwala, V. Agarwala, Wear characteristics of mechanically milled TiO2 nanoparticles incorporated in electroless Ni-P coatings, Adv. Powder Technol. 25 (2014) 1653–1660, https://doi.org/10.1016/j.apt.2014.05.018 I. Saravanan, A. Elayaperumal, A. Devaraju, M. Karthikeyan, A. Raji, Wear behaviour of electroless Ni-P and Ni-P-TiO2 composite coatings on En8 steel, Mater. Today Proc. 22 (2020) 1135–1139, https://doi.org/10.1016/j.matpr.2019.12.007. X. Wu, J. Mao, Z. Zhang, Y. Che, Improving the properties of 211Z Al alloy by enhanced electroless Ni-P-TiO2 nanocomposite coatings with TiO2 sol, Surf. Coatings Technol. 270 (2015) 170–174, https://doi.org/10.1016/j.surfcoat.2015. 03.006 L. Shizhuo, J. Xiaoxia, B. Hongyun, L. Shu, Effect of environmental embrittlement on wear resistance of alloys in corrosive wear, Wear 225-229 (1999) 1025–1030, https://doi.org/10.1016/S0043-1648(99)00079-4. S. Barril, N. Debaud, S. Mischler, D. Landolt, A tribo-electrochemical apparatus for in vitro investigation of fretting-corrosion of metallic implant materials, Wear 252 (2002) 744–754, https://doi.org/10.1016/S0043-1648(02)00027-3. V. Chaudhry, V. Kailas, Elastic-Plastic Contact Conditions for Frictionally Constrained Bodies Under Cyclic Tangential Loading, J. Tribol. 136 (2013), https:// doi.org/10.1115/1.4025600 011401-1–011401-17. S. Fouvry, P. Kapsa, L. Vincent, An Elastic-plastic shakedown analysis of fretting wear, Wear 247 (2001) 41–54, https://doi.org/10.1016/S0043-1648(00)00508-1. J.N. Balaraju, Kalavati, K.S. Rajam, Influence of particle size on the microstructure, hardness and corrosion resistance of electroless Ni-P-Al2O3 composite coatings, Surf. Coatings Technol. 200 (2006) 3933–3941, https://doi.org/10.1016/j.surfcoat. 2005.03.007 P. Makkar, R.C. Agarwala, V. Agarwala, Chemical synthesis of TiO2 nanoparticles and their inclusion in Ni-P electroless coatings, Ceram. Int. 39 (2013) 9003–9008, https://doi.org/10.1016/j.ceramint.2013.04.101. S.R. Pearson, P.H. Shipway, Is the wear coefficient dependent upon slip amplitude in fretting? Vingsbo and Söderberg revisited, Wear 330–331 (2015) 93–102, https://doi.org/10.1016/j.wear.2014.11.005. S. Ranganatha, T.V. Venkatesha, K. Vathsala, Development of electroless Ni-Zn-P/ nano-TiO2 composite coatings and their properties, Applied Surface Science 256 (2010) 7377–7383, https://doi.org/10.1016/j.apsusc.2010.05.076. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.extent.spa.fl_str_mv |
8 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
ELSEVIER |
dc.source.spa.fl_str_mv |
https://doi.org/10.1016/j.surfin.2020.100733 |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/3328/4/Fretting%20corrosion%20behavior%20of%20electroless%20Ni%20P%20Ni%20P%20TiO2%20coatings%20obtained.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/3328/3/Fretting-corrosion%20behavior%20of%20electroless%20Ni%20P%20Ni%20P%20TiO2%20coatings%20obtained.PNG https://repositorio.escuelaing.edu.co/bitstream/001/3328/5/Fretting%20corrosion%20behavior%20of%20electroless%20Ni%20P%20Ni%20P%20TiO2%20coatings%20obtained.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/3328/2/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/3328/1/Fretting%20corrosion%20behavior%20of%20electroless%20Ni%20P%20Ni%20P%20TiO2%20coatings%20obtained.pdf |
bitstream.checksum.fl_str_mv |
17a6373f9214612f75f766bcc5930d09 cd8a000cca1c091be5149501c2ed5313 2fbf771d464bf5740cef11674aabdf8b 5a7ca94c2e5326ee169f979d71d0f06e 13111152dbd069e75353239c264cc6f8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355584324993024 |
spelling |
Carrillo, Diego F.c76c10c373598f62c7b5c3ddf8633013Bermudez, Angelaa3bfa9a11b9185197a6e187706c576bdGómeza, Maryory A.13775247f035fe0055ab3f9452a9a124Zuleta, Alejandro A.5d16e771133c0c152c1efd0f4fa3b883Castaño, Juan G.6b5b30749a4925ccc2bd94eb68641390Mischler, S.ac8dce98cc97f49bfa2d9a4cb1cfd267Diseño Sostenible en Ingeniería Mecánica (DSIM)2024-10-17T16:10:11Z2024-10-17T16:10:11Z20202468-0230https://repositorio.escuelaing.edu.co/handle/001/33282468-0230Escuela Colombiana de Ingeniería Julio GaravitoRepositorio digitalhttps://repositorio.escuelaing.edu.co/Ni-P electroless coatings are widely applied for protection of magnesium alloys and other materials due to the low energy consumption of the process and high resistance to corrosion and wear, properties that can be improved with the incorporation of particulate materials. Despite the attractive combination of properties of electroless coatings, studies in the tribocorrosion field, such as fretting-corrosion behavior of Ni-P electroless coatings, are very scarce. In this work, Ni–P-TiO2 composite electroless coatings with several variations on particles size and content applied on AZ91D magnesium alloys were analyzed under fretting-corrosion conditions in 3.5 wt.% NaCl. Coatings were obtained by direct electroless technique in multiple steps. Procedures were chromium-free and no activation pretreatment was needed. The tests were carried out using a fretting-corrosion tribometer from where open circuit potential and coefficient of friction were analyzed, as well as wear tracks on coatings surfaces were observed by SEM. The results obtained indicate that an improvement in the tribochemical behavior of Ni-P coatings can be achieved with the TiO2 codeposit, which modify the contact between body and counter body, the elastic accommodation and the dissipation of energy in the contact areaLos recubrimientos químico Ni-P se aplican ampliamente para la protección de aleaciones de magnesio y otros materiales debido a la bajo consumo energético del proceso y alta resistencia a la corrosión y al desgaste, propiedades que pueden mejorarse con la incorporación de materiales particulados. A pesar de la atractiva combinación de propiedades de Recubrimientos no electrolíticos, estudios en el campo de la tribocorrosión, como el comportamiento de corrosión por contacto de Ni-P no electrolítico. revestimientos, son muy escasos. En este trabajo, se utilizaron recubrimientos electrolíticos compuestos de Ni-P-TiO2 con varias variaciones en El tamaño y el contenido de las partículas aplicadas en aleaciones de magnesio AZ91D se analizaron en condiciones de corrosión por contacto en NaCl al 3,5% en peso. Los recubrimientos se obtuvieron mediante técnica directa no electrolítica en múltiples pasos. Los procedimientos fueron libre de cromo y no fue necesario ningún tratamiento previo de activación. Las pruebas se llevaron a cabo utilizando un método de corrosión por contacto. tribómetro desde donde se analizó el potencial de circuito abierto y el coeficiente de fricción, así como el desgaste de las pistas en Las superficies de los recubrimientos se observaron mediante SEM. Los resultados obtenidos indican que una mejora en la función triboquímica El comportamiento de los recubrimientos de Ni-P se puede lograr con el codeposito de TiO2, que modifica el contacto entre el cuerpo y contracuerpo, la acomodación elástica y la disipación de energía en el área de contacto8 páginasapplication/pdfengELSEVIERhttps://doi.org/10.1016/j.surfin.2020.100733Fretting-corrosion behavior of electroless Ni-P/Ni-P-TiO2 coatings obtained on AZ91D magnesium alloy by a chromium-free processArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a858121Superficies e interfaces] B.L. Mordike, K.U. Kainer, Magnesium Alloys and their Applications, Wiley-VCH, Weinheim, 2000.E. Ghali, W. Dietzel, K.U. Kainer, General and localized corrosion of magnesium alloys: a critical review, J. Materi. Eng. Perform. 13 (2004) 7–23, https://doi.org/ 10.1361/10599490417533.] S. Schumann, The paths and strategies for increased magnesium applications in vehicles, Mater. Sci. Forum. 488-489 (2005) 1–9, https://doi.org/10.4028/www. scientific.net/MSF.488-489.1.W. Huang, B. Hou, Y. Pang, Z. Zhou, Fretting wear behavior of AZ91D and AM60B magnesium alloys, Wear 260 (2006) 1173–1178, https://doi.org/10.1016/j.wear. 2005.07.023.D. Landolt, S. Mischler, M. Stemp, Electrochemical methods in tribocorrosion: a critical appraisal, Electrochim. Acta 46 (2001) 3913–3929, https://doi.org/10. 1016/S0013-4686(01)00679-X.R. Offoiach, M. Lekkaa, A. Lanzutti, V. Martínez-Nogués, J.M. Vega, E. GarcíaLecina, L. Fedrizzi, Tribocorrosion study of Ni/B electrodeposits with low B content, Surf. Coat. Technol. 369 (2019) 1–15, https://doi.org/10.1016/j.surfcoat.2019.04. 047C.T. Dervos, J. Novakovic, P. Vassiliou, Electroless Ni-B and Ni-P coatings with high-fretting resistance for electrical contact applications, Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts, Seattle, WA, USA, 2004, pp. 281–288, , https:// doi.org/10.1109/HOLM.2004.1353131.R.B. Waterhouse, Fretting wear, Wear 100 (1984) 107–118, https://doi.org/10. 1016/0043-1648(84)90008-5.J. Esguerra-Arce, A. Bermúdez-Castañeda, A. Esguerra-Arce, Y. Aguilar, S. Mischler, Fretting corrosion between bone and calcium phosphate-calcium titanate coatings, Wear 414-415 (2018) 366–375, https://doi.org/10.1016/j.wear.2018.08.021.] N. Diomidis, S. Mischler, Third body effects on friction and wear during fretting of steel contacts, Tribol. Int. 44 (2011) 1452–1460, https://doi.org/10.1016/j. triboint.2011.02.013.] S. Barril, Fretting corrosion of Ti6Al4V : contribution to the in-vitro simulation of the femoral stem-bone cement interface, PhD Thesis EPFL, 2003.] J. Beard, The avoidance of fretting, Mater. Des. 9 (1988) 220–227, https://doi.org/ 10.1016/0261-3069(88)90034-9.A.D. Forero López, I.L. Lehr, S.B. Saidman, Anodisation of AZ91D magnesium alloy in molybdate solution for corrosion protection, J. Alloys Compd 702 (2017) 338–345, https://doi.org/10.1016/j.jallcom.2017.01.030.L.P. Wu, J. Zhao, Y. Xie, Z. Yang, Progress of electroplating and electroless plating on magnesium alloy, Trans. Nonferrous Met. Soc. China 20 (2010) s630–s637, https://doi.org/10.1016/S1003-6326(10)60552-3.H. Huo, Y. Li, F. Wang, Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer, Corr. Sci. 46 (2004) 1467–1477, https://doi.org/10.1016/j.corsci.2003.09.023.C.S. Lin, H.C. Lin, K.M. Lin, W.C. Lai, Formation and properties of stannate conversion coatings on AZ61 magnesium alloys, Corr. Sci. 48 (2006) 93–109, https:// doi.org/10.1016/j.corsci.2004.11.023.E.E. Demirci, E. Arslan, K.V. Ezirmik, Ö. Baran, Y. Totik, İ. Efeoglu, Investigation of wear, corrosion and ribocorrosion properties of AZ91 Mg alloy coated by micro arc oxidation process in the different electrolyte solutions, Thin Solid Films 528 (2013) 116–122, https://doi.org/10.1016/j.tsf.2012.07.145Ch. Zhong, F. Liu, Y. Wu, J. Le, L. Liu, M. He, J. Zhu, W. Hu, Protective diffusion coatings on magnesium alloys: a review of recent developments, J. Alloys Compd 520 (2012) 11–21, https://doi.org/10.1016/j.jallcom.2011.12.124E. Correa, J.F. Mejía, J.G. Castaño, F. Echeverría, M. Gómez, Tribological characterization of electroless Ni-B coatings formed on commercial purity magnesium, J. Tribol. 139 (2017), https://doi.org/10.1115/1.4036169 051302-1–051302-9.] H. Zhao, Z. Huang, J. Cui, A new method for electroless Ni–P plating on AZ31 magnesium alloy, Surf. Coat. Technol. 202 (2007) 133–139, https://doi.org/10. 1016/j.surfcoat.2007.05.001.W.X. Zhang, J.G. He, Z.H. Jiang, Q. Jiang, J.S. Lian, Electroless Ni-P layer with a chromium-free pretreatment on AZ91D magnesium alloy, Surf. Coat. Technol. 201 (2007) 4594–4600, https://doi.org/10.1016/j.surfcoat.2006.09.312.J. Sudagar, J. Lian, W. Sha, Electroless nickel, alloy, composite and nano coatings – A critical review, J. Alloys Compd. 571 (2013) 183–204, https://doi.org/10.1016/j. jallcom.2013.03.107A.A. Zuleta, E. Correa, J.G. Castaño, F. Echeverria, A. Baron-Wiechec, P. Skeldon, G.E. Thompson, Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy, Surf. Coat. Technol. 321 (2017) 309–320, https://doi.org/10.1016/j.surfcoat.2017.04.059A.A. Zuleta, E. Correa, M. Sepúlveda, L. Guerra, J.G. Castaño, F. Echeverría, P. Skeldon, G.E. Thompson, Effect of NH4HF2 on deposition of alkaline electroless Ni–P coatings as a chromium-free pre-treatment for magnesium, Corr. Sci. 55 (2012) 194–200, https://doi.org/10.1016/j.corsci.2011.10.028M.A. Rahmat, R.N. Ibrahim, R.H. Oskouei, A stress-based approach to analyse fretting fatigue life behaviour of electroless Ni–P coated Al 7075-T6, Mat. Sci. Eng. A 631 (2015) 126–138, https://doi.org/10.1016/j.msea.2015.02.033.K. Hari Krishnan, S. John, K.N. Srinivasan, J. Praveen, M. Ganesan, P.M. Kavimani, An overall aspect of electroless Ni-P depositions—A review article, Metall Mat Trans A 37 (2006) 1917–1926, https://doi.org/10.1007/s11661-006-0134-7.S. Zhang, K. Han, L. Cheng, The effect of SiC particles added in electroless Ni-P plating solution on the properties of composite coatings, Surf. Coatings Technol. 202 (2008) 2807–2812, https://doi.org/10.1016/j.surfcoat.2007.10.015P.A. Gay, J.M. Limat, P.A. Steinmann, J. Pagetti, Characterisation and mechanical properties of electroless NiP-ZrO2 coatings, Surf. Coatings Technol 202 (2007) 1167–1171, https://doi.org/10.1016/j.surfcoat.2007.05.081] P. Gadhari, P. Sahoo, Effect of process parameters on microhardness of Ni-P-Al2O3 composite coatings, Procedia Mater. Sci. 6 (2014) 623–632, https://doi.org/10. 1016/j.mspro.2014.07.077.] J. Novakovic, P. Vassiliou, E. Georgiza, Electrocatalytic Properties of Electroless NiP- RuO2/TiO2 Composite Coatings, Int. J. Electrochem. Sci. 8 (2013) 3615–3627.E. Georgiza, J. Novakovic, P. Vassiliou, Characterization and corrosion resistance of duplex electroless Ni-P composite coatings on magnesium alloy, Surf. Coat. Technol. 232 (2013) 432–439, https://doi.org/10.1016/j.surfcoat.2013.05.047.W. Chen, W. Gao, Y. He, A novel electroless plating of Ni-P-TiO2 nano-composite coatings, Surf. Coat. Technol. 204 (2010) 2493–2498, https://doi.org/10.1016/j. surfcoat.2010.01.032J.A. Calderón, J.P. Jiménez, A.A. Zuleta, Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni(OH)2-ceramic nanoparticle composite coatings, Surf. Coat. Technol. 304 (2016) 167–178, https://doi.org/10.1016/ j.surfcoat.2016.04.063T.R. Tamilarasan, R. Rajendran, M. Siva shankar, U. Sanjith, G. Rajagopal, J. Sudagar, Wear and scratch behaviour of electroless Ni-P-nano-TiO2: effect of surfactants, Wear 346–347 (2016) 148–157, https://doi.org/10.1016/j.wear.2015. 11.015T.R. Tamilarasan, R. Rajendran, G. Rajagopal, J. Sudagar, Effect of surfactants on the coating properties and corrosion behaviour of Ni-P-nano-TiO2 coatings, Surf. Coatings Technol. 276 (2015) 320–326, https://doi.org/10.1016/j.surfcoat.2015. 07.008] N. Promphet, P. Rattanawaleedirojn, N. Rodthongkum, Electroless NiP-TiOsol-RGO: a smart coating for enhanced corrosion resistance and conductivity of steel, Surf. Coatings Technol. 325 (2017) 604–610, https://doi.org/10.1016/j.surfcoat.2017. 07.018.] M. Sabzi, S.H. Mousavi Anijdan, Microstructural analysis and optical properties evaluation of sol-gel heterostructured NiO-TiO2 film used for solar panels, Ceram. Int. 45 (2019) 3250–3255, https://doi.org/10.1016/j.ceramint.2018.10.229D.F. Carrillo, A.C. Santa, A. Valencia-Escobar, A. Zapata, F. Echeverría, M.A. Gómez, A.A. Zuleta, J.G. Castaño, Tribological behavior of electroless Ni–P/ Ni–P–TiO2 coatings obtained on AZ91D magnesium alloy by a chromium-free process, Int. J. Adv. Manuf. Technol. 1-4 (2019) 1745–1756, https://doi.org/10. 1007/s00170-019-04381-y.P. Gadhari, P. Sahoo, Optimization of Coating Process Parameters to Improve Microhardness of Ni-P-TiO2 Composite Coatings, Mater. Today Proc. 2 (2015) 2367–2374, https://doi.org/10.1016/j.matpr.2015.07.303P. Gadhari, P. Sahoo, Study of wear behavior of Ni-P-TiO2 composite coatings by optimizing coating parameters, Mater. Today Proc. 4 (2017) 1883–1892, https:// doi.org/10.1016/j.matpr.2017.02.033P. Makkar, R.C. Agarwala, V. Agarwala, Wear characteristics of mechanically milled TiO2 nanoparticles incorporated in electroless Ni-P coatings, Adv. Powder Technol. 25 (2014) 1653–1660, https://doi.org/10.1016/j.apt.2014.05.018I. Saravanan, A. Elayaperumal, A. Devaraju, M. Karthikeyan, A. Raji, Wear behaviour of electroless Ni-P and Ni-P-TiO2 composite coatings on En8 steel, Mater. Today Proc. 22 (2020) 1135–1139, https://doi.org/10.1016/j.matpr.2019.12.007.X. Wu, J. Mao, Z. Zhang, Y. Che, Improving the properties of 211Z Al alloy by enhanced electroless Ni-P-TiO2 nanocomposite coatings with TiO2 sol, Surf. Coatings Technol. 270 (2015) 170–174, https://doi.org/10.1016/j.surfcoat.2015. 03.006L. Shizhuo, J. Xiaoxia, B. Hongyun, L. Shu, Effect of environmental embrittlement on wear resistance of alloys in corrosive wear, Wear 225-229 (1999) 1025–1030, https://doi.org/10.1016/S0043-1648(99)00079-4.S. Barril, N. Debaud, S. Mischler, D. Landolt, A tribo-electrochemical apparatus for in vitro investigation of fretting-corrosion of metallic implant materials, Wear 252 (2002) 744–754, https://doi.org/10.1016/S0043-1648(02)00027-3.V. Chaudhry, V. Kailas, Elastic-Plastic Contact Conditions for Frictionally Constrained Bodies Under Cyclic Tangential Loading, J. Tribol. 136 (2013), https:// doi.org/10.1115/1.4025600 011401-1–011401-17.S. Fouvry, P. Kapsa, L. Vincent, An Elastic-plastic shakedown analysis of fretting wear, Wear 247 (2001) 41–54, https://doi.org/10.1016/S0043-1648(00)00508-1.J.N. Balaraju, Kalavati, K.S. Rajam, Influence of particle size on the microstructure, hardness and corrosion resistance of electroless Ni-P-Al2O3 composite coatings, Surf. Coatings Technol. 200 (2006) 3933–3941, https://doi.org/10.1016/j.surfcoat. 2005.03.007P. Makkar, R.C. Agarwala, V. Agarwala, Chemical synthesis of TiO2 nanoparticles and their inclusion in Ni-P electroless coatings, Ceram. Int. 39 (2013) 9003–9008, https://doi.org/10.1016/j.ceramint.2013.04.101.S.R. Pearson, P.H. Shipway, Is the wear coefficient dependent upon slip amplitude in fretting? Vingsbo and Söderberg revisited, Wear 330–331 (2015) 93–102, https://doi.org/10.1016/j.wear.2014.11.005.S. Ranganatha, T.V. Venkatesha, K. Vathsala, Development of electroless Ni-Zn-P/ nano-TiO2 composite coatings and their properties, Applied Surface Science 256 (2010) 7377–7383, https://doi.org/10.1016/j.apsusc.2010.05.076.info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbElectricityElectricidadTuberías de calorHeat pipesElectronic industriesIndustrias electrónicasFretting-corrosionMagnesium alloysAZ91DComposite electroless coatingsNi-PTiO2Corrosión por contactoAleaciones de magnesioRecubrimientos compuestos no electrolíticosTEXTFretting corrosion behavior of electroless Ni P Ni P TiO2 coatings obtained.pdf.txtFretting corrosion behavior of electroless Ni P Ni P TiO2 coatings obtained.pdf.txtExtracted texttext/plain44422https://repositorio.escuelaing.edu.co/bitstream/001/3328/4/Fretting%20corrosion%20behavior%20of%20electroless%20Ni%20P%20Ni%20P%20TiO2%20coatings%20obtained.pdf.txt17a6373f9214612f75f766bcc5930d09MD54metadata only accessTHUMBNAILFretting-corrosion behavior of electroless Ni P Ni P TiO2 coatings obtained.PNGFretting-corrosion behavior of electroless Ni P Ni P TiO2 coatings obtained.PNGimage/png189768https://repositorio.escuelaing.edu.co/bitstream/001/3328/3/Fretting-corrosion%20behavior%20of%20electroless%20Ni%20P%20Ni%20P%20TiO2%20coatings%20obtained.PNGcd8a000cca1c091be5149501c2ed5313MD53open accessFretting corrosion behavior of electroless Ni P Ni P TiO2 coatings obtained.pdf.jpgFretting corrosion behavior of electroless Ni P Ni P TiO2 coatings obtained.pdf.jpgGenerated Thumbnailimage/jpeg15162https://repositorio.escuelaing.edu.co/bitstream/001/3328/5/Fretting%20corrosion%20behavior%20of%20electroless%20Ni%20P%20Ni%20P%20TiO2%20coatings%20obtained.pdf.jpg2fbf771d464bf5740cef11674aabdf8bMD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3328/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALFretting corrosion behavior of electroless Ni P Ni P TiO2 coatings obtained.pdfFretting corrosion behavior of electroless Ni P Ni P TiO2 coatings obtained.pdfapplication/pdf6138064https://repositorio.escuelaing.edu.co/bitstream/001/3328/1/Fretting%20corrosion%20behavior%20of%20electroless%20Ni%20P%20Ni%20P%20TiO2%20coatings%20obtained.pdf13111152dbd069e75353239c264cc6f8MD51metadata only access001/3328oai:repositorio.escuelaing.edu.co:001/33282024-10-18 03:00:51.708metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |