A Socially Assistive Robot for Long-Term Cardiac Rehabilitation in the Real World

What are the benefits of using a socially assistive robot for long-term cardiac rehabilitation? To answer this question we designed and conducted a real-world long-term study, in collaboration with medical specialists, at the Fundación Cardioinfantil-Instituto de Cardiología clinic (Bogotá, Colombia...

Full description

Autores:
Céspedes, Nathalia
Irfan, Bahar
Senft, Emmanuel
Cifuentes, Carlos A.
Gutierrez, Luisa F
Rincón Roncancio, Mónica
Belpaeme, Tony
Múnera, Marcela
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/3250
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/3250
https://repositorio.escuelaing.edu.co/
Palabra clave:
Tecnología médica
Medical technology
Rehabilitación médica
Medical rehabilitation
Robótica médica
Robotics in medicine
Robótica de asistencia social
Rehabilitación cardíaca
Interacción humano-robot
Interacción a largo plazo
Robot social
Interfaz humano-robot
Social assistive robotics
Cardiac rehabilitation
Human-robot interaction
long-term interaction
Social robot
Human-robot interface
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id ESCUELAIG2_2cb4b5b4e3f3c760a3910117627ad25c
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/3250
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv A Socially Assistive Robot for Long-Term Cardiac Rehabilitation in the Real World
title A Socially Assistive Robot for Long-Term Cardiac Rehabilitation in the Real World
spellingShingle A Socially Assistive Robot for Long-Term Cardiac Rehabilitation in the Real World
Tecnología médica
Medical technology
Rehabilitación médica
Medical rehabilitation
Robótica médica
Robotics in medicine
Robótica de asistencia social
Rehabilitación cardíaca
Interacción humano-robot
Interacción a largo plazo
Robot social
Interfaz humano-robot
Social assistive robotics
Cardiac rehabilitation
Human-robot interaction
long-term interaction
Social robot
Human-robot interface
title_short A Socially Assistive Robot for Long-Term Cardiac Rehabilitation in the Real World
title_full A Socially Assistive Robot for Long-Term Cardiac Rehabilitation in the Real World
title_fullStr A Socially Assistive Robot for Long-Term Cardiac Rehabilitation in the Real World
title_full_unstemmed A Socially Assistive Robot for Long-Term Cardiac Rehabilitation in the Real World
title_sort A Socially Assistive Robot for Long-Term Cardiac Rehabilitation in the Real World
dc.creator.fl_str_mv Céspedes, Nathalia
Irfan, Bahar
Senft, Emmanuel
Cifuentes, Carlos A.
Gutierrez, Luisa F
Rincón Roncancio, Mónica
Belpaeme, Tony
Múnera, Marcela
dc.contributor.author.none.fl_str_mv Céspedes, Nathalia
Irfan, Bahar
Senft, Emmanuel
Cifuentes, Carlos A.
Gutierrez, Luisa F
Rincón Roncancio, Mónica
Belpaeme, Tony
Múnera, Marcela
dc.contributor.researchgroup.spa.fl_str_mv GiBiome
dc.subject.armarc.none.fl_str_mv Tecnología médica
Medical technology
Rehabilitación médica
Medical rehabilitation
Robótica médica
Robotics in medicine
topic Tecnología médica
Medical technology
Rehabilitación médica
Medical rehabilitation
Robótica médica
Robotics in medicine
Robótica de asistencia social
Rehabilitación cardíaca
Interacción humano-robot
Interacción a largo plazo
Robot social
Interfaz humano-robot
Social assistive robotics
Cardiac rehabilitation
Human-robot interaction
long-term interaction
Social robot
Human-robot interface
dc.subject.proposal.spa.fl_str_mv Robótica de asistencia social
Rehabilitación cardíaca
Interacción humano-robot
Interacción a largo plazo
Robot social
Interfaz humano-robot
dc.subject.proposal.eng.fl_str_mv Social assistive robotics
Cardiac rehabilitation
Human-robot interaction
long-term interaction
Social robot
Human-robot interface
description What are the benefits of using a socially assistive robot for long-term cardiac rehabilitation? To answer this question we designed and conducted a real-world long-term study, in collaboration with medical specialists, at the Fundación Cardioinfantil-Instituto de Cardiología clinic (Bogotá, Colombia) lasting 2.5 years. The study took place within the context of the outpatient phase of patients’ cardiac rehabilitation programme and aimed to compare the patients’ progress and adherence in the conventional cardiac rehabilitation programme (control condition) against rehabilitation supported by a fully autonomous socially assistive robot which continuously monitored the patients during exercise to provide immediate feedback and motivation based on sensory measures (robot condition). The explicit aim of the social robot is to improve patient motivation and increase adherence to the programme to ensure a complete recovery. We recruited 15 patients per condition. The cardiac rehabilitation programme was designed to last 36 sessions (18 weeks) per patient. The findings suggest that robot increases adherence (by 13.3%) and leads to faster completion of the programme. In addition, the patients assisted by the robot had more rapid improvement in their recovery heart rate, better physical activity performance and a higher improvement in cardiovascular functioning, which indicate a successful cardiac rehabilitation programme performance. Moreover, the medical staff and the patients acknowledged that the robot improved the patient motivation and adherence to the programme, supporting its potential in addressing the major challenges in rehabilitation programmes.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-03
dc.date.accessioned.none.fl_str_mv 2024-09-06T16:19:28Z
dc.date.available.none.fl_str_mv 2024-09-06T16:19:28Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1662-5218
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/3250
dc.identifier.eissn.spa.fl_str_mv 1662-5218
dc.identifier.instname.spa.fl_str_mv Universidad Escuela Colombiana de Ingeniería Julio Garavito
dc.identifier.reponame.spa.fl_str_mv Repositorio Digital
dc.identifier.repourl.spa.fl_str_mv https://repositorio.escuelaing.edu.co/
identifier_str_mv 1662-5218
Universidad Escuela Colombiana de Ingeniería Julio Garavito
Repositorio Digital
url https://repositorio.escuelaing.edu.co/handle/001/3250
https://repositorio.escuelaing.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Vol. 15, 2021
dc.relation.citationendpage.spa.fl_str_mv 19
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 15
dc.relation.ispartofjournal.eng.fl_str_mv Frontiers in Neurorobotics
dc.relation.references.spa.fl_str_mv Aamot, I. L., Forbord, S. H., Karlsen, T., and Støylen, A. (2014). Does rating of perceived exertion result in target exercise intensity during interval training in cardiac rehabilitation? A study of the Borg scale versus a heart rate monitor. J. Sci. Med. Sport 17, 541–545. doi: 10.1016/j.jsams.2013.07.019
Aguirre, A., Sierra, S. D., Múnera, M., and Cifuentes, C. A. (2020). Online system for gait parameters estimation using a lrf sensor for assistive devices. IEEE Sens. J. doi: 10.1109/JSEN.2020.3028279
Altenhoener, T., Leppin, A., Grande, G., and Romppel, M. (2005). Social inequality in patients? physical and psychological state and participation in rehabilitation after myocardial infarction in Germany. Int. J. Rehabil. Res. 28, 251–257. doi: 10.1097/00004356-200509000-00008
Anderson, L., Thompson, D. R., Oldridge, N., Zwisler, A., Rees, K., Martin, N., et al. (2016). Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Syst. Rev. 67, 1–12. doi: 10.1002/14651858.CD001800. pub3
Apos Therapy (2021). Spatio-Temporal Parameters - What Do They Mean. AposHealth R UK. Available online at: https://www.aposhealth.co.uk/blog/ apostherapy/spatio-temporal-parameters-what-do-they-mean/ (accessed February 26, 2021)
Beswick, A. D., Rees, K., West, R. R., Taylor, F. C., Burke, M., Griebsch, I., et al. (2005). Improving uptake and adherence in cardiac rehabilitation: literature review. J. Adv. Nurs. 49, 538–555. doi: 10.1111/j.1365-2648.2004.03327.x
Bethell, H., Lewin, R., and Dalal, H. (2009). Cardiac rehabilitation in the United Kingdom. Heart 95, 271–275. doi: 10.1136/hrt.2007.134338
Bickmore, T. W., and Picard, R. W. (2005). Establishing and maintaining longterm human-computer relationships. ACM Trans. Comput. Hum. Interact. 12, 293–327. doi: 10.1145/1067860.1067867
Borg, G. (1998). Borg’s Perceived Exertion and Pain Scales. Champaign, IL: Human Kinetics.
Carlson, J., Johnson, J., Franklin, B., and VanderLaan, R. (2000). Program participation, exercise adherence, cardiovascular outcomes, and program cost of traditional versus modified cardiac rehabilitation. Am. J. Cardiol. 86, 17–23. doi: 10.1016/S0002-9149(00)00822-5
Carnethon, M., Sternfeld, B., Liu, K., Jcob, D., Schreiner, P., Williams, D., et al. (2015). Correlates of heart rate recovery over 20 years in a population sample. J. Investig. Dermatol. 135, 612–615. doi: 10.1249/MSS.0b013e31822cb190
Carrillo, F. M., Butchart, J., Kruse, N., Scheinberg, A., Wise, L., and McCarthy, C. (2018). “Physiotherapists’ acceptance of a socially assistive robot in ongoing clinical deployment,” in 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (Nanjing), 850–855. doi: 10.1109/ROMAN.2018.8525508
Casas, J., Céspedes, N., Cifuentes, C., Gutierrez, L. F., Rincón-Roncancio, M., and Múnera, M. (2019). Expectation vs. reality: Attitudes towards a socially assistive robot in cardiac rehabilitation. Appl. Sci. 9:4651. doi: 10.3390/app9214651
Casas, J., Gomez, N. C., Senft, E., Irfan, B., Gutiérrez, L. F., Rincón, M., et al. (2018c). “Architecture for a social assistive robot in cardiac rehabilitation,” in 2018 IEEE 2nd Colombian Conference on Robotics and Automation (CCRA) (Barranquilla), 1–6. doi: 10.1109/CCRA.2018.8588133
Casas, J., Irfan, B., Senft, E., Gutiérrez, L., Rincon-Roncancio, M., Munera, M., et al. (2018a). “Social assistive robot for cardiac rehabilitation: a pilot study with patients with angioplasty,” in Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (Chicago, IL: ACM), 79–80. doi: 10.1145/3173386.3177052
Casas, J., Irfan, B., Senft, E., Gutierrez, L., Rincon-Roncancio, M., Munera, M., et al. (2018b). “Towards a sar system for personalized cardiac rehabilitation: a patient with PCI,” in 2018 ACM/IEEE International Conference on Human-Robot Interaction Personal Robots for Exercising and Coaching Workshop (Chicago, IL: ACM).
Casas, J., Senft, E., Gutierrez, L. F., Rincon-Rocancio, M., Munera, M., Belpaeme, T., et al. (2020). Social assistive robots: assessing the impact of a training assistant robot in cardiac rehabilitation. Int. J. Soc. Robot. 13, 1–15. doi: 10.1007/s12369-020-00708-y
Clark, A. M., Hartling, L., Vandermeer, B., and McAlister, F. A. (2005). Meta-analysis: secondary prevention programs for patients with coronary artery disease. Ann. Intern. Med. 143, 659–672. doi: 10.7326/0003-4819-143-9-200511010-00010
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. New York, NY: Routledge Academic.
Cooper, A. F., Weinman, J., Hankins, M., Jackson, G., and Horne, R. (2007). Assessing patients’ beliefs about cardiac rehabilitation as a basis for predicting attendance after acute myocardial infarction. Heart 93, 53–58. doi: 10.1136/hrt.2005.081299
Eriksson, J., Mataric, M. J., and Winstein, C. J. (2005). “Hands-off assistive ´ robotics for post-stroke arm rehabilitation,” in 9th International Conference on Rehabilitation Robotics, 2005, ICORR 2005 (Chicago, IL), 21–24. doi: 10.1109/ICORR.2005.1501042
Fasola, J., and Mataric, M. J. (2010). “Robot exercise instructor: a socially assisti ´ ve robot system to monitor and encourage physical exercise for the elderly,” in Proceedings - IEEE International Workshop on Robot and Human Interactive Communication (Viareggio), 416–421. doi: 10.1109/ROMAN.2010.5598658
Fasola, J., and Mataric, M. J. (2012). Using socially assistive human-robot interaction to motivate physical exercise for older adults. Proc. IEEE 100, 2512–2526. doi: 10.1109/JPROC.2012.2200539
Fasola, J., and Mataric, M. J. (2013). A socially assistive robot exercise coach for th ´ e elderly. J. Hum. Robot Interact. 2, 3–32. doi: 10.5898/JHRI.2.2.Fasola
Feil-Seifer, D., and Mataric, M. J. (2005). “Defining socially assistive robotics,” in ´ 9th International Conference on Rehabilitation Robotics (ICORR) (Chicago, IL), 465–468. doi: 10.1109/ICORR.2005.1501143
Gadde, P., Kharrazi, H., Patel, H., and MacDorman, K. F. (2011). Toward monitoring and increasing exercise adherence in older adults by robotic intervention: a proof of concept study. J. Robot. 2011, 1–11. doi: 10.1155/2011/438514
Galve, E., Alegria, E., Cordero, A., Facila, L., de Bobadilla, J. F., LluisGanella, C., et al. (2014). Temas de actualidad en cardiologia: riesgo vascular y rehabilitacion cardiaca. Revista Espanola de Cardiologia 67, 203–210. doi: 10.1016/j.recesp.2013.09.021
Giuliano, C., Parmenter, B. J., Baker, M., Mitchell, B. L., Williams, A. D., Lyndon, K., et al. (2017). Cardiac rehabilitation for patients with coronary artery disease: a practical guide to enhance patient outcomes through continuity of care. Clin. Med. Insights Cardiol. 11, 1–7. doi: 10.1177/1179546817710028
Glass, G. V., McGaw, B., and Smith, M. L. (1981). Meta-Analysis Insocial Research. Newbury Park, CA: Sage
Gockley, R., Bruce, A., Forlizzi, J., Michalowski, M., Mundell, A., Rosenthal, S., et al. (2005). “Designing robots for long-term social interaction,” in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (Edmonton, AB), 1338–1343. doi: 10.1109/IROS.2005.1545303
Gockley, R., and Mataric, M. J. (2006). “Encouraging physical therapy compliance with a hands-off mobile robot,” in Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction, HRI?06 (New York, NY: Association for Computing Machinery), 150–155. doi: 10.1145/1121241.1121268
Hammill, B. G., Curtis, L. H., Schulman, K. A., and Whellan, D. J. (2010). Relationship between cardiac rehabilitation and long-term risks of death and myocardial infarction among elderly medicare beneficiaries. Circulation 121, 63–70. doi: 10.1161/CIRCULATIONAHA.109.876383
Irfan, B., Céspedes Gomez, N., Casas, J., Senft, E., Gutiérrez, L. F., RinconRoncancio, M., et al. (2020). “Using a personalised socially assistive robot for cardiac rehabilitation: a long-term case study,” in 29th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (IEEE), 124–130. doi: 10.1109/RO-MAN47096.2020.9223491
James, G. S. (1951). The comparison of several groups of observations when the ratios of the population variances are unknown. Biometrika 38, 324–329. doi: 10.1093/biomet/38.3-4.324
Johansen, S. (1980). The welch-james approximation to the distribution of the residual sum of squares in a weighted linear regression. Biometrika 67, 85–92. doi: 10.1093/biomet/67.1.85
Jolly, K., Taylor, R., Lip, G., Greenfield, S., Raftery, J., Mant, J., et al. (2007). The Birmingham rehabilitation uptake maximisation study (brum). Homebased compared with hospital-based cardiac rehabilitation in a multi-ethnic population: cost-effectiveness and patient adherence. Health Technol. Assess. 11, 1–118. doi: 10.3310/hta11350
Kang, K. I., Freedman, S., Mataric, M. J., Cunningham, M. J., and Lopez, B. (2005). “A hands-off physical therapy assistance robot for cardiac patients,” in 9th International Conference on Rehabilitation Robotics, 2005 (ICORR 2005) (Chicago, IL), 337–340. doi: 10.1109/ICORR.2005.1501114
Keselman, H. J., Wilcox, R. R., and Lix, L. M. (2003). A generally robust approach to hypothesis testing in independent and correlated groups designs. Psychophysiology 40, 586–596. doi: 10.1111/1469-8986.00060
Kidd, C. D., and Breazeal, C. (2007). “A robotic weight loss coach,” in Proceedings of the 22nd National Conference on Artificial Intelligence (Vancouver, BC: AAAI Press), 1985–1986
Kraus, W., and Keteyian, S. (2007). Cardiac Rehabilitation. Totowa, NJ: Humana Press. doi: 10.1007/978-1-59745-452-0
Lane, G. W., Noronha, D., Rivera, A., Craig, K., Yee, C., Mills, B., et al. (2016). Effectiveness of a social robot, “Paro,” in a VA long-term care setting. Psychol. Serv. 13, 292–299. doi: 10.1037/ser0000080
Langer, A., Feingold-Polak, R., Mueller, O., Kellmeyer, P., and Levy-Tzedek, S. (2019). Trust in socially assistive robots: considerations for use in rehabilitation. Neurosci. Biobehav. Rev. 104, 231–239. doi: 10.1016/j.neubiorev.2019.07.014
Lara, J. S., Casas, J., Aguirre, A., Munera, M., Rincon-Roncancio, M., Irfan, B., et al. (2017). “Human-robot sensor interface for cardiac rehabilitation,” in 2017 International Conference on Rehabilitation Robotics (ICORR) (London), 1013–1018. doi: 10.1109/ICORR.2017.8009382
Lawler, P. R., Filion, K. B., and Eisenberg, M. J. (2011). Efficacy of exercise-based cardiac rehabilitation post-myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Am. Heart J. 162, 571.e2–584.e2. doi: 10.1016/j.ahj.2011.07.017
Leite, I., Martinho, C., and Paiva, A. (2013). Social robots for long-term interaction: a survey. Int. J. Soc. Robot. 5, 291–308. doi: 10.1007/s12369-013-0178-y
Lemaignan, S., Garcia, F., Jacq, A., and Dillenbourg, P. (2016). “From real-time attention assessment to “with-me-ness” in human-robot interaction,” in 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (Christchurch: IEEE), 157–164. doi: 10.1109/HRI.2016.7451747
Li, J. (2015). The benefit of being physically present. Int. J. Hum. Comput. Stud. 77, 23–37. doi: 10.1016/j.ijhcs.2015.01.001
Maclean, N., and Pound, P. (2000). A critical review of the concept of patient motivation in the literature on physical rehabilitation. Soc. Sci. Med. 50, 495–506. doi: 10.1016/S0277-9536(99)00334-2
Martin, C. M., and McConahay, D. R. (1972). Maximal treadmill exercise electrocardiography. Correlations with coronary arteriography and cardiac hemodynamics. Circulation 46, 956–962. doi: 10.1161/01.CIR.46.5.956
Mataric, M., Eriksson, J., Feil-Seifer, D., and Winstein, C. J. (2007 ´ a). Socially assistive robotics for post-stroke rehabilitation. J. Neuroeng. Rehabil. 4, 1–9. doi: 10.1186/1743-0003-4-5
Mataric, M., and Scassellati, B. (2016). “Socially assistive robotics, ´ ” in Springer Handbook of Robotics, eds B. Siciliano and O. Khatib (Cham: Springer), 1973– 1993. doi: 10.1007/978-3-319-32552-1_73
Mataric, M., Tapus, A., and Feil-Seifer, D. (2007b). “Personalized so ´ cially assistive robotics,” in Workshop on Intelligent Systems for Assisted Cognition Rochester, NY
McKee, G., Biddle, M., Donnell, S. O., Mooney, M., Brien, F. O., and Moser, D. K. (2014). Cardiac rehabilitation after myocardial infarction: What influences patients? intentions to attend? Eur. J. Cardiovasc. Nurs. 13, 329–337. doi: 10.1177/1474515113496686
Oldridge, N. B., Guyatt, G. H., Fischer, M. E., and Rimm, A. A. (1988). Cardiac rehabilitation after myocardial infarction: combined experience of randomized clinical trials. JAMA 260, 945–950. doi: 10.1001/jama.260.7.945
Piepoli, M. F., Corre, U., Benzer, W., Bjarnason-Wehrens, B., Dendale, P., Gaita, D., et al. (2010). Secondary prevention through cardiac rehabilitation: from knowledge to implementation. A position paper from the cardiac rehabilitation section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur. J. Cardiovasc. Prev. Rehabil. 17, 1–17. doi: 10.1097/HJR.0b013e3283313592
Pinto, M. J., Aguirre, A., Cifuentes, C. A., and Munera, M. (2020). “Wearable sensors for monitoring exercise and fatigue estimation in rehabilitation,” in Internet of Medical Things: Paradigm of Wearable Devices, eds M. Cardona, V. K. Solanki, and C. E. García Cena (Boca Raton, FL: Taylor & Francis Group).
Riek, L. D. (2017). Healthcare robotics. Commun. ACM 60, 68–78. doi: 10.1145/3127874
Ruano-Ravina, A., Pena-Gil, C., Abu-Assi, E., Raposeiras, S., van ’t Hof, A., Meindersma, E., et al. (2016). Participation and adherence to cardiac rehabilitation programs. A systematic review. Int. J. Cardiol. 223, 436–443. doi: 10.1016/j.ijcard.2016.08.120
Šabanovic, S., Bennett, C. C., Chang, W., and Huber, L. (2013). “Paro robo ´ t affects diverse interaction modalities in group sensory therapy for older adults with dementia,” in 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR) (Seattle, WA: IEEE), 1–6. doi: 10.1109/ICORR.2013.6650427
Scane, K., Alter, D., Oh, P., and Brooks, D. (2012). Adherence to a cardiac rehabilitation home program model of care: a comparison to a well-established traditional on-site supervised program. Appl. Physiol. Nutr. Metab. 37, 206–213. doi: 10.1139/h11-151
Schafer, R., and Anderson, J. (1987). Clinical Biomechanics. Baltimore, MD: Williams & Wilkins
Shahsavari, H., Shahriari, M., and Alimohammadi, N. (2012). Motivational factors of adherence to cardiac rehabilitation. Iran. J. Nurs. Midwif. Res. 17, 318–324
She, J., Nakamura, H., Makino, K., Ohyama, Y., and Hashimoto, H. (2014). Selection of suitable maximum-heart-rate formulas for use with Karvonen formula to calculate exercise intensity. Int. J. Automat. Comput. 12, 62–69. doi: 10.1007/s11633-014-0824-3
Siegert, R. J., and Taylor, W. J. (2004). Theoretical aspects of goalsetting and motivation in rehabilitation. Disabil. Rehabil. 26, 1–8. doi: 10.1080/09638280410001644932
Suaya, J., Stason, W., Ades, P., Normand, S., and Shepard, D. (2009). Cardiac rehabilitation and survival in older coronary patients. J. Am. Coll. Cardiol. 54, 25–33. doi: 10.1016/j.jacc.2009.01.078
Süssenbach, L., Riether, N., Schneider, S., Berger, I., Kummert, F., Lutkebohle, I., et al. (2014). “A robot as fitness companion: towards an interactive action-based motivation model,” in The 23rd IEEE International Symposium on Robot and Human Interactive Communication (Edinburgh), 286–293. doi: 10.1109/ROMAN.2014.6926267
Swift-Spong, K., Short, E., Wade, E., and Mataric, M. J. (2015). “Effects of comparative feedback from a socially assistive robot on self-efficacy in poststroke rehabilitation,” in 2015 IEEE International Conference on Rehabilitation Robotics (ICORR) (Nanyang), 764–769. doi: 10.1109/ICORR.2015. 7281294
Taylor, R., Brown, A., and Ebrahim, S. A. (2012). Exercise-based cardiac rehabilitation in patients with coronary heart disease: meta-analysis outcomes revisited. Future Cardiol. 8, 729–751. doi: 10.2217/fca.12.34
Taylor, R. S., Brown, A., Ebrahim, S., Jolliffe, J., Noorani, H., Rees, K., et al. (2004). Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am. J. Med. 116, 682–692. doi: 10.1016/j.amjmed.2004.01.009
Thomas, R. J., King, M., Lui, K., Oldridge, N., Pina, I. L., Spertus, J., et al. (2007). AACVPR/ACC/AHA 2007 performance measures on cardiac rehabilitation for referral to and delivery of cardiac rehabilitation/secondary prevention services. J. Cardiopulm. Rehabil. Prev. 27, 260–290. doi: 10.1097/01.HCR.0000291295.24776.7b
Thompson, D. (2002). Stride Analysis. Available online at: https://ouhsc.edu/ bserdac/dthompso/web/gait/knmatics/stride.htm (accessed June 16, 2020)
Turk-Adawi, K., Supervia, M., Lopez-Jimenez, F., Pesah, E., Ding, R., Britto, R. R., et al. (2019). Cardiac rehabilitation availability and density around the globe. eClinicalmedicine 13, 31–45. doi: 10.1016/j.eclinm.2019.06.007
Turk-Adawi, K. I., Oldridge, N. B., Tarima, S. S., Stason, W. B., and Shepard, D. S. (2013). Cardiac rehabilitation patient and organizational factors: what keeps patients in programs? J. Am. Heart Assoc. 2:e000418. doi: 10.1161/JAHA.113.000418
Vasco, V., Willems, C., Chevalier, P., De Tommaso, D., Gower, V., Gramatica, F., et al. (2019). “Train with me: a study comparing a socially assistive robot and a virtual agent for a rehabilitation task,” in International Conference on Social Robotics (ICSR 2019) (Madrid: Springer). doi: 10.1007/978-3-030-358 88-4_42
Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D. (2003). User acceptance of information technology: toward a unified view. MIS Q. 27, 425–478. doi: 10.2307/30036540
Villacorta, P. J. (2017). The welchADF package for robust hypothesis testing in unbalanced multivariate mixed models with heteroscedastic and non-normal data. R J. 9, 309–328. doi: 10.32614/RJ-2017-049
Welch, B. L. (1938). The significance of the difference between two means when the population variances are unequal. Biometrika 29, 350–362. doi: 10.1093/biomet/29.3-4.350
Welch, B. L. (1951). On the comparison of several mean values: an alternative approach. Biometrika 38, 330–336. doi: 10.1093/biomet/38.3-4.330
Winkle, K., Caleb-Solly, P., Turton, A., and Bremner, P. (2018). “Social robots for engagement in rehabilitative therapies: design implications from a study with therapists,” in Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, HRI?18 (New York, NY: Association for Computing Machinery), 289–297. doi: 10.1145/3171221.3171273
World Health Organization (2011). World Report on Disability, Vol. 91. Geneva: The World Bank.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.spa.fl_str_mv 19 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Royal Institute of Technology
dc.publisher.place.spa.fl_str_mv Suecia
dc.source.spa.fl_str_mv https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2021.633248/full
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/3250/4/A%20Socially%20Assistive%20Robot%20for%20Long-Term%20Cardiac%20Rehabilitation%20in%20the%20Real%20World.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3250/3/Portada%20A%20Socially%20Assistive%20Robot%20for%20Long-Term%20Cardiac%20Rehabilitation%20in%20the%20Real%20World.PNG
https://repositorio.escuelaing.edu.co/bitstream/001/3250/5/A%20Socially%20Assistive%20Robot%20for%20Long-Term%20Cardiac%20Rehabilitation%20in%20the%20Real%20World.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/3250/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3250/1/A%20Socially%20Assistive%20Robot%20for%20Long-Term%20Cardiac%20Rehabilitation%20in%20the%20Real%20World.pdf
bitstream.checksum.fl_str_mv d3bb1f88b86391c480c10850ea1f2068
d2a25b52609284e9fcea81b707a163c0
34fb59bdc85f82492f8d3f408d98ff1c
5a7ca94c2e5326ee169f979d71d0f06e
01f8f4987bbdb0208edcc52c9ba2c47e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355634063147008
spelling Céspedes, Nathalia60511aded7d8a09c17c810c00f67c2d8Irfan, Baharafaa624b4f6f6d2fb55e32bc9c115c35Senft, Emmanuel978a1a0a6d62a64ac64369133826d461Cifuentes, Carlos A.0b885a45437175ae12e5d0a6f598afc4Gutierrez, Luisa F21e1651f9d1c4de5123c9a454fdc34e8Rincón Roncancio, Mónica0c0bbc94eb026b9dd7d325de466d7d8aBelpaeme, Tonya6dc6cd6c436b85b39cf8a7551413d16Múnera, Marcela8047a30ff2499f8ae5a4e903871b8f95GiBiome2024-09-06T16:19:28Z2024-09-06T16:19:28Z2021-031662-5218https://repositorio.escuelaing.edu.co/handle/001/32501662-5218Universidad Escuela Colombiana de Ingeniería Julio GaravitoRepositorio Digitalhttps://repositorio.escuelaing.edu.co/What are the benefits of using a socially assistive robot for long-term cardiac rehabilitation? To answer this question we designed and conducted a real-world long-term study, in collaboration with medical specialists, at the Fundación Cardioinfantil-Instituto de Cardiología clinic (Bogotá, Colombia) lasting 2.5 years. The study took place within the context of the outpatient phase of patients’ cardiac rehabilitation programme and aimed to compare the patients’ progress and adherence in the conventional cardiac rehabilitation programme (control condition) against rehabilitation supported by a fully autonomous socially assistive robot which continuously monitored the patients during exercise to provide immediate feedback and motivation based on sensory measures (robot condition). The explicit aim of the social robot is to improve patient motivation and increase adherence to the programme to ensure a complete recovery. We recruited 15 patients per condition. The cardiac rehabilitation programme was designed to last 36 sessions (18 weeks) per patient. The findings suggest that robot increases adherence (by 13.3%) and leads to faster completion of the programme. In addition, the patients assisted by the robot had more rapid improvement in their recovery heart rate, better physical activity performance and a higher improvement in cardiovascular functioning, which indicate a successful cardiac rehabilitation programme performance. Moreover, the medical staff and the patients acknowledged that the robot improved the patient motivation and adherence to the programme, supporting its potential in addressing the major challenges in rehabilitation programmes.¿Cuáles son los beneficios de utilizar un robot de asistencia social para la rehabilitación cardíaca a largo plazo? Para responder a esta pregunta, diseñamos y llevamos a cabo un estudio a largo plazo en el mundo real, en colaboración con especialistas médicos, en la clínica Fundación Cardioinfantil-Instituto de Cardiología (Bogotá, Colombia) con una duración de 2,5 años. El estudio se llevó a cabo en el contexto de la fase ambulatoria del programa de rehabilitación cardíaca de los pacientes y tuvo como objetivo comparar el progreso y la adherencia de los pacientes en el programa de rehabilitación cardíaca convencional (condición de control) frente a la rehabilitación respaldada por un robot de asistencia social totalmente autónomo que monitoreaba continuamente a los pacientes durante el ejercicio para proporcionar retroalimentación y motivación inmediatas basadas en medidas sensoriales (condición robot). El objetivo explícito del robot social es mejorar la motivación del paciente y aumentar la adherencia al programa para garantizar una recuperación completa. Reclutamos a 15 pacientes por condición. El programa de rehabilitación cardíaca fue diseñado para durar 36 sesiones (18 semanas) por paciente. Los hallazgos sugieren que el robot aumenta la adherencia (en un 13,3%) y conduce a una finalización más rápida del programa. Además, los pacientes asistidos por el robot tuvieron una mejora más rápida en su frecuencia cardíaca de recuperación, un mejor rendimiento en la actividad física y una mayor mejora en el funcionamiento cardiovascular, lo que indica un desempeño exitoso del programa de rehabilitación cardíaca. Además, el personal médico y los pacientes reconocieron que el robot mejoró la motivación y la adherencia de los pacientes al programa, lo que respalda su potencial para abordar los principales desafíos en los programas de rehabilitación.19 páginasapplication/pdfengRoyal Institute of TechnologySueciahttps://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2021.633248/fullA Socially Assistive Robot for Long-Term Cardiac Rehabilitation in the Real WorldArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Vol. 15, 202119115Frontiers in NeuroroboticsAamot, I. L., Forbord, S. H., Karlsen, T., and Støylen, A. (2014). Does rating of perceived exertion result in target exercise intensity during interval training in cardiac rehabilitation? A study of the Borg scale versus a heart rate monitor. J. Sci. Med. Sport 17, 541–545. doi: 10.1016/j.jsams.2013.07.019Aguirre, A., Sierra, S. D., Múnera, M., and Cifuentes, C. A. (2020). Online system for gait parameters estimation using a lrf sensor for assistive devices. IEEE Sens. J. doi: 10.1109/JSEN.2020.3028279Altenhoener, T., Leppin, A., Grande, G., and Romppel, M. (2005). Social inequality in patients? physical and psychological state and participation in rehabilitation after myocardial infarction in Germany. Int. J. Rehabil. Res. 28, 251–257. doi: 10.1097/00004356-200509000-00008Anderson, L., Thompson, D. R., Oldridge, N., Zwisler, A., Rees, K., Martin, N., et al. (2016). Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Syst. Rev. 67, 1–12. doi: 10.1002/14651858.CD001800. pub3Apos Therapy (2021). Spatio-Temporal Parameters - What Do They Mean. AposHealth R UK. Available online at: https://www.aposhealth.co.uk/blog/ apostherapy/spatio-temporal-parameters-what-do-they-mean/ (accessed February 26, 2021)Beswick, A. D., Rees, K., West, R. R., Taylor, F. C., Burke, M., Griebsch, I., et al. (2005). Improving uptake and adherence in cardiac rehabilitation: literature review. J. Adv. Nurs. 49, 538–555. doi: 10.1111/j.1365-2648.2004.03327.xBethell, H., Lewin, R., and Dalal, H. (2009). Cardiac rehabilitation in the United Kingdom. Heart 95, 271–275. doi: 10.1136/hrt.2007.134338Bickmore, T. W., and Picard, R. W. (2005). Establishing and maintaining longterm human-computer relationships. ACM Trans. Comput. Hum. Interact. 12, 293–327. doi: 10.1145/1067860.1067867Borg, G. (1998). Borg’s Perceived Exertion and Pain Scales. Champaign, IL: Human Kinetics.Carlson, J., Johnson, J., Franklin, B., and VanderLaan, R. (2000). Program participation, exercise adherence, cardiovascular outcomes, and program cost of traditional versus modified cardiac rehabilitation. Am. J. Cardiol. 86, 17–23. doi: 10.1016/S0002-9149(00)00822-5Carnethon, M., Sternfeld, B., Liu, K., Jcob, D., Schreiner, P., Williams, D., et al. (2015). Correlates of heart rate recovery over 20 years in a population sample. J. Investig. Dermatol. 135, 612–615. doi: 10.1249/MSS.0b013e31822cb190Carrillo, F. M., Butchart, J., Kruse, N., Scheinberg, A., Wise, L., and McCarthy, C. (2018). “Physiotherapists’ acceptance of a socially assistive robot in ongoing clinical deployment,” in 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (Nanjing), 850–855. doi: 10.1109/ROMAN.2018.8525508Casas, J., Céspedes, N., Cifuentes, C., Gutierrez, L. F., Rincón-Roncancio, M., and Múnera, M. (2019). Expectation vs. reality: Attitudes towards a socially assistive robot in cardiac rehabilitation. Appl. Sci. 9:4651. doi: 10.3390/app9214651Casas, J., Gomez, N. C., Senft, E., Irfan, B., Gutiérrez, L. F., Rincón, M., et al. (2018c). “Architecture for a social assistive robot in cardiac rehabilitation,” in 2018 IEEE 2nd Colombian Conference on Robotics and Automation (CCRA) (Barranquilla), 1–6. doi: 10.1109/CCRA.2018.8588133Casas, J., Irfan, B., Senft, E., Gutiérrez, L., Rincon-Roncancio, M., Munera, M., et al. (2018a). “Social assistive robot for cardiac rehabilitation: a pilot study with patients with angioplasty,” in Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (Chicago, IL: ACM), 79–80. doi: 10.1145/3173386.3177052Casas, J., Irfan, B., Senft, E., Gutierrez, L., Rincon-Roncancio, M., Munera, M., et al. (2018b). “Towards a sar system for personalized cardiac rehabilitation: a patient with PCI,” in 2018 ACM/IEEE International Conference on Human-Robot Interaction Personal Robots for Exercising and Coaching Workshop (Chicago, IL: ACM).Casas, J., Senft, E., Gutierrez, L. F., Rincon-Rocancio, M., Munera, M., Belpaeme, T., et al. (2020). Social assistive robots: assessing the impact of a training assistant robot in cardiac rehabilitation. Int. J. Soc. Robot. 13, 1–15. doi: 10.1007/s12369-020-00708-yClark, A. M., Hartling, L., Vandermeer, B., and McAlister, F. A. (2005). Meta-analysis: secondary prevention programs for patients with coronary artery disease. Ann. Intern. Med. 143, 659–672. doi: 10.7326/0003-4819-143-9-200511010-00010Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. New York, NY: Routledge Academic.Cooper, A. F., Weinman, J., Hankins, M., Jackson, G., and Horne, R. (2007). Assessing patients’ beliefs about cardiac rehabilitation as a basis for predicting attendance after acute myocardial infarction. Heart 93, 53–58. doi: 10.1136/hrt.2005.081299Eriksson, J., Mataric, M. J., and Winstein, C. J. (2005). “Hands-off assistive ´ robotics for post-stroke arm rehabilitation,” in 9th International Conference on Rehabilitation Robotics, 2005, ICORR 2005 (Chicago, IL), 21–24. doi: 10.1109/ICORR.2005.1501042Fasola, J., and Mataric, M. J. (2010). “Robot exercise instructor: a socially assisti ´ ve robot system to monitor and encourage physical exercise for the elderly,” in Proceedings - IEEE International Workshop on Robot and Human Interactive Communication (Viareggio), 416–421. doi: 10.1109/ROMAN.2010.5598658Fasola, J., and Mataric, M. J. (2012). Using socially assistive human-robot interaction to motivate physical exercise for older adults. Proc. IEEE 100, 2512–2526. doi: 10.1109/JPROC.2012.2200539Fasola, J., and Mataric, M. J. (2013). A socially assistive robot exercise coach for th ´ e elderly. J. Hum. Robot Interact. 2, 3–32. doi: 10.5898/JHRI.2.2.FasolaFeil-Seifer, D., and Mataric, M. J. (2005). “Defining socially assistive robotics,” in ´ 9th International Conference on Rehabilitation Robotics (ICORR) (Chicago, IL), 465–468. doi: 10.1109/ICORR.2005.1501143Gadde, P., Kharrazi, H., Patel, H., and MacDorman, K. F. (2011). Toward monitoring and increasing exercise adherence in older adults by robotic intervention: a proof of concept study. J. Robot. 2011, 1–11. doi: 10.1155/2011/438514Galve, E., Alegria, E., Cordero, A., Facila, L., de Bobadilla, J. F., LluisGanella, C., et al. (2014). Temas de actualidad en cardiologia: riesgo vascular y rehabilitacion cardiaca. Revista Espanola de Cardiologia 67, 203–210. doi: 10.1016/j.recesp.2013.09.021Giuliano, C., Parmenter, B. J., Baker, M., Mitchell, B. L., Williams, A. D., Lyndon, K., et al. (2017). Cardiac rehabilitation for patients with coronary artery disease: a practical guide to enhance patient outcomes through continuity of care. Clin. Med. Insights Cardiol. 11, 1–7. doi: 10.1177/1179546817710028Glass, G. V., McGaw, B., and Smith, M. L. (1981). Meta-Analysis Insocial Research. Newbury Park, CA: SageGockley, R., Bruce, A., Forlizzi, J., Michalowski, M., Mundell, A., Rosenthal, S., et al. (2005). “Designing robots for long-term social interaction,” in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (Edmonton, AB), 1338–1343. doi: 10.1109/IROS.2005.1545303Gockley, R., and Mataric, M. J. (2006). “Encouraging physical therapy compliance with a hands-off mobile robot,” in Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction, HRI?06 (New York, NY: Association for Computing Machinery), 150–155. doi: 10.1145/1121241.1121268Hammill, B. G., Curtis, L. H., Schulman, K. A., and Whellan, D. J. (2010). Relationship between cardiac rehabilitation and long-term risks of death and myocardial infarction among elderly medicare beneficiaries. Circulation 121, 63–70. doi: 10.1161/CIRCULATIONAHA.109.876383Irfan, B., Céspedes Gomez, N., Casas, J., Senft, E., Gutiérrez, L. F., RinconRoncancio, M., et al. (2020). “Using a personalised socially assistive robot for cardiac rehabilitation: a long-term case study,” in 29th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (IEEE), 124–130. doi: 10.1109/RO-MAN47096.2020.9223491James, G. S. (1951). The comparison of several groups of observations when the ratios of the population variances are unknown. Biometrika 38, 324–329. doi: 10.1093/biomet/38.3-4.324Johansen, S. (1980). The welch-james approximation to the distribution of the residual sum of squares in a weighted linear regression. Biometrika 67, 85–92. doi: 10.1093/biomet/67.1.85Jolly, K., Taylor, R., Lip, G., Greenfield, S., Raftery, J., Mant, J., et al. (2007). The Birmingham rehabilitation uptake maximisation study (brum). Homebased compared with hospital-based cardiac rehabilitation in a multi-ethnic population: cost-effectiveness and patient adherence. Health Technol. Assess. 11, 1–118. doi: 10.3310/hta11350Kang, K. I., Freedman, S., Mataric, M. J., Cunningham, M. J., and Lopez, B. (2005). “A hands-off physical therapy assistance robot for cardiac patients,” in 9th International Conference on Rehabilitation Robotics, 2005 (ICORR 2005) (Chicago, IL), 337–340. doi: 10.1109/ICORR.2005.1501114Keselman, H. J., Wilcox, R. R., and Lix, L. M. (2003). A generally robust approach to hypothesis testing in independent and correlated groups designs. Psychophysiology 40, 586–596. doi: 10.1111/1469-8986.00060Kidd, C. D., and Breazeal, C. (2007). “A robotic weight loss coach,” in Proceedings of the 22nd National Conference on Artificial Intelligence (Vancouver, BC: AAAI Press), 1985–1986Kraus, W., and Keteyian, S. (2007). Cardiac Rehabilitation. Totowa, NJ: Humana Press. doi: 10.1007/978-1-59745-452-0Lane, G. W., Noronha, D., Rivera, A., Craig, K., Yee, C., Mills, B., et al. (2016). Effectiveness of a social robot, “Paro,” in a VA long-term care setting. Psychol. Serv. 13, 292–299. doi: 10.1037/ser0000080Langer, A., Feingold-Polak, R., Mueller, O., Kellmeyer, P., and Levy-Tzedek, S. (2019). Trust in socially assistive robots: considerations for use in rehabilitation. Neurosci. Biobehav. Rev. 104, 231–239. doi: 10.1016/j.neubiorev.2019.07.014Lara, J. S., Casas, J., Aguirre, A., Munera, M., Rincon-Roncancio, M., Irfan, B., et al. (2017). “Human-robot sensor interface for cardiac rehabilitation,” in 2017 International Conference on Rehabilitation Robotics (ICORR) (London), 1013–1018. doi: 10.1109/ICORR.2017.8009382Lawler, P. R., Filion, K. B., and Eisenberg, M. J. (2011). Efficacy of exercise-based cardiac rehabilitation post-myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Am. Heart J. 162, 571.e2–584.e2. doi: 10.1016/j.ahj.2011.07.017Leite, I., Martinho, C., and Paiva, A. (2013). Social robots for long-term interaction: a survey. Int. J. Soc. Robot. 5, 291–308. doi: 10.1007/s12369-013-0178-yLemaignan, S., Garcia, F., Jacq, A., and Dillenbourg, P. (2016). “From real-time attention assessment to “with-me-ness” in human-robot interaction,” in 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (Christchurch: IEEE), 157–164. doi: 10.1109/HRI.2016.7451747Li, J. (2015). The benefit of being physically present. Int. J. Hum. Comput. Stud. 77, 23–37. doi: 10.1016/j.ijhcs.2015.01.001Maclean, N., and Pound, P. (2000). A critical review of the concept of patient motivation in the literature on physical rehabilitation. Soc. Sci. Med. 50, 495–506. doi: 10.1016/S0277-9536(99)00334-2Martin, C. M., and McConahay, D. R. (1972). Maximal treadmill exercise electrocardiography. Correlations with coronary arteriography and cardiac hemodynamics. Circulation 46, 956–962. doi: 10.1161/01.CIR.46.5.956Mataric, M., Eriksson, J., Feil-Seifer, D., and Winstein, C. J. (2007 ´ a). Socially assistive robotics for post-stroke rehabilitation. J. Neuroeng. Rehabil. 4, 1–9. doi: 10.1186/1743-0003-4-5Mataric, M., and Scassellati, B. (2016). “Socially assistive robotics, ´ ” in Springer Handbook of Robotics, eds B. Siciliano and O. Khatib (Cham: Springer), 1973– 1993. doi: 10.1007/978-3-319-32552-1_73Mataric, M., Tapus, A., and Feil-Seifer, D. (2007b). “Personalized so ´ cially assistive robotics,” in Workshop on Intelligent Systems for Assisted Cognition Rochester, NYMcKee, G., Biddle, M., Donnell, S. O., Mooney, M., Brien, F. O., and Moser, D. K. (2014). Cardiac rehabilitation after myocardial infarction: What influences patients? intentions to attend? Eur. J. Cardiovasc. Nurs. 13, 329–337. doi: 10.1177/1474515113496686Oldridge, N. B., Guyatt, G. H., Fischer, M. E., and Rimm, A. A. (1988). Cardiac rehabilitation after myocardial infarction: combined experience of randomized clinical trials. JAMA 260, 945–950. doi: 10.1001/jama.260.7.945Piepoli, M. F., Corre, U., Benzer, W., Bjarnason-Wehrens, B., Dendale, P., Gaita, D., et al. (2010). Secondary prevention through cardiac rehabilitation: from knowledge to implementation. A position paper from the cardiac rehabilitation section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur. J. Cardiovasc. Prev. Rehabil. 17, 1–17. doi: 10.1097/HJR.0b013e3283313592Pinto, M. J., Aguirre, A., Cifuentes, C. A., and Munera, M. (2020). “Wearable sensors for monitoring exercise and fatigue estimation in rehabilitation,” in Internet of Medical Things: Paradigm of Wearable Devices, eds M. Cardona, V. K. Solanki, and C. E. García Cena (Boca Raton, FL: Taylor & Francis Group).Riek, L. D. (2017). Healthcare robotics. Commun. ACM 60, 68–78. doi: 10.1145/3127874Ruano-Ravina, A., Pena-Gil, C., Abu-Assi, E., Raposeiras, S., van ’t Hof, A., Meindersma, E., et al. (2016). Participation and adherence to cardiac rehabilitation programs. A systematic review. Int. J. Cardiol. 223, 436–443. doi: 10.1016/j.ijcard.2016.08.120Šabanovic, S., Bennett, C. C., Chang, W., and Huber, L. (2013). “Paro robo ´ t affects diverse interaction modalities in group sensory therapy for older adults with dementia,” in 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR) (Seattle, WA: IEEE), 1–6. doi: 10.1109/ICORR.2013.6650427Scane, K., Alter, D., Oh, P., and Brooks, D. (2012). Adherence to a cardiac rehabilitation home program model of care: a comparison to a well-established traditional on-site supervised program. Appl. Physiol. Nutr. Metab. 37, 206–213. doi: 10.1139/h11-151Schafer, R., and Anderson, J. (1987). Clinical Biomechanics. Baltimore, MD: Williams & WilkinsShahsavari, H., Shahriari, M., and Alimohammadi, N. (2012). Motivational factors of adherence to cardiac rehabilitation. Iran. J. Nurs. Midwif. Res. 17, 318–324She, J., Nakamura, H., Makino, K., Ohyama, Y., and Hashimoto, H. (2014). Selection of suitable maximum-heart-rate formulas for use with Karvonen formula to calculate exercise intensity. Int. J. Automat. Comput. 12, 62–69. doi: 10.1007/s11633-014-0824-3Siegert, R. J., and Taylor, W. J. (2004). Theoretical aspects of goalsetting and motivation in rehabilitation. Disabil. Rehabil. 26, 1–8. doi: 10.1080/09638280410001644932Suaya, J., Stason, W., Ades, P., Normand, S., and Shepard, D. (2009). Cardiac rehabilitation and survival in older coronary patients. J. Am. Coll. Cardiol. 54, 25–33. doi: 10.1016/j.jacc.2009.01.078Süssenbach, L., Riether, N., Schneider, S., Berger, I., Kummert, F., Lutkebohle, I., et al. (2014). “A robot as fitness companion: towards an interactive action-based motivation model,” in The 23rd IEEE International Symposium on Robot and Human Interactive Communication (Edinburgh), 286–293. doi: 10.1109/ROMAN.2014.6926267Swift-Spong, K., Short, E., Wade, E., and Mataric, M. J. (2015). “Effects of comparative feedback from a socially assistive robot on self-efficacy in poststroke rehabilitation,” in 2015 IEEE International Conference on Rehabilitation Robotics (ICORR) (Nanyang), 764–769. doi: 10.1109/ICORR.2015. 7281294Taylor, R., Brown, A., and Ebrahim, S. A. (2012). Exercise-based cardiac rehabilitation in patients with coronary heart disease: meta-analysis outcomes revisited. Future Cardiol. 8, 729–751. doi: 10.2217/fca.12.34Taylor, R. S., Brown, A., Ebrahim, S., Jolliffe, J., Noorani, H., Rees, K., et al. (2004). Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am. J. Med. 116, 682–692. doi: 10.1016/j.amjmed.2004.01.009Thomas, R. J., King, M., Lui, K., Oldridge, N., Pina, I. L., Spertus, J., et al. (2007). AACVPR/ACC/AHA 2007 performance measures on cardiac rehabilitation for referral to and delivery of cardiac rehabilitation/secondary prevention services. J. Cardiopulm. Rehabil. Prev. 27, 260–290. doi: 10.1097/01.HCR.0000291295.24776.7bThompson, D. (2002). Stride Analysis. Available online at: https://ouhsc.edu/ bserdac/dthompso/web/gait/knmatics/stride.htm (accessed June 16, 2020)Turk-Adawi, K., Supervia, M., Lopez-Jimenez, F., Pesah, E., Ding, R., Britto, R. R., et al. (2019). Cardiac rehabilitation availability and density around the globe. eClinicalmedicine 13, 31–45. doi: 10.1016/j.eclinm.2019.06.007Turk-Adawi, K. I., Oldridge, N. B., Tarima, S. S., Stason, W. B., and Shepard, D. S. (2013). Cardiac rehabilitation patient and organizational factors: what keeps patients in programs? J. Am. Heart Assoc. 2:e000418. doi: 10.1161/JAHA.113.000418Vasco, V., Willems, C., Chevalier, P., De Tommaso, D., Gower, V., Gramatica, F., et al. (2019). “Train with me: a study comparing a socially assistive robot and a virtual agent for a rehabilitation task,” in International Conference on Social Robotics (ICSR 2019) (Madrid: Springer). doi: 10.1007/978-3-030-358 88-4_42Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D. (2003). User acceptance of information technology: toward a unified view. MIS Q. 27, 425–478. doi: 10.2307/30036540Villacorta, P. J. (2017). The welchADF package for robust hypothesis testing in unbalanced multivariate mixed models with heteroscedastic and non-normal data. R J. 9, 309–328. doi: 10.32614/RJ-2017-049Welch, B. L. (1938). The significance of the difference between two means when the population variances are unequal. Biometrika 29, 350–362. doi: 10.1093/biomet/29.3-4.350Welch, B. L. (1951). On the comparison of several mean values: an alternative approach. Biometrika 38, 330–336. doi: 10.1093/biomet/38.3-4.330Winkle, K., Caleb-Solly, P., Turton, A., and Bremner, P. (2018). “Social robots for engagement in rehabilitative therapies: design implications from a study with therapists,” in Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, HRI?18 (New York, NY: Association for Computing Machinery), 289–297. doi: 10.1145/3171221.3171273World Health Organization (2011). World Report on Disability, Vol. 91. Geneva: The World Bank.info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbTecnología médicaMedical technologyRehabilitación médicaMedical rehabilitationRobótica médicaRobotics in medicineRobótica de asistencia socialRehabilitación cardíacaInteracción humano-robotInteracción a largo plazoRobot socialInterfaz humano-robotSocial assistive roboticsCardiac rehabilitationHuman-robot interactionlong-term interactionSocial robotHuman-robot interfaceTEXTA Socially Assistive Robot for Long-Term Cardiac Rehabilitation in the Real World.pdf.txtA Socially Assistive Robot for Long-Term Cardiac Rehabilitation in the Real World.pdf.txtExtracted texttext/plain93129https://repositorio.escuelaing.edu.co/bitstream/001/3250/4/A%20Socially%20Assistive%20Robot%20for%20Long-Term%20Cardiac%20Rehabilitation%20in%20the%20Real%20World.pdf.txtd3bb1f88b86391c480c10850ea1f2068MD54metadata only accessTHUMBNAILPortada A Socially Assistive Robot for Long-Term Cardiac Rehabilitation in the Real World.PNGPortada A Socially Assistive Robot for Long-Term Cardiac Rehabilitation in the Real World.PNGimage/png123421https://repositorio.escuelaing.edu.co/bitstream/001/3250/3/Portada%20A%20Socially%20Assistive%20Robot%20for%20Long-Term%20Cardiac%20Rehabilitation%20in%20the%20Real%20World.PNGd2a25b52609284e9fcea81b707a163c0MD53open accessA Socially Assistive Robot for Long-Term Cardiac Rehabilitation in the Real World.pdf.jpgA Socially Assistive Robot for Long-Term Cardiac Rehabilitation in the Real World.pdf.jpgGenerated Thumbnailimage/jpeg14623https://repositorio.escuelaing.edu.co/bitstream/001/3250/5/A%20Socially%20Assistive%20Robot%20for%20Long-Term%20Cardiac%20Rehabilitation%20in%20the%20Real%20World.pdf.jpg34fb59bdc85f82492f8d3f408d98ff1cMD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3250/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALA Socially Assistive Robot for Long-Term Cardiac Rehabilitation in the Real World.pdfA Socially Assistive Robot for Long-Term Cardiac Rehabilitation in the Real World.pdfapplication/pdf2397884https://repositorio.escuelaing.edu.co/bitstream/001/3250/1/A%20Socially%20Assistive%20Robot%20for%20Long-Term%20Cardiac%20Rehabilitation%20in%20the%20Real%20World.pdf01f8f4987bbdb0208edcc52c9ba2c47eMD51metadata only access001/3250oai:repositorio.escuelaing.edu.co:001/32502024-09-07 03:02:27.036metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK