Factorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powder
The main objective of this research is to develop an optimized mixture of reactive powder concrete (RPC) containing supplementary cementitious materials (SCM), such as Electric Arc Slag Furnace (EASF), and Recycled Glass Powder (RGP) among others, through a factorial design. Accurate polynomial regr...
- Autores:
-
Abellán-García, Joaquín
Núñez López, Andrés Mauricio
Torres Castellanos, Nancy
Fernández Gómez, Jaime
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2020
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/2402
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/2402
http://doi.org/10.15446/dyna.v87n213.82655
https://revistas.unal.edu.co/index.php/dyna/article/view/82655
- Palabra clave:
- RPC
Sustainability
EASF
RGP
Compressive strength
RSM
Optimization
RPC
Sostenibilidad
EASF
RGP
Resistencia a compresión
RSM
Optimización
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
id |
ESCUELAIG2_2b1f6fc71c59c2e7a55ed22d9e9d9555 |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/2402 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Factorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powder |
dc.title.alternative.spa.fl_str_mv |
Diseño factorial de concretos de polvos reactivos conteniendo escoria de arco eléctrico y polvo de vidrio reciclado |
title |
Factorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powder |
spellingShingle |
Factorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powder RPC Sustainability EASF RGP Compressive strength RSM Optimization RPC Sostenibilidad EASF RGP Resistencia a compresión RSM Optimización |
title_short |
Factorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powder |
title_full |
Factorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powder |
title_fullStr |
Factorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powder |
title_full_unstemmed |
Factorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powder |
title_sort |
Factorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powder |
dc.creator.fl_str_mv |
Abellán-García, Joaquín Núñez López, Andrés Mauricio Torres Castellanos, Nancy Fernández Gómez, Jaime |
dc.contributor.author.none.fl_str_mv |
Abellán-García, Joaquín Núñez López, Andrés Mauricio Torres Castellanos, Nancy Fernández Gómez, Jaime |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación Estructuras y Materiales - Gimeci |
dc.subject.proposal.eng.fl_str_mv |
RPC Sustainability EASF RGP Compressive strength RSM Optimization |
topic |
RPC Sustainability EASF RGP Compressive strength RSM Optimization RPC Sostenibilidad EASF RGP Resistencia a compresión RSM Optimización |
dc.subject.proposal.spa.fl_str_mv |
RPC Sostenibilidad EASF RGP Resistencia a compresión RSM Optimización |
description |
The main objective of this research is to develop an optimized mixture of reactive powder concrete (RPC) containing supplementary cementitious materials (SCM), such as Electric Arc Slag Furnace (EASF), and Recycled Glass Powder (RGP) among others, through a factorial design. Accurate polynomial regressions were adjusted between considered factors and obtained responses such spread flow and compressive strength at different ages of the concrete. A multi-objective algorithm was executed to reach an eco-friendly mixture with the proper flow, the highest compressive strength, while simultaneously having the minimum content of cement. The experimental verification of this mathematical optimization demonstrated that the use of 621 kg/m3 of ASTM Type HE cement, with a maximum content of 100 kg/m3 of silica fume, should be considered the most appropriate amount to be employed in the RCP mixture to achieve a value of compressive strength over 150 MPa and a self-compacting mixture. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2023-06-09T16:30:54Z |
dc.date.available.none.fl_str_mv |
2023-06-09T16:30:54Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
0012-7353 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/2402 |
dc.identifier.doi.none.fl_str_mv |
http://doi.org/10.15446/dyna.v87n213.82655 |
dc.identifier.eissn.spa.fl_str_mv |
2346-2183 |
dc.identifier.url.none.fl_str_mv |
https://revistas.unal.edu.co/index.php/dyna/article/view/82655 |
identifier_str_mv |
0012-7353 2346-2183 |
url |
https://repositorio.escuelaing.edu.co/handle/001/2402 http://doi.org/10.15446/dyna.v87n213.82655 https://revistas.unal.edu.co/index.php/dyna/article/view/82655 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
51 |
dc.relation.citationissue.spa.fl_str_mv |
213 |
dc.relation.citationstartpage.spa.fl_str_mv |
42 |
dc.relation.citationvolume.spa.fl_str_mv |
87 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofjournal.eng.fl_str_mv |
DYNA |
dc.relation.references.spa.fl_str_mv |
Richard, P. and Cheyrezy, M., Composition of reactive powder concretes. Cem. Concr. Res., 25(7), pp. 1501-1511, 1995. Song, J. and Liu, S., Properties of reactive powder concrete and its application in highway bridge, Adv. Mater. Sci. Eng., 2016, 2016. DOI: 10.1155/2016/5460241 Abbas, S., Nehdi, M.L. and Saleem, M.A., Ultra-High performance concrete: mechanical performance, durability, sustainability and implementation challenges, Int. J. Concr. Struct. Mater., 10(3), pp. 271-295, 2016. DOI: 10.1007/s40069-016-0157-4 Jammes, F., Cespedes, X. and Resplendino, J., Design of Offshore wind turbines, RILEM-fib-AFGC Int. Symp. Ultra-High Perform. Fibre-Reinforced Concr. UHPFRC 2013(1), pp. 443-452, 2013. Tagnit-Hamou, A., Soliman, N.A. and Omran, A., Green Ultra-highperformance glass concrete, First International Interactive Symposium on UHPC, 3(1), pp. 1-10, 2016. DOI: 10.21838/uhpc.2016.35 De Larrard, F. and Sedran, T., Mixture-proportioning of highperformance concrete, Cem. Concr. Res., 32(11), pp. 1699-1704, 2002. DOI:10.1016/S0008-8846(02)00861-X Meng, W., Samaranayake, V.A. and Khayat, K.H., Factorial design and optimization of UHPC with lightweight sand, ACI Mater. J.(February), 2018. DOI: 10.14359/51700995 Abdulkareem, O.M., Ben Fraj, A., Bouasker, M. and Khelidj, A., Effect of chemical and thermal activation on the microstructural and mechanical properties of more sustainable UHPC, Constr. Build. Mater., 169, pp. 567-577, 2018. DOI: 10.1016/j.conbuildmat.2018.02.214 Ghanem, H. and Obeid, Y., The Effect of steel fibers on the rheological and mechanical properties of self compacting concrete, Eur. Sci. J., 11(21), pp. 85-98, 2015. Li, W., Huang, Z., Zu, T., Shi, C., Duan, W.H. and Shah, S.P., Influence of Nanolimestone on the hydration, mechanical strength, and autogenous shrinkage of ultrahigh-performance concrete, J. Mater. Civ. Eng., 28(1), pp. 1-9, 2016. DOI: 10.1061/(ASCE)MT.1943-5533.0001327 Huang, Z. and Cao, F., Effects of nano-materials on the performance of UHPC, 材料导报 研究篇, 26(9), pp. 136-141, 2012. Camacho, E., López, J.A. and Serna, P., Definition of three levels of performance for UHPFRC-VHPFRC with available materials, in: Proceedings of Hipermat 2012, 3rd International Symposium on UHPC and Nanotechnology for Construction Materials, Kassel Uni., Kassel, Germany, 2012, pp. 249-256. Camacho-Torregosa, E., Dosage optimization and bolted connections for UHPFRC ties, PhD Thesis, Polytechnic University of Valencia, Spain, 2013. Van Tuan, N., Ye, G., Van Breugel, K., Fraaij, A.L.A. and Danh, B., The study of using rice husk ash to produce ultra high performance concrete, Constr. Build. Mater., 25(4), pp. 2030-2035, 2011. DOI: 10.1016/j.conbuildmat.2010.11.046 Van Tuan, N., Ye, G. and Van Breugel, K., Mitigation of early age shrinkage of ultra high performance concrete by using rice husk ash, in: Proceedings of Hipermat 2012, 3rd International Symposium on UHPC and Nanotechnology for Construction Materials., Kassel Uni., 2012, pp. 341-348 Soliman, N.A. and Tagnit-Hamou, A., Partial substitution of silica fume with fine glass powder in UHPC: filling the micro gap. Constr. Build. Mater., 139, pp. 374-383, 2017. DOI: 10.1016/j.conbuildmat.2017.02.084 Soliman, N.A. and Tagnit-Hamou, A., Using glass sand as an alternative for quartz sand in UHPC, Constr. Build. Mater., 145, pp. 243-252, 2017. DOI: 10.1016/j.conbuildmat.2017.03.187 Yu, R., Tang, P., Spiesz, P. and Brouwers, H.J.H., A study of multiple effects of nano-silica and hybrid fibres on the properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) incorporating waste bottom ash (WBA), Constr. Build. Mater. J., 60(June), pp. 98- 110, 2014. DOI: 10.1016/j.conbuildmat.2014.02.059 Yu, R., Spiesz, P. and Brouwers, H.J.H., Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC), Cem. Concr. Res., 56, pp. 29-39, 2014. DOI: 10.1016/j.cemconres.2013.11.002 Funk, J.E. and Dinger, D., Predictive process control of crowded particulate suspensions: applied to ceramic manufacturing, Springer Science, New York, USA, 1994. Roth, T., Working with the quality. Tools package, 2016. [Online]. Available at: http://www.r-qualitytools.org. Abellan, J., Torres, N., Núñez, A. y Fernández, J., Influencia del exponente de Fuller, la relación agua conglomerante y el contenido en policarboxilato en concretos de muy altas prestaciones, en: IV Congreso Internacional de Ingeniería Civil, La Habana (Cuba), 2018. ASTM, ‘Standard test method for flow of hydraulic cement mortar,’ American Society for Testing and Materials C1437. Conshohocken, PA, USA, 2016, pp. 1-2 ASTM, ‘Standard Test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] cube specimens),’ American Society for Testing and Materials C109/C109M - 11b. West Conshohocken, PA, USA, 2010, pp. 1-9. Lenth, R.V., Response-surface methods in R, using rsm, J. Stat. Softw., 32(7), pp. 1-17, 2012. Raviselvan, R.J., Ramanathan, K., Perumal, P. and Thansekhar, M.R., Response surface methodology for optimum hardness of TiN on steel substrate, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 9(12), pp. 1331-1337, 2015. Ghafari, E., Costa, H., Nuno, E. and Santos, B., RSM-based model to predict the performance of self-compacting UHPC reinforced with hybrid steel micro-fibers, Constr. Build. Mater., 66(September), pp. 375-383, 2014. DOI: 10.1016/j.conbuildmat.2014.05.064 Abellán, J., Fernández, J.A., Torres, N. and Núñez, A.M., Statistical Optimization of ultra-high-performance glass concrete, ACI Mater. J., 117(M), pp. 243-254, 2020. DOI: 10.14359/51720292 Branchu, S., Forbes, R.T., York, P. and Nyqvist, H.N., A central composite design to investigate the thermal stabilization of lysozyme, Pharmaceutical Research, 16(5), pp. 702-708, 1999. DOI: 10.1023/a:1018876625126 R Core Team, R: A Language and Environment for Statistical Computing. Vienna, Austria, 2018. Montgomery, D.C., Design and analysis of experiments. John Wiley & Sons, Inc, New Jersey, USA, 2005. The European Project Group, ‘The European Guidelines for SelfCompacting Concrete,’ Eur. Guidel. Self Compact. Concrete, (May), 2005, 63 P. Puertas, F., Santos, H., Palacios, M. and Martínez-Ramírez, S., Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour in cement pastes, Adv. Cem. Res., 17(2), pp. 77-89, 2005. DOI: 10.1680/adcr.17.2.77.65044 Kubens, S., Interaction of cement and admixtures and its influence on rheological properties, [online]. 49(0), Göttingen, 2010. Available at: https://cuvillier.de/de/shop/publications/752 Derringer, G. and Suich, R., Simultaneous Optimization of several response variables. J. Qual. Technol., 21(4), pp. 214-219, 1980. DOI: 10.1080/00224065.1980.11980968 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
10 página |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.place.spa.fl_str_mv |
Colombia |
dc.source.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/dyna/article/view/82655 |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/2402/4/Factorial%20design%20of%20reactive%20powder%20concrete%20containing%20electric%20arc%20slag%20furnace%20and%20recycled%20glass%20powder.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/2402/3/Factorial%20design%20of%20reactive%20powder%20concrete%20containing%20electric%20arc%20slag%20furnace%20and%20recycled%20glass%20powder.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/2402/2/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/2402/1/Factorial%20design%20of%20reactive%20powder%20concrete%20containing%20electric%20arc%20slag%20furnace%20and%20recycled%20glass%20powder.pdf |
bitstream.checksum.fl_str_mv |
8a53b8b5c4cc34475630b26c122081e0 0a96191f7145d3ca2b0bd0687c2794b4 5a7ca94c2e5326ee169f979d71d0f06e 8da73408f275b2eac19dfbf472f24f75 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355613716578304 |
spelling |
Abellán-García, Joaquín276478eb5b6920fa9e5175b8a1bf29d7600Núñez López, Andrés Mauricio068c9f93a2962a9f8d667a5e7f926db8600Torres Castellanos, Nancy2b475ecd9ea004cd3b18c2eaf60c01d1600Fernández Gómez, Jaimeec32ba58ee62c351e245c1fcf77e84f9600Grupo de Investigación Estructuras y Materiales - Gimeci2023-06-09T16:30:54Z2023-06-09T16:30:54Z20200012-7353https://repositorio.escuelaing.edu.co/handle/001/2402http://doi.org/10.15446/dyna.v87n213.826552346-2183https://revistas.unal.edu.co/index.php/dyna/article/view/82655The main objective of this research is to develop an optimized mixture of reactive powder concrete (RPC) containing supplementary cementitious materials (SCM), such as Electric Arc Slag Furnace (EASF), and Recycled Glass Powder (RGP) among others, through a factorial design. Accurate polynomial regressions were adjusted between considered factors and obtained responses such spread flow and compressive strength at different ages of the concrete. A multi-objective algorithm was executed to reach an eco-friendly mixture with the proper flow, the highest compressive strength, while simultaneously having the minimum content of cement. The experimental verification of this mathematical optimization demonstrated that the use of 621 kg/m3 of ASTM Type HE cement, with a maximum content of 100 kg/m3 of silica fume, should be considered the most appropriate amount to be employed in the RCP mixture to achieve a value of compressive strength over 150 MPa and a self-compacting mixture.El objetivo principal de esta investigación es desarrollar una mezcla optimizada de concreto de polvos reactivos (RPC) que contenga materiales cementícios suplementarios (SCM), como la escoria siderúrgica de arco eléctrico (EASF) y el polvo de vidrio reciclado (RGP) entre otros, utilizando el diseño factorial. Se calcularon diferentes regresiones polinómicas para predecir con precisión las variables respuesta (flujo estático y resistencia a compresión a distintas edades) en función de los factores considerados. A través de un algoritmo multiobjetivo, se determinó la mezcla que alcance la resistencia y flujo estático adecuados con un contenido mínimo de cemento. La verificación experimental de esta optimización matemática mostró que con 621 kg/m3 de cemento ASTM Tipo HE, y un contenido máximo de 100 kg/m3 de humo de sílice, se puede alcanzar una resistencia a compresión superior a los 150 MPa en un concreto, además, autocompactante.10 páginaapplication/pdfengUniversidad Nacional de ColombiaColombiahttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://revistas.unal.edu.co/index.php/dyna/article/view/82655Factorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powderDiseño factorial de concretos de polvos reactivos conteniendo escoria de arco eléctrico y polvo de vidrio recicladoArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85512134287N/ADYNARichard, P. and Cheyrezy, M., Composition of reactive powder concretes. Cem. Concr. Res., 25(7), pp. 1501-1511, 1995.Song, J. and Liu, S., Properties of reactive powder concrete and its application in highway bridge, Adv. Mater. Sci. Eng., 2016, 2016. DOI: 10.1155/2016/5460241Abbas, S., Nehdi, M.L. and Saleem, M.A., Ultra-High performance concrete: mechanical performance, durability, sustainability and implementation challenges, Int. J. Concr. Struct. Mater., 10(3), pp. 271-295, 2016. DOI: 10.1007/s40069-016-0157-4Jammes, F., Cespedes, X. and Resplendino, J., Design of Offshore wind turbines, RILEM-fib-AFGC Int. Symp. Ultra-High Perform. Fibre-Reinforced Concr. UHPFRC 2013(1), pp. 443-452, 2013.Tagnit-Hamou, A., Soliman, N.A. and Omran, A., Green Ultra-highperformance glass concrete, First International Interactive Symposium on UHPC, 3(1), pp. 1-10, 2016. DOI: 10.21838/uhpc.2016.35De Larrard, F. and Sedran, T., Mixture-proportioning of highperformance concrete, Cem. Concr. Res., 32(11), pp. 1699-1704, 2002. DOI:10.1016/S0008-8846(02)00861-XMeng, W., Samaranayake, V.A. and Khayat, K.H., Factorial design and optimization of UHPC with lightweight sand, ACI Mater. J.(February), 2018. DOI: 10.14359/51700995Abdulkareem, O.M., Ben Fraj, A., Bouasker, M. and Khelidj, A., Effect of chemical and thermal activation on the microstructural and mechanical properties of more sustainable UHPC, Constr. Build. Mater., 169, pp. 567-577, 2018. DOI: 10.1016/j.conbuildmat.2018.02.214Ghanem, H. and Obeid, Y., The Effect of steel fibers on the rheological and mechanical properties of self compacting concrete, Eur. Sci. J., 11(21), pp. 85-98, 2015.Li, W., Huang, Z., Zu, T., Shi, C., Duan, W.H. and Shah, S.P., Influence of Nanolimestone on the hydration, mechanical strength, and autogenous shrinkage of ultrahigh-performance concrete, J. Mater. Civ. Eng., 28(1), pp. 1-9, 2016. DOI: 10.1061/(ASCE)MT.1943-5533.0001327Huang, Z. and Cao, F., Effects of nano-materials on the performance of UHPC, 材料导报 研究篇, 26(9), pp. 136-141, 2012.Camacho, E., López, J.A. and Serna, P., Definition of three levels of performance for UHPFRC-VHPFRC with available materials, in: Proceedings of Hipermat 2012, 3rd International Symposium on UHPC and Nanotechnology for Construction Materials, Kassel Uni., Kassel, Germany, 2012, pp. 249-256.Camacho-Torregosa, E., Dosage optimization and bolted connections for UHPFRC ties, PhD Thesis, Polytechnic University of Valencia, Spain, 2013.Van Tuan, N., Ye, G., Van Breugel, K., Fraaij, A.L.A. and Danh, B., The study of using rice husk ash to produce ultra high performance concrete, Constr. Build. Mater., 25(4), pp. 2030-2035, 2011. DOI: 10.1016/j.conbuildmat.2010.11.046Van Tuan, N., Ye, G. and Van Breugel, K., Mitigation of early age shrinkage of ultra high performance concrete by using rice husk ash, in: Proceedings of Hipermat 2012, 3rd International Symposium on UHPC and Nanotechnology for Construction Materials., Kassel Uni., 2012, pp. 341-348Soliman, N.A. and Tagnit-Hamou, A., Partial substitution of silica fume with fine glass powder in UHPC: filling the micro gap. Constr. Build. Mater., 139, pp. 374-383, 2017. DOI: 10.1016/j.conbuildmat.2017.02.084Soliman, N.A. and Tagnit-Hamou, A., Using glass sand as an alternative for quartz sand in UHPC, Constr. Build. Mater., 145, pp. 243-252, 2017. DOI: 10.1016/j.conbuildmat.2017.03.187Yu, R., Tang, P., Spiesz, P. and Brouwers, H.J.H., A study of multiple effects of nano-silica and hybrid fibres on the properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) incorporating waste bottom ash (WBA), Constr. Build. Mater. J., 60(June), pp. 98- 110, 2014. DOI: 10.1016/j.conbuildmat.2014.02.059Yu, R., Spiesz, P. and Brouwers, H.J.H., Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC), Cem. Concr. Res., 56, pp. 29-39, 2014. DOI: 10.1016/j.cemconres.2013.11.002Funk, J.E. and Dinger, D., Predictive process control of crowded particulate suspensions: applied to ceramic manufacturing, Springer Science, New York, USA, 1994.Roth, T., Working with the quality. Tools package, 2016. [Online]. Available at: http://www.r-qualitytools.org.Abellan, J., Torres, N., Núñez, A. y Fernández, J., Influencia del exponente de Fuller, la relación agua conglomerante y el contenido en policarboxilato en concretos de muy altas prestaciones, en: IV Congreso Internacional de Ingeniería Civil, La Habana (Cuba), 2018.ASTM, ‘Standard test method for flow of hydraulic cement mortar,’ American Society for Testing and Materials C1437. Conshohocken, PA, USA, 2016, pp. 1-2ASTM, ‘Standard Test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] cube specimens),’ American Society for Testing and Materials C109/C109M - 11b. West Conshohocken, PA, USA, 2010, pp. 1-9.Lenth, R.V., Response-surface methods in R, using rsm, J. Stat. Softw., 32(7), pp. 1-17, 2012.Raviselvan, R.J., Ramanathan, K., Perumal, P. and Thansekhar, M.R., Response surface methodology for optimum hardness of TiN on steel substrate, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 9(12), pp. 1331-1337, 2015.Ghafari, E., Costa, H., Nuno, E. and Santos, B., RSM-based model to predict the performance of self-compacting UHPC reinforced with hybrid steel micro-fibers, Constr. Build. Mater., 66(September), pp. 375-383, 2014. DOI: 10.1016/j.conbuildmat.2014.05.064Abellán, J., Fernández, J.A., Torres, N. and Núñez, A.M., Statistical Optimization of ultra-high-performance glass concrete, ACI Mater. J., 117(M), pp. 243-254, 2020. DOI: 10.14359/51720292Branchu, S., Forbes, R.T., York, P. and Nyqvist, H.N., A central composite design to investigate the thermal stabilization of lysozyme, Pharmaceutical Research, 16(5), pp. 702-708, 1999. DOI: 10.1023/a:1018876625126R Core Team, R: A Language and Environment for Statistical Computing. Vienna, Austria, 2018.Montgomery, D.C., Design and analysis of experiments. John Wiley & Sons, Inc, New Jersey, USA, 2005.The European Project Group, ‘The European Guidelines for SelfCompacting Concrete,’ Eur. Guidel. Self Compact. Concrete, (May), 2005, 63 P.Puertas, F., Santos, H., Palacios, M. and Martínez-Ramírez, S., Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour in cement pastes, Adv. Cem. Res., 17(2), pp. 77-89, 2005. DOI: 10.1680/adcr.17.2.77.65044Kubens, S., Interaction of cement and admixtures and its influence on rheological properties, [online]. 49(0), Göttingen, 2010. Available at: https://cuvillier.de/de/shop/publications/752Derringer, G. and Suich, R., Simultaneous Optimization of several response variables. J. Qual. Technol., 21(4), pp. 214-219, 1980. DOI: 10.1080/00224065.1980.11980968RPCSustainabilityEASFRGPCompressive strengthRSMOptimizationRPCSostenibilidadEASFRGPResistencia a compresiónRSMOptimizaciónTHUMBNAILFactorial design of reactive powder concrete containing electric arc slag furnace and recycled glass powder.pdf.jpgFactorial design of reactive powder concrete containing electric arc slag furnace and recycled glass powder.pdf.jpgGenerated Thumbnailimage/jpeg15676https://repositorio.escuelaing.edu.co/bitstream/001/2402/4/Factorial%20design%20of%20reactive%20powder%20concrete%20containing%20electric%20arc%20slag%20furnace%20and%20recycled%20glass%20powder.pdf.jpg8a53b8b5c4cc34475630b26c122081e0MD54open accessTEXTFactorial design of reactive powder concrete containing electric arc slag furnace and recycled glass powder.pdf.txtFactorial design of reactive powder concrete containing electric arc slag furnace and recycled glass powder.pdf.txtExtracted texttext/plain50837https://repositorio.escuelaing.edu.co/bitstream/001/2402/3/Factorial%20design%20of%20reactive%20powder%20concrete%20containing%20electric%20arc%20slag%20furnace%20and%20recycled%20glass%20powder.pdf.txt0a96191f7145d3ca2b0bd0687c2794b4MD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/2402/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALFactorial design of reactive powder concrete containing electric arc slag furnace and recycled glass powder.pdfFactorial design of reactive powder concrete containing electric arc slag furnace and recycled glass powder.pdfArtículo de revistaapplication/pdf24443692https://repositorio.escuelaing.edu.co/bitstream/001/2402/1/Factorial%20design%20of%20reactive%20powder%20concrete%20containing%20electric%20arc%20slag%20furnace%20and%20recycled%20glass%20powder.pdf8da73408f275b2eac19dfbf472f24f75MD51open access001/2402oai:repositorio.escuelaing.edu.co:001/24022023-06-10 03:01:07.535open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |