Factorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powder

The main objective of this research is to develop an optimized mixture of reactive powder concrete (RPC) containing supplementary cementitious materials (SCM), such as Electric Arc Slag Furnace (EASF), and Recycled Glass Powder (RGP) among others, through a factorial design. Accurate polynomial regr...

Full description

Autores:
Abellán-García, Joaquín
Núñez López, Andrés Mauricio
Torres Castellanos, Nancy
Fernández Gómez, Jaime
Tipo de recurso:
Article of investigation
Fecha de publicación:
2020
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/2402
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/2402
http://doi.org/10.15446/dyna.v87n213.82655
https://revistas.unal.edu.co/index.php/dyna/article/view/82655
Palabra clave:
RPC
Sustainability
EASF
RGP
Compressive strength
RSM
Optimization
RPC
Sostenibilidad
EASF
RGP
Resistencia a compresión
RSM
Optimización
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id ESCUELAIG2_2b1f6fc71c59c2e7a55ed22d9e9d9555
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/2402
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Factorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powder
dc.title.alternative.spa.fl_str_mv Diseño factorial de concretos de polvos reactivos conteniendo escoria de arco eléctrico y polvo de vidrio reciclado
title Factorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powder
spellingShingle Factorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powder
RPC
Sustainability
EASF
RGP
Compressive strength
RSM
Optimization
RPC
Sostenibilidad
EASF
RGP
Resistencia a compresión
RSM
Optimización
title_short Factorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powder
title_full Factorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powder
title_fullStr Factorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powder
title_full_unstemmed Factorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powder
title_sort Factorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powder
dc.creator.fl_str_mv Abellán-García, Joaquín
Núñez López, Andrés Mauricio
Torres Castellanos, Nancy
Fernández Gómez, Jaime
dc.contributor.author.none.fl_str_mv Abellán-García, Joaquín
Núñez López, Andrés Mauricio
Torres Castellanos, Nancy
Fernández Gómez, Jaime
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación Estructuras y Materiales - Gimeci
dc.subject.proposal.eng.fl_str_mv RPC
Sustainability
EASF
RGP
Compressive strength
RSM
Optimization
topic RPC
Sustainability
EASF
RGP
Compressive strength
RSM
Optimization
RPC
Sostenibilidad
EASF
RGP
Resistencia a compresión
RSM
Optimización
dc.subject.proposal.spa.fl_str_mv RPC
Sostenibilidad
EASF
RGP
Resistencia a compresión
RSM
Optimización
description The main objective of this research is to develop an optimized mixture of reactive powder concrete (RPC) containing supplementary cementitious materials (SCM), such as Electric Arc Slag Furnace (EASF), and Recycled Glass Powder (RGP) among others, through a factorial design. Accurate polynomial regressions were adjusted between considered factors and obtained responses such spread flow and compressive strength at different ages of the concrete. A multi-objective algorithm was executed to reach an eco-friendly mixture with the proper flow, the highest compressive strength, while simultaneously having the minimum content of cement. The experimental verification of this mathematical optimization demonstrated that the use of 621 kg/m3 of ASTM Type HE cement, with a maximum content of 100 kg/m3 of silica fume, should be considered the most appropriate amount to be employed in the RCP mixture to achieve a value of compressive strength over 150 MPa and a self-compacting mixture.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2023-06-09T16:30:54Z
dc.date.available.none.fl_str_mv 2023-06-09T16:30:54Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0012-7353
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/2402
dc.identifier.doi.none.fl_str_mv http://doi.org/10.15446/dyna.v87n213.82655
dc.identifier.eissn.spa.fl_str_mv 2346-2183
dc.identifier.url.none.fl_str_mv https://revistas.unal.edu.co/index.php/dyna/article/view/82655
identifier_str_mv 0012-7353
2346-2183
url https://repositorio.escuelaing.edu.co/handle/001/2402
http://doi.org/10.15446/dyna.v87n213.82655
https://revistas.unal.edu.co/index.php/dyna/article/view/82655
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 51
dc.relation.citationissue.spa.fl_str_mv 213
dc.relation.citationstartpage.spa.fl_str_mv 42
dc.relation.citationvolume.spa.fl_str_mv 87
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.eng.fl_str_mv DYNA
dc.relation.references.spa.fl_str_mv Richard, P. and Cheyrezy, M., Composition of reactive powder concretes. Cem. Concr. Res., 25(7), pp. 1501-1511, 1995.
Song, J. and Liu, S., Properties of reactive powder concrete and its application in highway bridge, Adv. Mater. Sci. Eng., 2016, 2016. DOI: 10.1155/2016/5460241
Abbas, S., Nehdi, M.L. and Saleem, M.A., Ultra-High performance concrete: mechanical performance, durability, sustainability and implementation challenges, Int. J. Concr. Struct. Mater., 10(3), pp. 271-295, 2016. DOI: 10.1007/s40069-016-0157-4
Jammes, F., Cespedes, X. and Resplendino, J., Design of Offshore wind turbines, RILEM-fib-AFGC Int. Symp. Ultra-High Perform. Fibre-Reinforced Concr. UHPFRC 2013(1), pp. 443-452, 2013.
Tagnit-Hamou, A., Soliman, N.A. and Omran, A., Green Ultra-highperformance glass concrete, First International Interactive Symposium on UHPC, 3(1), pp. 1-10, 2016. DOI: 10.21838/uhpc.2016.35
De Larrard, F. and Sedran, T., Mixture-proportioning of highperformance concrete, Cem. Concr. Res., 32(11), pp. 1699-1704, 2002. DOI:10.1016/S0008-8846(02)00861-X
Meng, W., Samaranayake, V.A. and Khayat, K.H., Factorial design and optimization of UHPC with lightweight sand, ACI Mater. J.(February), 2018. DOI: 10.14359/51700995
Abdulkareem, O.M., Ben Fraj, A., Bouasker, M. and Khelidj, A., Effect of chemical and thermal activation on the microstructural and mechanical properties of more sustainable UHPC, Constr. Build. Mater., 169, pp. 567-577, 2018. DOI: 10.1016/j.conbuildmat.2018.02.214
Ghanem, H. and Obeid, Y., The Effect of steel fibers on the rheological and mechanical properties of self compacting concrete, Eur. Sci. J., 11(21), pp. 85-98, 2015.
Li, W., Huang, Z., Zu, T., Shi, C., Duan, W.H. and Shah, S.P., Influence of Nanolimestone on the hydration, mechanical strength, and autogenous shrinkage of ultrahigh-performance concrete, J. Mater. Civ. Eng., 28(1), pp. 1-9, 2016. DOI: 10.1061/(ASCE)MT.1943-5533.0001327
Huang, Z. and Cao, F., Effects of nano-materials on the performance of UHPC, 材料导报 研究篇, 26(9), pp. 136-141, 2012.
Camacho, E., López, J.A. and Serna, P., Definition of three levels of performance for UHPFRC-VHPFRC with available materials, in: Proceedings of Hipermat 2012, 3rd International Symposium on UHPC and Nanotechnology for Construction Materials, Kassel Uni., Kassel, Germany, 2012, pp. 249-256.
Camacho-Torregosa, E., Dosage optimization and bolted connections for UHPFRC ties, PhD Thesis, Polytechnic University of Valencia, Spain, 2013.
Van Tuan, N., Ye, G., Van Breugel, K., Fraaij, A.L.A. and Danh, B., The study of using rice husk ash to produce ultra high performance concrete, Constr. Build. Mater., 25(4), pp. 2030-2035, 2011. DOI: 10.1016/j.conbuildmat.2010.11.046
Van Tuan, N., Ye, G. and Van Breugel, K., Mitigation of early age shrinkage of ultra high performance concrete by using rice husk ash, in: Proceedings of Hipermat 2012, 3rd International Symposium on UHPC and Nanotechnology for Construction Materials., Kassel Uni., 2012, pp. 341-348
Soliman, N.A. and Tagnit-Hamou, A., Partial substitution of silica fume with fine glass powder in UHPC: filling the micro gap. Constr. Build. Mater., 139, pp. 374-383, 2017. DOI: 10.1016/j.conbuildmat.2017.02.084
Soliman, N.A. and Tagnit-Hamou, A., Using glass sand as an alternative for quartz sand in UHPC, Constr. Build. Mater., 145, pp. 243-252, 2017. DOI: 10.1016/j.conbuildmat.2017.03.187
Yu, R., Tang, P., Spiesz, P. and Brouwers, H.J.H., A study of multiple effects of nano-silica and hybrid fibres on the properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) incorporating waste bottom ash (WBA), Constr. Build. Mater. J., 60(June), pp. 98- 110, 2014. DOI: 10.1016/j.conbuildmat.2014.02.059
Yu, R., Spiesz, P. and Brouwers, H.J.H., Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC), Cem. Concr. Res., 56, pp. 29-39, 2014. DOI: 10.1016/j.cemconres.2013.11.002
Funk, J.E. and Dinger, D., Predictive process control of crowded particulate suspensions: applied to ceramic manufacturing, Springer Science, New York, USA, 1994.
Roth, T., Working with the quality. Tools package, 2016. [Online]. Available at: http://www.r-qualitytools.org.
Abellan, J., Torres, N., Núñez, A. y Fernández, J., Influencia del exponente de Fuller, la relación agua conglomerante y el contenido en policarboxilato en concretos de muy altas prestaciones, en: IV Congreso Internacional de Ingeniería Civil, La Habana (Cuba), 2018.
ASTM, ‘Standard test method for flow of hydraulic cement mortar,’ American Society for Testing and Materials C1437. Conshohocken, PA, USA, 2016, pp. 1-2
ASTM, ‘Standard Test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] cube specimens),’ American Society for Testing and Materials C109/C109M - 11b. West Conshohocken, PA, USA, 2010, pp. 1-9.
Lenth, R.V., Response-surface methods in R, using rsm, J. Stat. Softw., 32(7), pp. 1-17, 2012.
Raviselvan, R.J., Ramanathan, K., Perumal, P. and Thansekhar, M.R., Response surface methodology for optimum hardness of TiN on steel substrate, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 9(12), pp. 1331-1337, 2015.
Ghafari, E., Costa, H., Nuno, E. and Santos, B., RSM-based model to predict the performance of self-compacting UHPC reinforced with hybrid steel micro-fibers, Constr. Build. Mater., 66(September), pp. 375-383, 2014. DOI: 10.1016/j.conbuildmat.2014.05.064
Abellán, J., Fernández, J.A., Torres, N. and Núñez, A.M., Statistical Optimization of ultra-high-performance glass concrete, ACI Mater. J., 117(M), pp. 243-254, 2020. DOI: 10.14359/51720292
Branchu, S., Forbes, R.T., York, P. and Nyqvist, H.N., A central composite design to investigate the thermal stabilization of lysozyme, Pharmaceutical Research, 16(5), pp. 702-708, 1999. DOI: 10.1023/a:1018876625126
R Core Team, R: A Language and Environment for Statistical Computing. Vienna, Austria, 2018.
Montgomery, D.C., Design and analysis of experiments. John Wiley & Sons, Inc, New Jersey, USA, 2005.
The European Project Group, ‘The European Guidelines for SelfCompacting Concrete,’ Eur. Guidel. Self Compact. Concrete, (May), 2005, 63 P.
Puertas, F., Santos, H., Palacios, M. and Martínez-Ramírez, S., Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour in cement pastes, Adv. Cem. Res., 17(2), pp. 77-89, 2005. DOI: 10.1680/adcr.17.2.77.65044
Kubens, S., Interaction of cement and admixtures and its influence on rheological properties, [online]. 49(0), Göttingen, 2010. Available at: https://cuvillier.de/de/shop/publications/752
Derringer, G. and Suich, R., Simultaneous Optimization of several response variables. J. Qual. Technol., 21(4), pp. 214-219, 1980. DOI: 10.1080/00224065.1980.11980968
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 10 página
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.place.spa.fl_str_mv Colombia
dc.source.spa.fl_str_mv https://revistas.unal.edu.co/index.php/dyna/article/view/82655
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/2402/4/Factorial%20design%20of%20reactive%20powder%20concrete%20containing%20electric%20arc%20slag%20furnace%20and%20recycled%20glass%20powder.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/2402/3/Factorial%20design%20of%20reactive%20powder%20concrete%20containing%20electric%20arc%20slag%20furnace%20and%20recycled%20glass%20powder.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/2402/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/2402/1/Factorial%20design%20of%20reactive%20powder%20concrete%20containing%20electric%20arc%20slag%20furnace%20and%20recycled%20glass%20powder.pdf
bitstream.checksum.fl_str_mv 8a53b8b5c4cc34475630b26c122081e0
0a96191f7145d3ca2b0bd0687c2794b4
5a7ca94c2e5326ee169f979d71d0f06e
8da73408f275b2eac19dfbf472f24f75
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355613716578304
spelling Abellán-García, Joaquín276478eb5b6920fa9e5175b8a1bf29d7600Núñez López, Andrés Mauricio068c9f93a2962a9f8d667a5e7f926db8600Torres Castellanos, Nancy2b475ecd9ea004cd3b18c2eaf60c01d1600Fernández Gómez, Jaimeec32ba58ee62c351e245c1fcf77e84f9600Grupo de Investigación Estructuras y Materiales - Gimeci2023-06-09T16:30:54Z2023-06-09T16:30:54Z20200012-7353https://repositorio.escuelaing.edu.co/handle/001/2402http://doi.org/10.15446/dyna.v87n213.826552346-2183https://revistas.unal.edu.co/index.php/dyna/article/view/82655The main objective of this research is to develop an optimized mixture of reactive powder concrete (RPC) containing supplementary cementitious materials (SCM), such as Electric Arc Slag Furnace (EASF), and Recycled Glass Powder (RGP) among others, through a factorial design. Accurate polynomial regressions were adjusted between considered factors and obtained responses such spread flow and compressive strength at different ages of the concrete. A multi-objective algorithm was executed to reach an eco-friendly mixture with the proper flow, the highest compressive strength, while simultaneously having the minimum content of cement. The experimental verification of this mathematical optimization demonstrated that the use of 621 kg/m3 of ASTM Type HE cement, with a maximum content of 100 kg/m3 of silica fume, should be considered the most appropriate amount to be employed in the RCP mixture to achieve a value of compressive strength over 150 MPa and a self-compacting mixture.El objetivo principal de esta investigación es desarrollar una mezcla optimizada de concreto de polvos reactivos (RPC) que contenga materiales cementícios suplementarios (SCM), como la escoria siderúrgica de arco eléctrico (EASF) y el polvo de vidrio reciclado (RGP) entre otros, utilizando el diseño factorial. Se calcularon diferentes regresiones polinómicas para predecir con precisión las variables respuesta (flujo estático y resistencia a compresión a distintas edades) en función de los factores considerados. A través de un algoritmo multiobjetivo, se determinó la mezcla que alcance la resistencia y flujo estático adecuados con un contenido mínimo de cemento. La verificación experimental de esta optimización matemática mostró que con 621 kg/m3 de cemento ASTM Tipo HE, y un contenido máximo de 100 kg/m3 de humo de sílice, se puede alcanzar una resistencia a compresión superior a los 150 MPa en un concreto, además, autocompactante.10 páginaapplication/pdfengUniversidad Nacional de ColombiaColombiahttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://revistas.unal.edu.co/index.php/dyna/article/view/82655Factorial design of reactive concrete powder containing electric arc slag furnace and recycled glass powderDiseño factorial de concretos de polvos reactivos conteniendo escoria de arco eléctrico y polvo de vidrio recicladoArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85512134287N/ADYNARichard, P. and Cheyrezy, M., Composition of reactive powder concretes. Cem. Concr. Res., 25(7), pp. 1501-1511, 1995.Song, J. and Liu, S., Properties of reactive powder concrete and its application in highway bridge, Adv. Mater. Sci. Eng., 2016, 2016. DOI: 10.1155/2016/5460241Abbas, S., Nehdi, M.L. and Saleem, M.A., Ultra-High performance concrete: mechanical performance, durability, sustainability and implementation challenges, Int. J. Concr. Struct. Mater., 10(3), pp. 271-295, 2016. DOI: 10.1007/s40069-016-0157-4Jammes, F., Cespedes, X. and Resplendino, J., Design of Offshore wind turbines, RILEM-fib-AFGC Int. Symp. Ultra-High Perform. Fibre-Reinforced Concr. UHPFRC 2013(1), pp. 443-452, 2013.Tagnit-Hamou, A., Soliman, N.A. and Omran, A., Green Ultra-highperformance glass concrete, First International Interactive Symposium on UHPC, 3(1), pp. 1-10, 2016. DOI: 10.21838/uhpc.2016.35De Larrard, F. and Sedran, T., Mixture-proportioning of highperformance concrete, Cem. Concr. Res., 32(11), pp. 1699-1704, 2002. DOI:10.1016/S0008-8846(02)00861-XMeng, W., Samaranayake, V.A. and Khayat, K.H., Factorial design and optimization of UHPC with lightweight sand, ACI Mater. J.(February), 2018. DOI: 10.14359/51700995Abdulkareem, O.M., Ben Fraj, A., Bouasker, M. and Khelidj, A., Effect of chemical and thermal activation on the microstructural and mechanical properties of more sustainable UHPC, Constr. Build. Mater., 169, pp. 567-577, 2018. DOI: 10.1016/j.conbuildmat.2018.02.214Ghanem, H. and Obeid, Y., The Effect of steel fibers on the rheological and mechanical properties of self compacting concrete, Eur. Sci. J., 11(21), pp. 85-98, 2015.Li, W., Huang, Z., Zu, T., Shi, C., Duan, W.H. and Shah, S.P., Influence of Nanolimestone on the hydration, mechanical strength, and autogenous shrinkage of ultrahigh-performance concrete, J. Mater. Civ. Eng., 28(1), pp. 1-9, 2016. DOI: 10.1061/(ASCE)MT.1943-5533.0001327Huang, Z. and Cao, F., Effects of nano-materials on the performance of UHPC, 材料导报 研究篇, 26(9), pp. 136-141, 2012.Camacho, E., López, J.A. and Serna, P., Definition of three levels of performance for UHPFRC-VHPFRC with available materials, in: Proceedings of Hipermat 2012, 3rd International Symposium on UHPC and Nanotechnology for Construction Materials, Kassel Uni., Kassel, Germany, 2012, pp. 249-256.Camacho-Torregosa, E., Dosage optimization and bolted connections for UHPFRC ties, PhD Thesis, Polytechnic University of Valencia, Spain, 2013.Van Tuan, N., Ye, G., Van Breugel, K., Fraaij, A.L.A. and Danh, B., The study of using rice husk ash to produce ultra high performance concrete, Constr. Build. Mater., 25(4), pp. 2030-2035, 2011. DOI: 10.1016/j.conbuildmat.2010.11.046Van Tuan, N., Ye, G. and Van Breugel, K., Mitigation of early age shrinkage of ultra high performance concrete by using rice husk ash, in: Proceedings of Hipermat 2012, 3rd International Symposium on UHPC and Nanotechnology for Construction Materials., Kassel Uni., 2012, pp. 341-348Soliman, N.A. and Tagnit-Hamou, A., Partial substitution of silica fume with fine glass powder in UHPC: filling the micro gap. Constr. Build. Mater., 139, pp. 374-383, 2017. DOI: 10.1016/j.conbuildmat.2017.02.084Soliman, N.A. and Tagnit-Hamou, A., Using glass sand as an alternative for quartz sand in UHPC, Constr. Build. Mater., 145, pp. 243-252, 2017. DOI: 10.1016/j.conbuildmat.2017.03.187Yu, R., Tang, P., Spiesz, P. and Brouwers, H.J.H., A study of multiple effects of nano-silica and hybrid fibres on the properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) incorporating waste bottom ash (WBA), Constr. Build. Mater. J., 60(June), pp. 98- 110, 2014. DOI: 10.1016/j.conbuildmat.2014.02.059Yu, R., Spiesz, P. and Brouwers, H.J.H., Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC), Cem. Concr. Res., 56, pp. 29-39, 2014. DOI: 10.1016/j.cemconres.2013.11.002Funk, J.E. and Dinger, D., Predictive process control of crowded particulate suspensions: applied to ceramic manufacturing, Springer Science, New York, USA, 1994.Roth, T., Working with the quality. Tools package, 2016. [Online]. Available at: http://www.r-qualitytools.org.Abellan, J., Torres, N., Núñez, A. y Fernández, J., Influencia del exponente de Fuller, la relación agua conglomerante y el contenido en policarboxilato en concretos de muy altas prestaciones, en: IV Congreso Internacional de Ingeniería Civil, La Habana (Cuba), 2018.ASTM, ‘Standard test method for flow of hydraulic cement mortar,’ American Society for Testing and Materials C1437. Conshohocken, PA, USA, 2016, pp. 1-2ASTM, ‘Standard Test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] cube specimens),’ American Society for Testing and Materials C109/C109M - 11b. West Conshohocken, PA, USA, 2010, pp. 1-9.Lenth, R.V., Response-surface methods in R, using rsm, J. Stat. Softw., 32(7), pp. 1-17, 2012.Raviselvan, R.J., Ramanathan, K., Perumal, P. and Thansekhar, M.R., Response surface methodology for optimum hardness of TiN on steel substrate, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 9(12), pp. 1331-1337, 2015.Ghafari, E., Costa, H., Nuno, E. and Santos, B., RSM-based model to predict the performance of self-compacting UHPC reinforced with hybrid steel micro-fibers, Constr. Build. Mater., 66(September), pp. 375-383, 2014. DOI: 10.1016/j.conbuildmat.2014.05.064Abellán, J., Fernández, J.A., Torres, N. and Núñez, A.M., Statistical Optimization of ultra-high-performance glass concrete, ACI Mater. J., 117(M), pp. 243-254, 2020. DOI: 10.14359/51720292Branchu, S., Forbes, R.T., York, P. and Nyqvist, H.N., A central composite design to investigate the thermal stabilization of lysozyme, Pharmaceutical Research, 16(5), pp. 702-708, 1999. DOI: 10.1023/a:1018876625126R Core Team, R: A Language and Environment for Statistical Computing. Vienna, Austria, 2018.Montgomery, D.C., Design and analysis of experiments. John Wiley & Sons, Inc, New Jersey, USA, 2005.The European Project Group, ‘The European Guidelines for SelfCompacting Concrete,’ Eur. Guidel. Self Compact. Concrete, (May), 2005, 63 P.Puertas, F., Santos, H., Palacios, M. and Martínez-Ramírez, S., Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour in cement pastes, Adv. Cem. Res., 17(2), pp. 77-89, 2005. DOI: 10.1680/adcr.17.2.77.65044Kubens, S., Interaction of cement and admixtures and its influence on rheological properties, [online]. 49(0), Göttingen, 2010. Available at: https://cuvillier.de/de/shop/publications/752Derringer, G. and Suich, R., Simultaneous Optimization of several response variables. J. Qual. Technol., 21(4), pp. 214-219, 1980. DOI: 10.1080/00224065.1980.11980968RPCSustainabilityEASFRGPCompressive strengthRSMOptimizationRPCSostenibilidadEASFRGPResistencia a compresiónRSMOptimizaciónTHUMBNAILFactorial design of reactive powder concrete containing electric arc slag furnace and recycled glass powder.pdf.jpgFactorial design of reactive powder concrete containing electric arc slag furnace and recycled glass powder.pdf.jpgGenerated Thumbnailimage/jpeg15676https://repositorio.escuelaing.edu.co/bitstream/001/2402/4/Factorial%20design%20of%20reactive%20powder%20concrete%20containing%20electric%20arc%20slag%20furnace%20and%20recycled%20glass%20powder.pdf.jpg8a53b8b5c4cc34475630b26c122081e0MD54open accessTEXTFactorial design of reactive powder concrete containing electric arc slag furnace and recycled glass powder.pdf.txtFactorial design of reactive powder concrete containing electric arc slag furnace and recycled glass powder.pdf.txtExtracted texttext/plain50837https://repositorio.escuelaing.edu.co/bitstream/001/2402/3/Factorial%20design%20of%20reactive%20powder%20concrete%20containing%20electric%20arc%20slag%20furnace%20and%20recycled%20glass%20powder.pdf.txt0a96191f7145d3ca2b0bd0687c2794b4MD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/2402/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALFactorial design of reactive powder concrete containing electric arc slag furnace and recycled glass powder.pdfFactorial design of reactive powder concrete containing electric arc slag furnace and recycled glass powder.pdfArtículo de revistaapplication/pdf24443692https://repositorio.escuelaing.edu.co/bitstream/001/2402/1/Factorial%20design%20of%20reactive%20powder%20concrete%20containing%20electric%20arc%20slag%20furnace%20and%20recycled%20glass%20powder.pdf8da73408f275b2eac19dfbf472f24f75MD51open access001/2402oai:repositorio.escuelaing.edu.co:001/24022023-06-10 03:01:07.535open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK