Optimization of bioink for 3d printing of human female reproductive tract

Optimize a PEGDA-based bioink for 3D printing of the human female reproductive organ, to achieve a print with mechanical properties that more accurately simulates real tissue.

Autores:
Serrano Andrade, Laura Daniela
Tipo de recurso:
Informe
Fecha de publicación:
2023
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/2807
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/2807
https://catalogo.escuelaing.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=23633
Palabra clave:
Bioimpresión
Impresión 3D
Pegda
Tracto reproductor femenino
Bioimpresión
Impresión 3D
Pegda
Tracto reproductor femenino
Bioprinting
3D printing
Pegda
Female reproductive tract
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id ESCUELAIG2_280ec6f1f9782f8aa5a08cd8ee574711
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/2807
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv Optimization of bioink for 3d printing of human female reproductive tract
title Optimization of bioink for 3d printing of human female reproductive tract
spellingShingle Optimization of bioink for 3d printing of human female reproductive tract
Bioimpresión
Impresión 3D
Pegda
Tracto reproductor femenino
Bioimpresión
Impresión 3D
Pegda
Tracto reproductor femenino
Bioprinting
3D printing
Pegda
Female reproductive tract
title_short Optimization of bioink for 3d printing of human female reproductive tract
title_full Optimization of bioink for 3d printing of human female reproductive tract
title_fullStr Optimization of bioink for 3d printing of human female reproductive tract
title_full_unstemmed Optimization of bioink for 3d printing of human female reproductive tract
title_sort Optimization of bioink for 3d printing of human female reproductive tract
dc.creator.fl_str_mv Serrano Andrade, Laura Daniela
dc.contributor.author.none.fl_str_mv Serrano Andrade, Laura Daniela
dc.contributor.datamanager.none.fl_str_mv Magdanz, Veronika
Rodríguez Burbano, Diana Consuelo
dc.subject.armarc.none.fl_str_mv Bioimpresión
Impresión 3D
Pegda
Tracto reproductor femenino
topic Bioimpresión
Impresión 3D
Pegda
Tracto reproductor femenino
Bioimpresión
Impresión 3D
Pegda
Tracto reproductor femenino
Bioprinting
3D printing
Pegda
Female reproductive tract
dc.subject.proposal.spa.fl_str_mv Bioimpresión
Impresión 3D
Pegda
Tracto reproductor femenino
dc.subject.proposal.eng.fl_str_mv Bioprinting
3D printing
Pegda
Female reproductive tract
description Optimize a PEGDA-based bioink for 3D printing of the human female reproductive organ, to achieve a print with mechanical properties that more accurately simulates real tissue.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-02-01T17:13:21Z
dc.date.available.none.fl_str_mv 2024-02-01T17:13:21Z
dc.type.spa.fl_str_mv Informe de investigación
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_93fc
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_93fc
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/2807
dc.identifier.url.none.fl_str_mv https://catalogo.escuelaing.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=23633
url https://repositorio.escuelaing.edu.co/handle/001/2807
https://catalogo.escuelaing.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=23633
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.references.spa.fl_str_mv [1] V. G. Gokhare, D. N. Raut y D. K. Shinde, «A Review paper on 3D-Printing Aspects and Various Processes Used in the 3D-Printing,» International Journal of Engineering Research & Technology (IJERT), vol. 6, nº 6, pp. 953-958, June, 2017. [2] E. Kudryavtseva, V. Popov, G. Muller-Kamskii, E. Zakurinova y V. Kovalev, «Advantages of 3D Printing for Gynecology and Obstetrics: Brief Review of Applications,Technologies, and Prospects,» de IEEE International Conference on “Nanomaterials: Applications & Properties” (NAP-2020), Sumy, Ukraine, 2020. [3] J. Gopinathan y I. Noh, «Recent trends in bioinks for 3D printing,» Biomaterials Research, vol. 22, nº 11, 2018. [4] C. L. Gil, «Bio impresión 3D: importancia en la actualidad,» Journal Biofab, vol. 11, pp. 1-33, Octubre 2022. [5] C. Hu, W. Zhang y P. Li, «3D Printing and Its Current Status of Application in Obstetrics and Gynecological Diseases,» Bioengineering, vol. 10, p. 299, 27 February 2023. [6] P. Beck-Peccoz y L. Persani, «Premature ovarian failure,» Orphanet Journal of Rare Diseases, vol. 1, nº 9, 2006. [7] K. Jankowska, «Premature ovarian failure,» Prz Menopauzalny, vol. 16, nº 2, pp. 51-56, Junio 2017. [8] A. Baah-Dwomoh, J. McGuire, T. Tan y R. D. Vita, «Mechanical Properties of Female Reproductive Organs and Supporting Connective Tissues: A Review of the Current State of Knowledge,» Applied Mechanics Reviews, vol. 68, 2016. [9] G. images, «iStock,» 2023. [En línea]. Available: https://www.istockphoto.com/photos/female-reproductive-system. [10] G. Singh y A. Chanda, «Mechanical properties of whole-body soft human tissues: a review,» Biomedical Materials, vol. 16, 2021. [11] F. Jafarbegloua, M. A. Nazari, F. Keikha y M. Azadi, «Visco-hyperelastic characterization of the mechanical properties of human fallopian tube tissue using atomic force microscopy,» Materialia, vol. 16, 2021. [12] p. b. v. CELLINK, «Lumen X. TM,» 2021. [13] R. Version:01, «Usage Protocol, PEGDA PhotoInk,» 2021. [14] C. D. ahrir, M. Ruslin, S.-Y. L. y Wei-ChunLin, «Effect of various post-curing light intensities, times, and energy levels on the color of 3D-printed resin crowns,» Journal of Dental Sciences, 2023. [15] S. Technologies, «SyBridge Technologies,» November 2021. [En línea]. Available: https://sybridge.com/why-3d-printing-layer-height-matter/#:~:text=Layer%20height%20is%20a%20measurement,varies%20from%20project%20to%20project.. [16] Chituboxteam, «Autodesk Instructables,» [En línea]. Available: https://www.instructables.com/5-Settings-to-Improve-Your-SLADLPLCD-3D-Print-Qual/. 39 [17] P. Gharge y G. Boyd, «All3DP,» [En línea]. Available: https://all3dp.com/2/cura-first-layer-settings-simply-explained/. [18] R. Mau, J. Nazir, S. John y H. Seitz, «Preliminary Study on 3D printing of PEGDA Hydrogels for Frontal Sinus Implants using Digital Light Processing (DLP),» Current Directions in Biomedical Engineering, vol. 5, nº 1, pp. 249-252, 2019. [19] S. Aldrich, «Millipore SIGMA,» 2023. [En línea]. Available: https://www.sigmaaldrich.com/CA/en/product/aldrich/455008. [20] M. H. Khalili, R. Zhang, S. Wilson, S. Goel, S. A. Impey y A. I. Aria, «Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering,» Polymers, vol. 15, p. 2341, 2023. [21] F. Yu, X. Han, K. Zhang, B. Dai, S. Shen, X. Gao, H. Teng, X. Wang, L. Li, H. Ju, W. Wang, J. Zhang y Q. Jiang, «Evaluation of a polyvinyl alcohol-alginate based hydrogel for precise 3D bioprinting,» Society For Biomaterials, vol. 106A, pp. 2944-2954, 2018. [22] Q. Mei, H.-Y. Yuen y X. Zhao, «Mechanical stretching of 3D hydrogels for neural stem cell differentiation,» Bio-Design and Manufacturing, vol. 5, pp. 714-728, 2022. [23] NN, «Toppr,» [En línea]. Available: https://www.toppr.com/guides/physics-formulas/strain-formula/. [24] MatMatch, «Matmatch,» 2023. [En línea]. Available: https://matmatch.com/learn/property/basic-stress-analysis-calculations. [25] NN, «aLarge,» 2022. [En línea]. Available: https://www.alarge.com.tr/information-article/tensile-test-and-compression-test/. [26] S. S. &. T. C. &. J. D. J. &. A. A. &. J. J. Yoo, «Regenerative Medicine Approaches in Bioengineering Female reproductive tissues,» Reproductive sciences, vol. 28, pp. 1573-1595, Abril 2021.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 40 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Waterloo, Ontario, Canadá
dc.coverage.projectdates.spa.fl_str_mv (2023-08-16/2023-12-26)
dc.publisher.spa.fl_str_mv Escuela Colombiana de Ingeniería
University of waterloo
Universidad del Rosario
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/2807/5/Serrano%20Andrade%2c%20Laura%20Daniela-2023.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/2807/7/Autorizacio%cc%81n.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/2807/4/Serrano%20Andrade%2c%20Laura%20Daniela-2023.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/2807/6/Autorizacio%cc%81n.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/2807/3/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/2807/1/Serrano%20Andrade%2c%20Laura%20Daniela-2023.pdf
https://repositorio.escuelaing.edu.co/bitstream/001/2807/2/Autorizacio%cc%81n.pdf
bitstream.checksum.fl_str_mv 976fb61ea55705b5a76de90ceb37c869
e3e8d4ec9ba14cc65f399fda4d42e2f7
f498a5311e650d63eed27a122d4086f5
0847326517bd243ca04154dbbb2a5ca1
5a7ca94c2e5326ee169f979d71d0f06e
66c61d85c18e09df5d8c353602c11c7a
81e010b649035f6ab327322d660f09d5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355639565025280
spelling Serrano Andrade, Laura Daniela7091774fc4499da71233cfcd318e01e8Magdanz, VeronikaRodríguez Burbano, Diana Consuelo2024-02-01T17:13:21Z2024-02-01T17:13:21Z2023https://repositorio.escuelaing.edu.co/handle/001/2807https://catalogo.escuelaing.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=23633Optimize a PEGDA-based bioink for 3D printing of the human female reproductive organ, to achieve a print with mechanical properties that more accurately simulates real tissue.Optimice una biotinta basada en PEGDA para la impresión 3D del sistema reproductor femenino humano órgano, para lograr una impresión con propiedades mecánicas que simule con mayor precisión tejido real.Table I. Elastic module of the female reproductive system……………………………………8 Table II Gantt Chart……………….………………………………………………………………13 Table III. PEGDA-Homemade (Recipe and Protocol)………………………………………… 14 Table IV Values of the tested printing parameters for PEGDA-Homemade bioink ............ 15 Table V. Variations in PEGDA concentrations in the original recipe…………………………15 Table VI. 3 Proposals for new bioinks with gelma and PEGDA…………………………….. 15 Table VII. New formulations of bioinks with pva and alginate. protocol, recipe and printing parameters. for PEGDA concentration ≤10%. .................................................................. 16 Table VIII. New formulations of bioinks with PVA and Alginate. protocol, recipe and printing parameters. for PEGDA concentration 18%. .................................................................... 17 Table IX. Parameters for the performance of the two types of compression tests…………19 Table X. PEGDA-Homemade prints with different printing parameters. ........................... 22 Table XI. Results, prints using bioinks with different concentrations of PEGDA. .............. 23 Table XII. GELMA-PEGDA bioink print results.. ............................................................... 23 Table XIII. General remarks on printing WITH PEGDA-PVA-Alginate bioinks .................. 24 Table XIV. Samples of the 4 bioinks after 24 hours in solutions at different pH values. .... 25 Table XV. Some cylinder-shaped impressions for compression tests……………………… 27 Table XVI. Values of the elastic modulus for the 9 studied bioinks………………………… 28 Table XVII. Maximum force and maximum strain for each bioink. .................................... 29 Table XVIII. Printing of more complex designs with different bioinks………………………. 30Nanotechnology and Bioprinting40 páginasapplication/pdfengEscuela Colombiana de IngenieríaUniversity of waterlooUniversidad del RosarioOptimization of bioink for 3d printing of human female reproductive tractInforme de investigacióninfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_93fchttp://purl.org/coar/resource_type/c_8042Textinfo:eu-repo/semantics/workingPaperhttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_970fb48d4fbd8a85Waterloo, Ontario, Canadá(2023-08-16/2023-12-26)N/A[1] V. G. Gokhare, D. N. Raut y D. K. Shinde, «A Review paper on 3D-Printing Aspects and Various Processes Used in the 3D-Printing,» International Journal of Engineering Research & Technology (IJERT), vol. 6, nº 6, pp. 953-958, June, 2017. [2] E. Kudryavtseva, V. Popov, G. Muller-Kamskii, E. Zakurinova y V. Kovalev, «Advantages of 3D Printing for Gynecology and Obstetrics: Brief Review of Applications,Technologies, and Prospects,» de IEEE International Conference on “Nanomaterials: Applications & Properties” (NAP-2020), Sumy, Ukraine, 2020. [3] J. Gopinathan y I. Noh, «Recent trends in bioinks for 3D printing,» Biomaterials Research, vol. 22, nº 11, 2018. [4] C. L. Gil, «Bio impresión 3D: importancia en la actualidad,» Journal Biofab, vol. 11, pp. 1-33, Octubre 2022. [5] C. Hu, W. Zhang y P. Li, «3D Printing and Its Current Status of Application in Obstetrics and Gynecological Diseases,» Bioengineering, vol. 10, p. 299, 27 February 2023. [6] P. Beck-Peccoz y L. Persani, «Premature ovarian failure,» Orphanet Journal of Rare Diseases, vol. 1, nº 9, 2006. [7] K. Jankowska, «Premature ovarian failure,» Prz Menopauzalny, vol. 16, nº 2, pp. 51-56, Junio 2017. [8] A. Baah-Dwomoh, J. McGuire, T. Tan y R. D. Vita, «Mechanical Properties of Female Reproductive Organs and Supporting Connective Tissues: A Review of the Current State of Knowledge,» Applied Mechanics Reviews, vol. 68, 2016. [9] G. images, «iStock,» 2023. [En línea]. Available: https://www.istockphoto.com/photos/female-reproductive-system. [10] G. Singh y A. Chanda, «Mechanical properties of whole-body soft human tissues: a review,» Biomedical Materials, vol. 16, 2021. [11] F. Jafarbegloua, M. A. Nazari, F. Keikha y M. Azadi, «Visco-hyperelastic characterization of the mechanical properties of human fallopian tube tissue using atomic force microscopy,» Materialia, vol. 16, 2021. [12] p. b. v. CELLINK, «Lumen X. TM,» 2021. [13] R. Version:01, «Usage Protocol, PEGDA PhotoInk,» 2021. [14] C. D. ahrir, M. Ruslin, S.-Y. L. y Wei-ChunLin, «Effect of various post-curing light intensities, times, and energy levels on the color of 3D-printed resin crowns,» Journal of Dental Sciences, 2023. [15] S. Technologies, «SyBridge Technologies,» November 2021. [En línea]. Available: https://sybridge.com/why-3d-printing-layer-height-matter/#:~:text=Layer%20height%20is%20a%20measurement,varies%20from%20project%20to%20project.. [16] Chituboxteam, «Autodesk Instructables,» [En línea]. Available: https://www.instructables.com/5-Settings-to-Improve-Your-SLADLPLCD-3D-Print-Qual/. 39 [17] P. Gharge y G. Boyd, «All3DP,» [En línea]. Available: https://all3dp.com/2/cura-first-layer-settings-simply-explained/. [18] R. Mau, J. Nazir, S. John y H. Seitz, «Preliminary Study on 3D printing of PEGDA Hydrogels for Frontal Sinus Implants using Digital Light Processing (DLP),» Current Directions in Biomedical Engineering, vol. 5, nº 1, pp. 249-252, 2019. [19] S. Aldrich, «Millipore SIGMA,» 2023. [En línea]. Available: https://www.sigmaaldrich.com/CA/en/product/aldrich/455008. [20] M. H. Khalili, R. Zhang, S. Wilson, S. Goel, S. A. Impey y A. I. Aria, «Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering,» Polymers, vol. 15, p. 2341, 2023. [21] F. Yu, X. Han, K. Zhang, B. Dai, S. Shen, X. Gao, H. Teng, X. Wang, L. Li, H. Ju, W. Wang, J. Zhang y Q. Jiang, «Evaluation of a polyvinyl alcohol-alginate based hydrogel for precise 3D bioprinting,» Society For Biomaterials, vol. 106A, pp. 2944-2954, 2018. [22] Q. Mei, H.-Y. Yuen y X. Zhao, «Mechanical stretching of 3D hydrogels for neural stem cell differentiation,» Bio-Design and Manufacturing, vol. 5, pp. 714-728, 2022. [23] NN, «Toppr,» [En línea]. Available: https://www.toppr.com/guides/physics-formulas/strain-formula/. [24] MatMatch, «Matmatch,» 2023. [En línea]. Available: https://matmatch.com/learn/property/basic-stress-analysis-calculations. [25] NN, «aLarge,» 2022. [En línea]. Available: https://www.alarge.com.tr/information-article/tensile-test-and-compression-test/. [26] S. S. &. T. C. &. J. D. J. &. A. A. &. J. J. Yoo, «Regenerative Medicine Approaches in Bioengineering Female reproductive tissues,» Reproductive sciences, vol. 28, pp. 1573-1595, Abril 2021.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2BioimpresiónImpresión 3DPegdaTracto reproductor femeninoBioimpresiónImpresión 3DPegdaTracto reproductor femeninoBioprinting3D printingPegdaFemale reproductive tractTHUMBNAILSerrano Andrade, Laura Daniela-2023.pdf.jpgSerrano Andrade, Laura Daniela-2023.pdf.jpgGenerated Thumbnailimage/jpeg6857https://repositorio.escuelaing.edu.co/bitstream/001/2807/5/Serrano%20Andrade%2c%20Laura%20Daniela-2023.pdf.jpg976fb61ea55705b5a76de90ceb37c869MD55open accessAutorización.pdf.jpgAutorización.pdf.jpgGenerated Thumbnailimage/jpeg13113https://repositorio.escuelaing.edu.co/bitstream/001/2807/7/Autorizacio%cc%81n.pdf.jpge3e8d4ec9ba14cc65f399fda4d42e2f7MD57open accessTEXTSerrano Andrade, Laura Daniela-2023.pdf.txtSerrano Andrade, Laura Daniela-2023.pdf.txtExtracted texttext/plain61507https://repositorio.escuelaing.edu.co/bitstream/001/2807/4/Serrano%20Andrade%2c%20Laura%20Daniela-2023.pdf.txtf498a5311e650d63eed27a122d4086f5MD54open accessAutorización.pdf.txtAutorización.pdf.txtExtracted texttext/plain3301https://repositorio.escuelaing.edu.co/bitstream/001/2807/6/Autorizacio%cc%81n.pdf.txt0847326517bd243ca04154dbbb2a5ca1MD56open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/2807/3/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD53open accessORIGINALSerrano Andrade, Laura Daniela-2023.pdfSerrano Andrade, Laura Daniela-2023.pdfapplication/pdf1118214https://repositorio.escuelaing.edu.co/bitstream/001/2807/1/Serrano%20Andrade%2c%20Laura%20Daniela-2023.pdf66c61d85c18e09df5d8c353602c11c7aMD51open accessAutorización.pdfAutorización.pdfapplication/pdf856431https://repositorio.escuelaing.edu.co/bitstream/001/2807/2/Autorizacio%cc%81n.pdf81e010b649035f6ab327322d660f09d5MD52open access001/2807oai:repositorio.escuelaing.edu.co:001/28072024-03-04 16:24:52.634open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK