Optimization of bioink for 3d printing of human female reproductive tract
Optimize a PEGDA-based bioink for 3D printing of the human female reproductive organ, to achieve a print with mechanical properties that more accurately simulates real tissue.
- Autores:
-
Serrano Andrade, Laura Daniela
- Tipo de recurso:
- Informe
- Fecha de publicación:
- 2023
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/2807
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/2807
https://catalogo.escuelaing.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=23633
- Palabra clave:
- Bioimpresión
Impresión 3D
Pegda
Tracto reproductor femenino
Bioimpresión
Impresión 3D
Pegda
Tracto reproductor femenino
Bioprinting
3D printing
Pegda
Female reproductive tract
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
ESCUELAIG2_280ec6f1f9782f8aa5a08cd8ee574711 |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/2807 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Optimization of bioink for 3d printing of human female reproductive tract |
title |
Optimization of bioink for 3d printing of human female reproductive tract |
spellingShingle |
Optimization of bioink for 3d printing of human female reproductive tract Bioimpresión Impresión 3D Pegda Tracto reproductor femenino Bioimpresión Impresión 3D Pegda Tracto reproductor femenino Bioprinting 3D printing Pegda Female reproductive tract |
title_short |
Optimization of bioink for 3d printing of human female reproductive tract |
title_full |
Optimization of bioink for 3d printing of human female reproductive tract |
title_fullStr |
Optimization of bioink for 3d printing of human female reproductive tract |
title_full_unstemmed |
Optimization of bioink for 3d printing of human female reproductive tract |
title_sort |
Optimization of bioink for 3d printing of human female reproductive tract |
dc.creator.fl_str_mv |
Serrano Andrade, Laura Daniela |
dc.contributor.author.none.fl_str_mv |
Serrano Andrade, Laura Daniela |
dc.contributor.datamanager.none.fl_str_mv |
Magdanz, Veronika Rodríguez Burbano, Diana Consuelo |
dc.subject.armarc.none.fl_str_mv |
Bioimpresión Impresión 3D Pegda Tracto reproductor femenino |
topic |
Bioimpresión Impresión 3D Pegda Tracto reproductor femenino Bioimpresión Impresión 3D Pegda Tracto reproductor femenino Bioprinting 3D printing Pegda Female reproductive tract |
dc.subject.proposal.spa.fl_str_mv |
Bioimpresión Impresión 3D Pegda Tracto reproductor femenino |
dc.subject.proposal.eng.fl_str_mv |
Bioprinting 3D printing Pegda Female reproductive tract |
description |
Optimize a PEGDA-based bioink for 3D printing of the human female reproductive organ, to achieve a print with mechanical properties that more accurately simulates real tissue. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-02-01T17:13:21Z |
dc.date.available.none.fl_str_mv |
2024-02-01T17:13:21Z |
dc.type.spa.fl_str_mv |
Informe de investigación |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_93fc |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_93fc |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/2807 |
dc.identifier.url.none.fl_str_mv |
https://catalogo.escuelaing.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=23633 |
url |
https://repositorio.escuelaing.edu.co/handle/001/2807 https://catalogo.escuelaing.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=23633 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.references.spa.fl_str_mv |
[1] V. G. Gokhare, D. N. Raut y D. K. Shinde, «A Review paper on 3D-Printing Aspects and Various Processes Used in the 3D-Printing,» International Journal of Engineering Research & Technology (IJERT), vol. 6, nº 6, pp. 953-958, June, 2017. [2] E. Kudryavtseva, V. Popov, G. Muller-Kamskii, E. Zakurinova y V. Kovalev, «Advantages of 3D Printing for Gynecology and Obstetrics: Brief Review of Applications,Technologies, and Prospects,» de IEEE International Conference on “Nanomaterials: Applications & Properties” (NAP-2020), Sumy, Ukraine, 2020. [3] J. Gopinathan y I. Noh, «Recent trends in bioinks for 3D printing,» Biomaterials Research, vol. 22, nº 11, 2018. [4] C. L. Gil, «Bio impresión 3D: importancia en la actualidad,» Journal Biofab, vol. 11, pp. 1-33, Octubre 2022. [5] C. Hu, W. Zhang y P. Li, «3D Printing and Its Current Status of Application in Obstetrics and Gynecological Diseases,» Bioengineering, vol. 10, p. 299, 27 February 2023. [6] P. Beck-Peccoz y L. Persani, «Premature ovarian failure,» Orphanet Journal of Rare Diseases, vol. 1, nº 9, 2006. [7] K. Jankowska, «Premature ovarian failure,» Prz Menopauzalny, vol. 16, nº 2, pp. 51-56, Junio 2017. [8] A. Baah-Dwomoh, J. McGuire, T. Tan y R. D. Vita, «Mechanical Properties of Female Reproductive Organs and Supporting Connective Tissues: A Review of the Current State of Knowledge,» Applied Mechanics Reviews, vol. 68, 2016. [9] G. images, «iStock,» 2023. [En línea]. Available: https://www.istockphoto.com/photos/female-reproductive-system. [10] G. Singh y A. Chanda, «Mechanical properties of whole-body soft human tissues: a review,» Biomedical Materials, vol. 16, 2021. [11] F. Jafarbegloua, M. A. Nazari, F. Keikha y M. Azadi, «Visco-hyperelastic characterization of the mechanical properties of human fallopian tube tissue using atomic force microscopy,» Materialia, vol. 16, 2021. [12] p. b. v. CELLINK, «Lumen X. TM,» 2021. [13] R. Version:01, «Usage Protocol, PEGDA PhotoInk,» 2021. [14] C. D. ahrir, M. Ruslin, S.-Y. L. y Wei-ChunLin, «Effect of various post-curing light intensities, times, and energy levels on the color of 3D-printed resin crowns,» Journal of Dental Sciences, 2023. [15] S. Technologies, «SyBridge Technologies,» November 2021. [En línea]. Available: https://sybridge.com/why-3d-printing-layer-height-matter/#:~:text=Layer%20height%20is%20a%20measurement,varies%20from%20project%20to%20project.. [16] Chituboxteam, «Autodesk Instructables,» [En línea]. Available: https://www.instructables.com/5-Settings-to-Improve-Your-SLADLPLCD-3D-Print-Qual/. 39 [17] P. Gharge y G. Boyd, «All3DP,» [En línea]. Available: https://all3dp.com/2/cura-first-layer-settings-simply-explained/. [18] R. Mau, J. Nazir, S. John y H. Seitz, «Preliminary Study on 3D printing of PEGDA Hydrogels for Frontal Sinus Implants using Digital Light Processing (DLP),» Current Directions in Biomedical Engineering, vol. 5, nº 1, pp. 249-252, 2019. [19] S. Aldrich, «Millipore SIGMA,» 2023. [En línea]. Available: https://www.sigmaaldrich.com/CA/en/product/aldrich/455008. [20] M. H. Khalili, R. Zhang, S. Wilson, S. Goel, S. A. Impey y A. I. Aria, «Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering,» Polymers, vol. 15, p. 2341, 2023. [21] F. Yu, X. Han, K. Zhang, B. Dai, S. Shen, X. Gao, H. Teng, X. Wang, L. Li, H. Ju, W. Wang, J. Zhang y Q. Jiang, «Evaluation of a polyvinyl alcohol-alginate based hydrogel for precise 3D bioprinting,» Society For Biomaterials, vol. 106A, pp. 2944-2954, 2018. [22] Q. Mei, H.-Y. Yuen y X. Zhao, «Mechanical stretching of 3D hydrogels for neural stem cell differentiation,» Bio-Design and Manufacturing, vol. 5, pp. 714-728, 2022. [23] NN, «Toppr,» [En línea]. Available: https://www.toppr.com/guides/physics-formulas/strain-formula/. [24] MatMatch, «Matmatch,» 2023. [En línea]. Available: https://matmatch.com/learn/property/basic-stress-analysis-calculations. [25] NN, «aLarge,» 2022. [En línea]. Available: https://www.alarge.com.tr/information-article/tensile-test-and-compression-test/. [26] S. S. &. T. C. &. J. D. J. &. A. A. &. J. J. Yoo, «Regenerative Medicine Approaches in Bioengineering Female reproductive tissues,» Reproductive sciences, vol. 28, pp. 1573-1595, Abril 2021. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
40 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Waterloo, Ontario, Canadá |
dc.coverage.projectdates.spa.fl_str_mv |
(2023-08-16/2023-12-26) |
dc.publisher.spa.fl_str_mv |
Escuela Colombiana de Ingeniería University of waterloo Universidad del Rosario |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/2807/5/Serrano%20Andrade%2c%20Laura%20Daniela-2023.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/2807/7/Autorizacio%cc%81n.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/2807/4/Serrano%20Andrade%2c%20Laura%20Daniela-2023.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/2807/6/Autorizacio%cc%81n.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/2807/3/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/2807/1/Serrano%20Andrade%2c%20Laura%20Daniela-2023.pdf https://repositorio.escuelaing.edu.co/bitstream/001/2807/2/Autorizacio%cc%81n.pdf |
bitstream.checksum.fl_str_mv |
976fb61ea55705b5a76de90ceb37c869 e3e8d4ec9ba14cc65f399fda4d42e2f7 f498a5311e650d63eed27a122d4086f5 0847326517bd243ca04154dbbb2a5ca1 5a7ca94c2e5326ee169f979d71d0f06e 66c61d85c18e09df5d8c353602c11c7a 81e010b649035f6ab327322d660f09d5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355639565025280 |
spelling |
Serrano Andrade, Laura Daniela7091774fc4499da71233cfcd318e01e8Magdanz, VeronikaRodríguez Burbano, Diana Consuelo2024-02-01T17:13:21Z2024-02-01T17:13:21Z2023https://repositorio.escuelaing.edu.co/handle/001/2807https://catalogo.escuelaing.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=23633Optimize a PEGDA-based bioink for 3D printing of the human female reproductive organ, to achieve a print with mechanical properties that more accurately simulates real tissue.Optimice una biotinta basada en PEGDA para la impresión 3D del sistema reproductor femenino humano órgano, para lograr una impresión con propiedades mecánicas que simule con mayor precisión tejido real.Table I. Elastic module of the female reproductive system……………………………………8 Table II Gantt Chart……………….………………………………………………………………13 Table III. PEGDA-Homemade (Recipe and Protocol)………………………………………… 14 Table IV Values of the tested printing parameters for PEGDA-Homemade bioink ............ 15 Table V. Variations in PEGDA concentrations in the original recipe…………………………15 Table VI. 3 Proposals for new bioinks with gelma and PEGDA…………………………….. 15 Table VII. New formulations of bioinks with pva and alginate. protocol, recipe and printing parameters. for PEGDA concentration ≤10%. .................................................................. 16 Table VIII. New formulations of bioinks with PVA and Alginate. protocol, recipe and printing parameters. for PEGDA concentration 18%. .................................................................... 17 Table IX. Parameters for the performance of the two types of compression tests…………19 Table X. PEGDA-Homemade prints with different printing parameters. ........................... 22 Table XI. Results, prints using bioinks with different concentrations of PEGDA. .............. 23 Table XII. GELMA-PEGDA bioink print results.. ............................................................... 23 Table XIII. General remarks on printing WITH PEGDA-PVA-Alginate bioinks .................. 24 Table XIV. Samples of the 4 bioinks after 24 hours in solutions at different pH values. .... 25 Table XV. Some cylinder-shaped impressions for compression tests……………………… 27 Table XVI. Values of the elastic modulus for the 9 studied bioinks………………………… 28 Table XVII. Maximum force and maximum strain for each bioink. .................................... 29 Table XVIII. Printing of more complex designs with different bioinks………………………. 30Nanotechnology and Bioprinting40 páginasapplication/pdfengEscuela Colombiana de IngenieríaUniversity of waterlooUniversidad del RosarioOptimization of bioink for 3d printing of human female reproductive tractInforme de investigacióninfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_93fchttp://purl.org/coar/resource_type/c_8042Textinfo:eu-repo/semantics/workingPaperhttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_970fb48d4fbd8a85Waterloo, Ontario, Canadá(2023-08-16/2023-12-26)N/A[1] V. G. Gokhare, D. N. Raut y D. K. Shinde, «A Review paper on 3D-Printing Aspects and Various Processes Used in the 3D-Printing,» International Journal of Engineering Research & Technology (IJERT), vol. 6, nº 6, pp. 953-958, June, 2017. [2] E. Kudryavtseva, V. Popov, G. Muller-Kamskii, E. Zakurinova y V. Kovalev, «Advantages of 3D Printing for Gynecology and Obstetrics: Brief Review of Applications,Technologies, and Prospects,» de IEEE International Conference on “Nanomaterials: Applications & Properties” (NAP-2020), Sumy, Ukraine, 2020. [3] J. Gopinathan y I. Noh, «Recent trends in bioinks for 3D printing,» Biomaterials Research, vol. 22, nº 11, 2018. [4] C. L. Gil, «Bio impresión 3D: importancia en la actualidad,» Journal Biofab, vol. 11, pp. 1-33, Octubre 2022. [5] C. Hu, W. Zhang y P. Li, «3D Printing and Its Current Status of Application in Obstetrics and Gynecological Diseases,» Bioengineering, vol. 10, p. 299, 27 February 2023. [6] P. Beck-Peccoz y L. Persani, «Premature ovarian failure,» Orphanet Journal of Rare Diseases, vol. 1, nº 9, 2006. [7] K. Jankowska, «Premature ovarian failure,» Prz Menopauzalny, vol. 16, nº 2, pp. 51-56, Junio 2017. [8] A. Baah-Dwomoh, J. McGuire, T. Tan y R. D. Vita, «Mechanical Properties of Female Reproductive Organs and Supporting Connective Tissues: A Review of the Current State of Knowledge,» Applied Mechanics Reviews, vol. 68, 2016. [9] G. images, «iStock,» 2023. [En línea]. Available: https://www.istockphoto.com/photos/female-reproductive-system. [10] G. Singh y A. Chanda, «Mechanical properties of whole-body soft human tissues: a review,» Biomedical Materials, vol. 16, 2021. [11] F. Jafarbegloua, M. A. Nazari, F. Keikha y M. Azadi, «Visco-hyperelastic characterization of the mechanical properties of human fallopian tube tissue using atomic force microscopy,» Materialia, vol. 16, 2021. [12] p. b. v. CELLINK, «Lumen X. TM,» 2021. [13] R. Version:01, «Usage Protocol, PEGDA PhotoInk,» 2021. [14] C. D. ahrir, M. Ruslin, S.-Y. L. y Wei-ChunLin, «Effect of various post-curing light intensities, times, and energy levels on the color of 3D-printed resin crowns,» Journal of Dental Sciences, 2023. [15] S. Technologies, «SyBridge Technologies,» November 2021. [En línea]. Available: https://sybridge.com/why-3d-printing-layer-height-matter/#:~:text=Layer%20height%20is%20a%20measurement,varies%20from%20project%20to%20project.. [16] Chituboxteam, «Autodesk Instructables,» [En línea]. Available: https://www.instructables.com/5-Settings-to-Improve-Your-SLADLPLCD-3D-Print-Qual/. 39 [17] P. Gharge y G. Boyd, «All3DP,» [En línea]. Available: https://all3dp.com/2/cura-first-layer-settings-simply-explained/. [18] R. Mau, J. Nazir, S. John y H. Seitz, «Preliminary Study on 3D printing of PEGDA Hydrogels for Frontal Sinus Implants using Digital Light Processing (DLP),» Current Directions in Biomedical Engineering, vol. 5, nº 1, pp. 249-252, 2019. [19] S. Aldrich, «Millipore SIGMA,» 2023. [En línea]. Available: https://www.sigmaaldrich.com/CA/en/product/aldrich/455008. [20] M. H. Khalili, R. Zhang, S. Wilson, S. Goel, S. A. Impey y A. I. Aria, «Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering,» Polymers, vol. 15, p. 2341, 2023. [21] F. Yu, X. Han, K. Zhang, B. Dai, S. Shen, X. Gao, H. Teng, X. Wang, L. Li, H. Ju, W. Wang, J. Zhang y Q. Jiang, «Evaluation of a polyvinyl alcohol-alginate based hydrogel for precise 3D bioprinting,» Society For Biomaterials, vol. 106A, pp. 2944-2954, 2018. [22] Q. Mei, H.-Y. Yuen y X. Zhao, «Mechanical stretching of 3D hydrogels for neural stem cell differentiation,» Bio-Design and Manufacturing, vol. 5, pp. 714-728, 2022. [23] NN, «Toppr,» [En línea]. Available: https://www.toppr.com/guides/physics-formulas/strain-formula/. [24] MatMatch, «Matmatch,» 2023. [En línea]. Available: https://matmatch.com/learn/property/basic-stress-analysis-calculations. [25] NN, «aLarge,» 2022. [En línea]. Available: https://www.alarge.com.tr/information-article/tensile-test-and-compression-test/. [26] S. S. &. T. C. &. J. D. J. &. A. A. &. J. J. Yoo, «Regenerative Medicine Approaches in Bioengineering Female reproductive tissues,» Reproductive sciences, vol. 28, pp. 1573-1595, Abril 2021.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2BioimpresiónImpresión 3DPegdaTracto reproductor femeninoBioimpresiónImpresión 3DPegdaTracto reproductor femeninoBioprinting3D printingPegdaFemale reproductive tractTHUMBNAILSerrano Andrade, Laura Daniela-2023.pdf.jpgSerrano Andrade, Laura Daniela-2023.pdf.jpgGenerated Thumbnailimage/jpeg6857https://repositorio.escuelaing.edu.co/bitstream/001/2807/5/Serrano%20Andrade%2c%20Laura%20Daniela-2023.pdf.jpg976fb61ea55705b5a76de90ceb37c869MD55open accessAutorización.pdf.jpgAutorización.pdf.jpgGenerated Thumbnailimage/jpeg13113https://repositorio.escuelaing.edu.co/bitstream/001/2807/7/Autorizacio%cc%81n.pdf.jpge3e8d4ec9ba14cc65f399fda4d42e2f7MD57open accessTEXTSerrano Andrade, Laura Daniela-2023.pdf.txtSerrano Andrade, Laura Daniela-2023.pdf.txtExtracted texttext/plain61507https://repositorio.escuelaing.edu.co/bitstream/001/2807/4/Serrano%20Andrade%2c%20Laura%20Daniela-2023.pdf.txtf498a5311e650d63eed27a122d4086f5MD54open accessAutorización.pdf.txtAutorización.pdf.txtExtracted texttext/plain3301https://repositorio.escuelaing.edu.co/bitstream/001/2807/6/Autorizacio%cc%81n.pdf.txt0847326517bd243ca04154dbbb2a5ca1MD56open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/2807/3/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD53open accessORIGINALSerrano Andrade, Laura Daniela-2023.pdfSerrano Andrade, Laura Daniela-2023.pdfapplication/pdf1118214https://repositorio.escuelaing.edu.co/bitstream/001/2807/1/Serrano%20Andrade%2c%20Laura%20Daniela-2023.pdf66c61d85c18e09df5d8c353602c11c7aMD51open accessAutorización.pdfAutorización.pdfapplication/pdf856431https://repositorio.escuelaing.edu.co/bitstream/001/2807/2/Autorizacio%cc%81n.pdf81e010b649035f6ab327322d660f09d5MD52open access001/2807oai:repositorio.escuelaing.edu.co:001/28072024-03-04 16:24:52.634open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |