An innovative magnetic oxide dispersion-strengthened iron compound obtained from an industrial byproduct, with a view to circular economy

Since the policy of Sustainable Production and Consumption has laid the basis for the world to begin its transition towards a circular economy, engineering has a moral responsibility to recycle industrial byproducts. This is currently done with calamine, which is a mill scale resulting from high tem...

Full description

Autores:
Tirado Gonzalez, J.G.
Reyes Segura, B.T.
Esguerra-Arce, J.
Bermúdez Castaneda, A.
Aguilar, Y.
Esguerra-Arce, A.
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/3327
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/3327
https://repositorio.escuelaing.edu.co/
Palabra clave:
Economic development
Desarrollo económico
Steel
Acero
Magnetic amplifiers
Amplificadores magnéticos
Metals - Effect of high temperatures on
Metales a altas temperaturas
Metallic powder
Byproduct recycling
Powder metallurgy
ReinfMetallic
Reinforcement
Circular economy
Polvo metalico
Reciclaje de subproductos
Metalurgia de polvos
Reforzamiento
Economía circular
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id ESCUELAIG2_217a28105a0cf245eed6dc8b5571edbc
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/3327
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv An innovative magnetic oxide dispersion-strengthened iron compound obtained from an industrial byproduct, with a view to circular economy
title An innovative magnetic oxide dispersion-strengthened iron compound obtained from an industrial byproduct, with a view to circular economy
spellingShingle An innovative magnetic oxide dispersion-strengthened iron compound obtained from an industrial byproduct, with a view to circular economy
Economic development
Desarrollo económico
Steel
Acero
Magnetic amplifiers
Amplificadores magnéticos
Metals - Effect of high temperatures on
Metales a altas temperaturas
Metallic powder
Byproduct recycling
Powder metallurgy
ReinfMetallic
Reinforcement
Circular economy
Polvo metalico
Reciclaje de subproductos
Metalurgia de polvos
Reforzamiento
Economía circular
title_short An innovative magnetic oxide dispersion-strengthened iron compound obtained from an industrial byproduct, with a view to circular economy
title_full An innovative magnetic oxide dispersion-strengthened iron compound obtained from an industrial byproduct, with a view to circular economy
title_fullStr An innovative magnetic oxide dispersion-strengthened iron compound obtained from an industrial byproduct, with a view to circular economy
title_full_unstemmed An innovative magnetic oxide dispersion-strengthened iron compound obtained from an industrial byproduct, with a view to circular economy
title_sort An innovative magnetic oxide dispersion-strengthened iron compound obtained from an industrial byproduct, with a view to circular economy
dc.creator.fl_str_mv Tirado Gonzalez, J.G.
Reyes Segura, B.T.
Esguerra-Arce, J.
Bermúdez Castaneda, A.
Aguilar, Y.
Esguerra-Arce, A.
dc.contributor.author.none.fl_str_mv Tirado Gonzalez, J.G.
Reyes Segura, B.T.
Esguerra-Arce, J.
Bermúdez Castaneda, A.
Aguilar, Y.
Esguerra-Arce, A.
dc.contributor.corporatename.spa.fl_str_mv Journal of Cleaner Production
dc.contributor.researchgroup.spa.fl_str_mv Diseño Sostenible en Ingeniería Mecánica (DSIM)
dc.subject.armarc.none.fl_str_mv Economic development
Desarrollo económico
Steel
Acero
Magnetic amplifiers
Amplificadores magnéticos
Metals - Effect of high temperatures on
Metales a altas temperaturas
topic Economic development
Desarrollo económico
Steel
Acero
Magnetic amplifiers
Amplificadores magnéticos
Metals - Effect of high temperatures on
Metales a altas temperaturas
Metallic powder
Byproduct recycling
Powder metallurgy
ReinfMetallic
Reinforcement
Circular economy
Polvo metalico
Reciclaje de subproductos
Metalurgia de polvos
Reforzamiento
Economía circular
dc.subject.proposal.eng.fl_str_mv Metallic powder
Byproduct recycling
Powder metallurgy
ReinfMetallic
Reinforcement
Circular economy
dc.subject.proposal.spa.fl_str_mv Polvo metalico
Reciclaje de subproductos
Metalurgia de polvos
Reforzamiento
Economía circular
description Since the policy of Sustainable Production and Consumption has laid the basis for the world to begin its transition towards a circular economy, engineering has a moral responsibility to recycle industrial byproducts. This is currently done with calamine, which is a mill scale resulting from high temperature steel manufacturing. Although calamine is used in different ways, it could be given greater added value by subjecting it to processing by powder metallurgy. Therefore, the aim of this study was to obtain powder from iron with a core of enriched magnetite iron oxide, and to evaluate the effect of this iron oxide nucleus on the hardness and magnetic properties of the material after sintering. It was found that iron oxide acts as a reinforcement for iron (the highest achieved hardness was 77.7 ± 1.2 HRB) due, in part, to the coherency between phases, and confers a ferrimagnetic behavior to it. Therefore, this material has potential for use in magnetic applications at higher frequencies than current soft materials. © 2020 Elsevier Ltd. All rights reserved.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2024-10-17T15:44:19Z
dc.date.available.none.fl_str_mv 2024-10-17T15:44:19Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0959-6526
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/3327
dc.identifier.eissn.spa.fl_str_mv 0959-6526
dc.identifier.instname.spa.fl_str_mv Escuela Colombiana de Ingeniería Julio Garavito
dc.identifier.reponame.spa.fl_str_mv Repositorio digital
dc.identifier.repourl.spa.fl_str_mv https://repositorio.escuelaing.edu.co/
identifier_str_mv 0959-6526
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio digital
url https://repositorio.escuelaing.edu.co/handle/001/3327
https://repositorio.escuelaing.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 11
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 268
dc.relation.ispartofjournal.eng.fl_str_mv Journal of Cleaner Production
dc.relation.references.spa.fl_str_mv Amano, T., Okazaki, M., Takezawa, Y., Shiino, A., Takeda, M., Onishi, T., Seto, K., Ohkubo, A., Shishido, T., 2006. Hardness of oxide scales on Fe-Si alloys at room and high temperatures. Mater. Sci. Forum 522e523, 469e476. https://doi.org/ 10.4028/www.scientific.net/MSF.522-523.469.
Azevedo, J.M.C., Serrenho, A.C., Allwood, J.M., 2018. Energy and material efficiency of steel powder metallurgy. Powder Technol. 328, 329e336. https://doi.org/ 10.1016/j.powtec.2018.01.009.
Azevedo, J.M.C., Serrenho, A.C., Allwood, J.M., 2018. Energy and material efficiency of steel powder metallurgy. Powder Technol. 328, 329e336. https://doi.org/ 10.1016/j.powtec.2018.01.009.
Barde, A.A., Klausner, J.F., Renwei, M., 2016. Solid state reaction kinetics of iron oxide reduction using hydrogen as a reducing agent. Int. J. Hydrogen Energy 41, 10103e101019. https://doi.org/10.1016/j.ijhydene.2015.12.129.
Birks, N., Meier, G.H., Pettit, F.S., 2006. Introduction to High Temperature Oxidation of Metals, second ed. Cambridge University Press, Cambridge.
Bocchini, G.F., 1983. Energy requirements of structural components: powder metallurgy v. other production processes. Powder Metall. 26, 101e113. https:// doi.org/10.1179/pom.1983.26.2.101
Bonalde, A., Henriquez, A., Manrique, M., 2005. Kinetics analysis of the iron oxide reduction using hydrogen-carbon monoxide mixtures as reducing agent. ISIJ Int. 45, 1255e1260. https://doi.org/10.2355/isijinternational.45.1255
Cardarelli, F., 2008. Ferrous metals and their alloys. In: Cardarelli, F. (Ed.), Materials Handbook: A Concise Desktop Reference. Springer London, London, pp. 59e157. https://doi.org/10.1007/978-1-84628-669-8.
Chikazumi, S., Graham, C.D., 2009. Physics of Ferromagnetism, second ed. Oxford University Press, Oxford.
Chung, D.D.L., 2003. Composite materials for magnetic applications. In: Chung, D.D.L. (Ed.), Composite Materials. Engineering Materials and Processes. Springer, London, pp. 191e212.
El-Geassy, A.A., Nasr, M.I., Hessien, M.M., 1996. Effect of reducing gas on the volume change during reduction of iron oxide compacts. ISIJ Int. 36, 640e649. https:// doi.org/10.2355/isijinternational.36.640.
Esguerra, A., Barona, W., 2010. Cinetica de reducci on de una cascarilla de oxido de hierro con mezcla gaseosa CO-H2, IBEROMET XI - X CONAMET/SAM, Vina del ~ Mar, Chile. http://www.iberomet2010.260mb.com/pdfcongreso/t1/T1-5_ Esguerra_A_n1.pdf?i¼1.
Gardner, R.A., 1974. The kinetics of silica reduction in hydrogen. J. Solid State Chem. 9, 336e344. https://doi.org/10.1016/0022-4596(74)90092-9.
Ghosh, A., Mungole, M.N., Gupta, G., Tiwari, S., 1999. A preliminary study of influence of atmosphere on reduction behavior of iron ore-coal composite pellets. ISIJ Int. 39, 829e831. https://doi.org/10.2355/isijinternational.39.829.
Gomes Landgraf, F.J., Filipini da Silveira, J.R., Rodrigues Jr., D., 2011. Determining the effect of grain size and maximum induction upon coercive field of electrical steels. J. Magn. Magn Mater. 323, 2335e2339. https://doi.org/10.1016/ j.jmmm.2011.03.034.
Gudenau, H.W., Senk, D., Wang, S., De Melo Martins, K., Stephany, C., 2005. Research in the reduction of iron ore agglomerates including coal and C-containing dust. ISIJ Int. 45, 603e608. https://doi.org/10.2355/isijinternational.45.603.
Habermann, A., Winter, F., Hofbauer, H., Zirngast, J., Schenk, J.L., 2000. An experimental study on the kinetics of fluidized bed iron ore reduction. ISIJ Int. 40, 935e942. https://doi.org/10.2355/isijinternational.40.935
Herman, D.A.J., Ferguson, P., Cheong, S., Hermans, I.F., Ruck, B.J., Allan, K.M., Prabakar, S., Spencer, J.L., Lendrum, C.D., Tilley, R.D., 2011. Hot-injection synthesis of iron/iron oxide core/shell nanoparticles for T2 contrast enhancement in magnetic resonance imaging. Chem. Commun. (J. Chem. Soc. Sect. D) 32, 9221e9922. https://doi.org/10.1039/c1cc13416g.
Hou, B., Zhang, H., Li, H., Zhu, Q., 2012. Study on kinetics of iron oxide reduction by hydrogen. Chin. J. Chem. Eng. 20, 10e17. https://doi.org/10.1016/S1004-9541(12) 60357-7
Hurlbut Jr., C.S., Sharp, W.E., 1998. Dana’s Minerals and How to Study Them, fourth ed. John Wiley and Sons, New York.
Jean, M., Nachbaur, V., Le Breton, J.M., 2012. Synthesis and characterization of magnetite powders obtained by the solvothermal method: influence of the Fe3þ concentration. J. Alloys Compd. 513, 425e429. https://doi.org/10.1016/ j.jallcom.2011.10.064
Jiang, Z.Y., Tang, J., Sun, W., Tieu, A.K., Weia, D., 2010. Analysis of tribological feature of the oxide scale in hot strip rolling. Tribol. Int. 43, 1339e1345. https://doi.org/10.1016/j.triboint.2009.12.070.
, X., Wang, Q., Khan, W.Q., Li, Y.Q., Tang, ZhH., 2017. FeSiAl/(Ni0.5Zn0.5)Fe2O4 magnetic sheet composite with tunable electromagnetic properties for enhancing magnetic field coupling efficiency. J. Alloys Compd. 729, 277e284. https://doi.org/10.1016/j.jallcom.2017.09.088.
Kang, Seok Go, Sung, Real Son, Kim, Sang Done, 2008. Reaction kinetics of reduction and oxidation of metal oxides for hydrogen production. Int. J. Hydrogen Energy 33, 5986e5995. https://doi.org/10.1016/j.ijhydene.2008.05.039.
Kaufman, S.M., 1980. Energy consumption in the manufacture of precision metal parts from iron powder. SAE Technical Paper, 1980 Automot. Eng. Cong. Exposition. https://doi.org/10.4271/800303
Kazantseva, N.V., Stepanova, N.N., Rigmant, M.B., 2019. Superalloys: Analysis and Control of Failure Process, first ed. CRC Press, Cleveland.
Kruzhanov, V., Arnhold, V., 2012. Energy consumption in powder metallurgical manufacturing. Powder Metall. 55, 14e21. https://doi.org/10.1179/ 174329012X13318077875722
Maleki, A., Taherizadeh, A.R., Issa, H.K., Niroumand, B., Allafchian, A.R., Ghaei, A., 2018. Development of a new magnetic aluminum matrix nanocomposite. Ceram. Int. 44, 15079e15085. https://doi.org/10.1016/j.ceramint.2018.05.141.
Marinca, T.F., Chicinas¸ , H.F., Neamt¸ u, B.V., Popa, F., Chicinas¸ , I., 2017. Reactive spark plasma sintering of mechanically activated a-Fe2O3/Fe. Ceram. Int. 43, 14281e14291. https://doi.org/10.1016/j.ceramint.2017.07.180
Mill Scale Sourcing, 2018. http://millscale.org/ accessed November 2018
Molina, J.M., Louis, E., 2018. Interfacial design of Mg/graphite flakes-MP (MP¼Fe, Co or Ni) ferromagnetic composites with low density and high thermal conductivity. J. Alloys Compd. 767, 1155e1163. https://doi.org/10.1016/ j.jallcom.2018.07.136
Mondal, K., Lorethova, H., Hippo, E., Wiltowski, T., Lalvani, S.B., 2004. Reduction of iron oxide in carbon monoxide atmosphere-reaction controlled kinetics. Fuel Process. Technol. 86, 33e47. https://doi.org/10.1016/j.fuproc.2003.12.009
Ono-Nakazato, H., Sugahara, C., Usui, T., 2002. Effect of slag components on reducibility and melt formation of iron ore sinter. ISIJ Int. 42, 558e560. https:// doi.org/10.2355/isijinternational.42.558.
Ono-Nakazato, H., Okada, K., Usui, T., 2005. Effects of slag content and composition on the reducibility of iron oxide incluiding CaO-SiO2-FexO slag. ISIJ Int. 45, 569e573. https://doi.org/10.2355/isijinternational.45.569.
Parkinson, G.S., 2016. Iron oxide surfaces. Surf. Sci. Rep. 71, 272e365. https:// doi.org/10.1016/j.surfrep.2016.02.001
Piotrowski, K., Mondal, K., Lorethova, H., Stonawski, L., Szymanski, T., Wiltowski, T., 2005. Effect of gas composition on the kinetics of iron oxide reduction in a hydrogen production process. Int. J. Hydrogen Energy 30, 1543e1554. https:// doi.org/10.1016/j.ijhydene.2004.10.013.
Sasaki, Y., Bahgat, M., Iguchi, M., Ishii, K., 2005. The preferable growth direction of iron nuclei on wüstite surface during reduction. ISIJ Int. 45, 1077e1083. https:// doi.org/10.2355/isijinternational.45.1077.
Skinner, H.C.W., Jahren, A.H., 2003. Treatise on Geochemistry, first ed. Elsevier Science, Cambridge
Spuzic, S., Strafford, K.N., Subramanian, C., Savage, G., 1992. Wear of hot rolling mill rolls: an overview. Wear 176, 261e271. https://doi.org/10.1016/0043-1648(94) 90155-4.
Suri, S., Viswanathan, G.B., Neeraj, T., Hou, D.-H., Mills, M.J., 1999. Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an a/b titanium alloy. Acta Mater. 47, 1019e1034. https://doi.org/ 10.1016/S1359-6454(98)00364-4
Wagner, D., Devisme, O., Patisson, F., Ablitzer, D., 2006. A Laboratory Study of the Reduction of Iron Oxides by Hydrogen. Sohn International Symposium, San Diego, United States, pp. 111e120. https://hal.archives-ouvertes.fr/hal00265636.
Watanabe, Y., Takemura, S., Kashiwaya, Y., Ishii, K., 1996. Reduction of haematite to magnetite induced by hydrogen ion implantation. J. Phys. D Appl. Phys. 29 https://doi.org/10.1088/0022-3727/29/1/002.
Wetterskog, E., Tai, C.W., Grins, J., Bergstrom, L., Salazar-Alvarez, G., 2013. Anoma- € lous magnetic properties of nanoparticles arising from defect structures: topotaxial oxidation of Fe1exO|Fe3dO4 Core|Shell nanocubes to single-phase particles. ACS Nano 7, 7132e7144. https://doi.org/10.1021/nn402487q.
Zambrano, O.A., Coronado, J.J., Rodríguez, S.A., 2015. Mechanical properties and phases determination of low carbon steel oxide scales formed at 1200 C in air. Surf. Coating. Technol. 282, 155e162. https://doi.org/10.1016/ j.surfcoat.2015.10.028.
Zhang, Q., Zhang, W., Peng, K., 2019. In-situ synthesis and magnetic properties of core-shell structured Fe/Fe3O4 composites. J. Magn. Magn Mater. 484, 418e423. https://doi.org/10.1016/j.jmmm.2019.04.053.
Zherebtsov, S., Salishchev, G., Semiatin, S.L., 2010. Loss of coherency of the alpha/ beta interface boundary in titanium alloys during deformation. Phil. Mag. Lett. 90, 903e914. https://doi.org/10.1080/09500839.2010.521526.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.spa.fl_str_mv 11 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv ELSEVIER
dc.publisher.place.spa.fl_str_mv S.L.
dc.source.spa.fl_str_mv https://doi.org/10.1016/j.jclepro.2020.122362
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/3327/4/An%20innovative%20magnetic%20oxide%20dispersion-strengthened%20iron.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3327/3/An%20innovative%20magnetic%20oxide%20dispersion-strengthened%20iron.PNG
https://repositorio.escuelaing.edu.co/bitstream/001/3327/5/An%20innovative%20magnetic%20oxide%20dispersion-strengthened%20iron.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/3327/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3327/1/An%20innovative%20magnetic%20oxide%20dispersion-strengthened%20iron.pdf
bitstream.checksum.fl_str_mv 2a7827ae4bcf9124f9aa998e49124bbb
5322321d9517f3975672b27077248413
d6d30776598890067f490a3ad8859c90
5a7ca94c2e5326ee169f979d71d0f06e
402eaa7d51444db0da20372f8c94aef5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355595645419520
spelling Tirado Gonzalez, J.G.90c18e2607583d83c9e39f13877a4867Reyes Segura, B.T.8d938731c789ef204775a1c7d68092fdEsguerra-Arce, J.d56e4604067bf9cf912a78675fd07a40Bermúdez Castaneda, A.a056b458057c29008a8284d659f0726dAguilar, Y.b50ee804a4fc4ce71d580ea57ebc3e5aEsguerra-Arce, A.0ab02ca2dde5caf57a4b65537d338633Journal of Cleaner ProductionDiseño Sostenible en Ingeniería Mecánica (DSIM)2024-10-17T15:44:19Z2024-10-17T15:44:19Z20200959-6526https://repositorio.escuelaing.edu.co/handle/001/33270959-6526Escuela Colombiana de Ingeniería Julio GaravitoRepositorio digitalhttps://repositorio.escuelaing.edu.co/Since the policy of Sustainable Production and Consumption has laid the basis for the world to begin its transition towards a circular economy, engineering has a moral responsibility to recycle industrial byproducts. This is currently done with calamine, which is a mill scale resulting from high temperature steel manufacturing. Although calamine is used in different ways, it could be given greater added value by subjecting it to processing by powder metallurgy. Therefore, the aim of this study was to obtain powder from iron with a core of enriched magnetite iron oxide, and to evaluate the effect of this iron oxide nucleus on the hardness and magnetic properties of the material after sintering. It was found that iron oxide acts as a reinforcement for iron (the highest achieved hardness was 77.7 ± 1.2 HRB) due, in part, to the coherency between phases, and confers a ferrimagnetic behavior to it. Therefore, this material has potential for use in magnetic applications at higher frequencies than current soft materials. © 2020 Elsevier Ltd. All rights reserved.Dado que la política de Producción y Consumo Sostenible ha sentado las bases para que el mundo inicie su transición hacia una economía circular, la ingeniería tiene la responsabilidad moral de reciclar productos industriales subproductos. Actualmente esto se hace con calamina, que es una cascarilla de molino resultante de altas temperaturas. fabricación de acero. Aunque la calamina se utiliza de diferentes maneras, se le podría dar un mayor valor añadido sometiéndolo a procesamiento mediante pulvimetalurgia. Por lo tanto, el objetivo de este estudio fue obtener polvo de hierro con un núcleo de óxido de hierro enriquecido con magnetita, y evaluar el efecto de este hierro núcleo de óxido sobre la dureza y las propiedades magnéticas del material después de la sinterización. Se encontró que El óxido de hierro actúa como refuerzo del hierro (la dureza más alta alcanzada fue de 77,7 ± 1,2 HRB) debido, en en parte, a la coherencia entre fases, y le confiere un comportamiento ferrimagnético. Por tanto, este material tiene potencial para su uso en aplicaciones magnéticas a frecuencias más altas que los materiales blandos actuales. © 2020 Elsevier Ltd. Todos los derechos reservados.11 páginasapplication/pdfengELSEVIERS.L.https://doi.org/10.1016/j.jclepro.2020.122362An innovative magnetic oxide dispersion-strengthened iron compound obtained from an industrial byproduct, with a view to circular economyArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85111268Journal of Cleaner ProductionAmano, T., Okazaki, M., Takezawa, Y., Shiino, A., Takeda, M., Onishi, T., Seto, K., Ohkubo, A., Shishido, T., 2006. Hardness of oxide scales on Fe-Si alloys at room and high temperatures. Mater. Sci. Forum 522e523, 469e476. https://doi.org/ 10.4028/www.scientific.net/MSF.522-523.469.Azevedo, J.M.C., Serrenho, A.C., Allwood, J.M., 2018. Energy and material efficiency of steel powder metallurgy. Powder Technol. 328, 329e336. https://doi.org/ 10.1016/j.powtec.2018.01.009.Azevedo, J.M.C., Serrenho, A.C., Allwood, J.M., 2018. Energy and material efficiency of steel powder metallurgy. Powder Technol. 328, 329e336. https://doi.org/ 10.1016/j.powtec.2018.01.009.Barde, A.A., Klausner, J.F., Renwei, M., 2016. Solid state reaction kinetics of iron oxide reduction using hydrogen as a reducing agent. Int. J. Hydrogen Energy 41, 10103e101019. https://doi.org/10.1016/j.ijhydene.2015.12.129.Birks, N., Meier, G.H., Pettit, F.S., 2006. Introduction to High Temperature Oxidation of Metals, second ed. Cambridge University Press, Cambridge.Bocchini, G.F., 1983. Energy requirements of structural components: powder metallurgy v. other production processes. Powder Metall. 26, 101e113. https:// doi.org/10.1179/pom.1983.26.2.101Bonalde, A., Henriquez, A., Manrique, M., 2005. Kinetics analysis of the iron oxide reduction using hydrogen-carbon monoxide mixtures as reducing agent. ISIJ Int. 45, 1255e1260. https://doi.org/10.2355/isijinternational.45.1255Cardarelli, F., 2008. Ferrous metals and their alloys. In: Cardarelli, F. (Ed.), Materials Handbook: A Concise Desktop Reference. Springer London, London, pp. 59e157. https://doi.org/10.1007/978-1-84628-669-8.Chikazumi, S., Graham, C.D., 2009. Physics of Ferromagnetism, second ed. Oxford University Press, Oxford.Chung, D.D.L., 2003. Composite materials for magnetic applications. In: Chung, D.D.L. (Ed.), Composite Materials. Engineering Materials and Processes. Springer, London, pp. 191e212.El-Geassy, A.A., Nasr, M.I., Hessien, M.M., 1996. Effect of reducing gas on the volume change during reduction of iron oxide compacts. ISIJ Int. 36, 640e649. https:// doi.org/10.2355/isijinternational.36.640.Esguerra, A., Barona, W., 2010. Cinetica de reducci on de una cascarilla de oxido de hierro con mezcla gaseosa CO-H2, IBEROMET XI - X CONAMET/SAM, Vina del ~ Mar, Chile. http://www.iberomet2010.260mb.com/pdfcongreso/t1/T1-5_ Esguerra_A_n1.pdf?i¼1.Gardner, R.A., 1974. The kinetics of silica reduction in hydrogen. J. Solid State Chem. 9, 336e344. https://doi.org/10.1016/0022-4596(74)90092-9.Ghosh, A., Mungole, M.N., Gupta, G., Tiwari, S., 1999. A preliminary study of influence of atmosphere on reduction behavior of iron ore-coal composite pellets. ISIJ Int. 39, 829e831. https://doi.org/10.2355/isijinternational.39.829.Gomes Landgraf, F.J., Filipini da Silveira, J.R., Rodrigues Jr., D., 2011. Determining the effect of grain size and maximum induction upon coercive field of electrical steels. J. Magn. Magn Mater. 323, 2335e2339. https://doi.org/10.1016/ j.jmmm.2011.03.034.Gudenau, H.W., Senk, D., Wang, S., De Melo Martins, K., Stephany, C., 2005. Research in the reduction of iron ore agglomerates including coal and C-containing dust. ISIJ Int. 45, 603e608. https://doi.org/10.2355/isijinternational.45.603.Habermann, A., Winter, F., Hofbauer, H., Zirngast, J., Schenk, J.L., 2000. An experimental study on the kinetics of fluidized bed iron ore reduction. ISIJ Int. 40, 935e942. https://doi.org/10.2355/isijinternational.40.935Herman, D.A.J., Ferguson, P., Cheong, S., Hermans, I.F., Ruck, B.J., Allan, K.M., Prabakar, S., Spencer, J.L., Lendrum, C.D., Tilley, R.D., 2011. Hot-injection synthesis of iron/iron oxide core/shell nanoparticles for T2 contrast enhancement in magnetic resonance imaging. Chem. Commun. (J. Chem. Soc. Sect. D) 32, 9221e9922. https://doi.org/10.1039/c1cc13416g.Hou, B., Zhang, H., Li, H., Zhu, Q., 2012. Study on kinetics of iron oxide reduction by hydrogen. Chin. J. Chem. Eng. 20, 10e17. https://doi.org/10.1016/S1004-9541(12) 60357-7Hurlbut Jr., C.S., Sharp, W.E., 1998. Dana’s Minerals and How to Study Them, fourth ed. John Wiley and Sons, New York.Jean, M., Nachbaur, V., Le Breton, J.M., 2012. Synthesis and characterization of magnetite powders obtained by the solvothermal method: influence of the Fe3þ concentration. J. Alloys Compd. 513, 425e429. https://doi.org/10.1016/ j.jallcom.2011.10.064Jiang, Z.Y., Tang, J., Sun, W., Tieu, A.K., Weia, D., 2010. Analysis of tribological feature of the oxide scale in hot strip rolling. Tribol. Int. 43, 1339e1345. https://doi.org/10.1016/j.triboint.2009.12.070., X., Wang, Q., Khan, W.Q., Li, Y.Q., Tang, ZhH., 2017. FeSiAl/(Ni0.5Zn0.5)Fe2O4 magnetic sheet composite with tunable electromagnetic properties for enhancing magnetic field coupling efficiency. J. Alloys Compd. 729, 277e284. https://doi.org/10.1016/j.jallcom.2017.09.088.Kang, Seok Go, Sung, Real Son, Kim, Sang Done, 2008. Reaction kinetics of reduction and oxidation of metal oxides for hydrogen production. Int. J. Hydrogen Energy 33, 5986e5995. https://doi.org/10.1016/j.ijhydene.2008.05.039.Kaufman, S.M., 1980. Energy consumption in the manufacture of precision metal parts from iron powder. SAE Technical Paper, 1980 Automot. Eng. Cong. Exposition. https://doi.org/10.4271/800303Kazantseva, N.V., Stepanova, N.N., Rigmant, M.B., 2019. Superalloys: Analysis and Control of Failure Process, first ed. CRC Press, Cleveland.Kruzhanov, V., Arnhold, V., 2012. Energy consumption in powder metallurgical manufacturing. Powder Metall. 55, 14e21. https://doi.org/10.1179/ 174329012X13318077875722Maleki, A., Taherizadeh, A.R., Issa, H.K., Niroumand, B., Allafchian, A.R., Ghaei, A., 2018. Development of a new magnetic aluminum matrix nanocomposite. Ceram. Int. 44, 15079e15085. https://doi.org/10.1016/j.ceramint.2018.05.141.Marinca, T.F., Chicinas¸ , H.F., Neamt¸ u, B.V., Popa, F., Chicinas¸ , I., 2017. Reactive spark plasma sintering of mechanically activated a-Fe2O3/Fe. Ceram. Int. 43, 14281e14291. https://doi.org/10.1016/j.ceramint.2017.07.180Mill Scale Sourcing, 2018. http://millscale.org/ accessed November 2018Molina, J.M., Louis, E., 2018. Interfacial design of Mg/graphite flakes-MP (MP¼Fe, Co or Ni) ferromagnetic composites with low density and high thermal conductivity. J. Alloys Compd. 767, 1155e1163. https://doi.org/10.1016/ j.jallcom.2018.07.136Mondal, K., Lorethova, H., Hippo, E., Wiltowski, T., Lalvani, S.B., 2004. Reduction of iron oxide in carbon monoxide atmosphere-reaction controlled kinetics. Fuel Process. Technol. 86, 33e47. https://doi.org/10.1016/j.fuproc.2003.12.009Ono-Nakazato, H., Sugahara, C., Usui, T., 2002. Effect of slag components on reducibility and melt formation of iron ore sinter. ISIJ Int. 42, 558e560. https:// doi.org/10.2355/isijinternational.42.558.Ono-Nakazato, H., Okada, K., Usui, T., 2005. Effects of slag content and composition on the reducibility of iron oxide incluiding CaO-SiO2-FexO slag. ISIJ Int. 45, 569e573. https://doi.org/10.2355/isijinternational.45.569.Parkinson, G.S., 2016. Iron oxide surfaces. Surf. Sci. Rep. 71, 272e365. https:// doi.org/10.1016/j.surfrep.2016.02.001Piotrowski, K., Mondal, K., Lorethova, H., Stonawski, L., Szymanski, T., Wiltowski, T., 2005. Effect of gas composition on the kinetics of iron oxide reduction in a hydrogen production process. Int. J. Hydrogen Energy 30, 1543e1554. https:// doi.org/10.1016/j.ijhydene.2004.10.013.Sasaki, Y., Bahgat, M., Iguchi, M., Ishii, K., 2005. The preferable growth direction of iron nuclei on wüstite surface during reduction. ISIJ Int. 45, 1077e1083. https:// doi.org/10.2355/isijinternational.45.1077.Skinner, H.C.W., Jahren, A.H., 2003. Treatise on Geochemistry, first ed. Elsevier Science, CambridgeSpuzic, S., Strafford, K.N., Subramanian, C., Savage, G., 1992. Wear of hot rolling mill rolls: an overview. Wear 176, 261e271. https://doi.org/10.1016/0043-1648(94) 90155-4.Suri, S., Viswanathan, G.B., Neeraj, T., Hou, D.-H., Mills, M.J., 1999. Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an a/b titanium alloy. Acta Mater. 47, 1019e1034. https://doi.org/ 10.1016/S1359-6454(98)00364-4Wagner, D., Devisme, O., Patisson, F., Ablitzer, D., 2006. A Laboratory Study of the Reduction of Iron Oxides by Hydrogen. Sohn International Symposium, San Diego, United States, pp. 111e120. https://hal.archives-ouvertes.fr/hal00265636.Watanabe, Y., Takemura, S., Kashiwaya, Y., Ishii, K., 1996. Reduction of haematite to magnetite induced by hydrogen ion implantation. J. Phys. D Appl. Phys. 29 https://doi.org/10.1088/0022-3727/29/1/002.Wetterskog, E., Tai, C.W., Grins, J., Bergstrom, L., Salazar-Alvarez, G., 2013. Anoma- € lous magnetic properties of nanoparticles arising from defect structures: topotaxial oxidation of Fe1exO|Fe3dO4 Core|Shell nanocubes to single-phase particles. ACS Nano 7, 7132e7144. https://doi.org/10.1021/nn402487q.Zambrano, O.A., Coronado, J.J., Rodríguez, S.A., 2015. Mechanical properties and phases determination of low carbon steel oxide scales formed at 1200 C in air. Surf. Coating. Technol. 282, 155e162. https://doi.org/10.1016/ j.surfcoat.2015.10.028.Zhang, Q., Zhang, W., Peng, K., 2019. In-situ synthesis and magnetic properties of core-shell structured Fe/Fe3O4 composites. J. Magn. Magn Mater. 484, 418e423. https://doi.org/10.1016/j.jmmm.2019.04.053.Zherebtsov, S., Salishchev, G., Semiatin, S.L., 2010. Loss of coherency of the alpha/ beta interface boundary in titanium alloys during deformation. Phil. Mag. Lett. 90, 903e914. https://doi.org/10.1080/09500839.2010.521526.info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbEconomic developmentDesarrollo económicoSteelAceroMagnetic amplifiersAmplificadores magnéticosMetals - Effect of high temperatures onMetales a altas temperaturasMetallic powderByproduct recyclingPowder metallurgyReinfMetallicReinforcementCircular economyPolvo metalicoReciclaje de subproductosMetalurgia de polvosReforzamientoEconomía circularTEXTAn innovative magnetic oxide dispersion-strengthened iron.pdf.txtAn innovative magnetic oxide dispersion-strengthened iron.pdf.txtExtracted texttext/plain46765https://repositorio.escuelaing.edu.co/bitstream/001/3327/4/An%20innovative%20magnetic%20oxide%20dispersion-strengthened%20iron.pdf.txt2a7827ae4bcf9124f9aa998e49124bbbMD54metadata only accessTHUMBNAILAn innovative magnetic oxide dispersion-strengthened iron.PNGAn innovative magnetic oxide dispersion-strengthened iron.PNGimage/png184404https://repositorio.escuelaing.edu.co/bitstream/001/3327/3/An%20innovative%20magnetic%20oxide%20dispersion-strengthened%20iron.PNG5322321d9517f3975672b27077248413MD53open accessAn innovative magnetic oxide dispersion-strengthened iron.pdf.jpgAn innovative magnetic oxide dispersion-strengthened iron.pdf.jpgGenerated Thumbnailimage/jpeg15618https://repositorio.escuelaing.edu.co/bitstream/001/3327/5/An%20innovative%20magnetic%20oxide%20dispersion-strengthened%20iron.pdf.jpgd6d30776598890067f490a3ad8859c90MD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3327/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALAn innovative magnetic oxide dispersion-strengthened iron.pdfAn innovative magnetic oxide dispersion-strengthened iron.pdfapplication/pdf3835457https://repositorio.escuelaing.edu.co/bitstream/001/3327/1/An%20innovative%20magnetic%20oxide%20dispersion-strengthened%20iron.pdf402eaa7d51444db0da20372f8c94aef5MD51metadata only access001/3327oai:repositorio.escuelaing.edu.co:001/33272024-10-18 03:01:25.782metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK