Brain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation
We studied the correlation between oscillatory brain activity and performance in healthy subjects performing the error awareness task (EAT) every 2 h, for 24 h. In the EAT, subjects were shown on a screen the names of colors and were asked to press a key if the name of the color and the color it was...
- Autores:
-
Posada Quintero, Hugo
Reljin, Natasa
Bolkhovsky, Jeffrey
Orjuela Cañón, Álvaro
Chon, Ki
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/3339
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/3339
https://repositorio.escuelaing.edu.co
- Palabra clave:
- Actividad nerviosa superior
Higher nervous activity
Trastornos cognitivos
Cognition disorders
Cerebro - Enfermedades - Diagnóstico
Brain - Diseases - Diagnosis
Electrodiagnóstico
Electrodiagnosis
Electroencefalografía
Prueba de conciencia de error
Privación de sueño
Rendimiento
Reactividad
Respuesta inhibición
Electroencephalography
Error awareness test
Sleep deprivation
Performance
Reactivity
Response inhibition
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
ESCUELAIG2_1a879016b2f95e81178c15198990d8bb |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/3339 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Brain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation |
title |
Brain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation |
spellingShingle |
Brain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation Actividad nerviosa superior Higher nervous activity Trastornos cognitivos Cognition disorders Cerebro - Enfermedades - Diagnóstico Brain - Diseases - Diagnosis Electrodiagnóstico Electrodiagnosis Electroencefalografía Prueba de conciencia de error Privación de sueño Rendimiento Reactividad Respuesta inhibición Electroencephalography Error awareness test Sleep deprivation Performance Reactivity Response inhibition |
title_short |
Brain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation |
title_full |
Brain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation |
title_fullStr |
Brain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation |
title_full_unstemmed |
Brain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation |
title_sort |
Brain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation |
dc.creator.fl_str_mv |
Posada Quintero, Hugo Reljin, Natasa Bolkhovsky, Jeffrey Orjuela Cañón, Álvaro Chon, Ki |
dc.contributor.author.none.fl_str_mv |
Posada Quintero, Hugo Reljin, Natasa Bolkhovsky, Jeffrey Orjuela Cañón, Álvaro Chon, Ki |
dc.contributor.researchgroup.spa.fl_str_mv |
GiBiome |
dc.subject.armarc.none.fl_str_mv |
Actividad nerviosa superior Higher nervous activity Trastornos cognitivos Cognition disorders Cerebro - Enfermedades - Diagnóstico Brain - Diseases - Diagnosis Electrodiagnóstico Electrodiagnosis |
topic |
Actividad nerviosa superior Higher nervous activity Trastornos cognitivos Cognition disorders Cerebro - Enfermedades - Diagnóstico Brain - Diseases - Diagnosis Electrodiagnóstico Electrodiagnosis Electroencefalografía Prueba de conciencia de error Privación de sueño Rendimiento Reactividad Respuesta inhibición Electroencephalography Error awareness test Sleep deprivation Performance Reactivity Response inhibition |
dc.subject.proposal.spa.fl_str_mv |
Electroencefalografía Prueba de conciencia de error Privación de sueño Rendimiento Reactividad Respuesta inhibición |
dc.subject.proposal.eng.fl_str_mv |
Electroencephalography Error awareness test Sleep deprivation Performance Reactivity Response inhibition |
description |
We studied the correlation between oscillatory brain activity and performance in healthy subjects performing the error awareness task (EAT) every 2 h, for 24 h. In the EAT, subjects were shown on a screen the names of colors and were asked to press a key if the name of the color and the color it was shown in matched, and the screen was not a duplicate of the one before (“Go” trials). In the event of a duplicate screen (“Repeat No-Go” trial) or a color mismatch (“Stroop No-Go” trial), the subjects were asked to withhold from pressing the key. We assessed subjects’ (N = 10) response inhibition by measuring accuracy of the “Stroop No-Go” (SNGacc) and “Repeat NoGo” trials (RNGacc). We assessed their reactivity by measuring reaction time in the “Go” trials (GRT). Simultaneously, nine electroencephalographic (EEG) channels were recorded (Fp2, F7, F8, O1, Oz, Pz, O2, T7, and T8). The correlation between reactivity and response inhibition measures to brain activity was tested using quantitative measures of brain activity based on the relative power of gamma, beta, alpha, theta, and delta waves. In general, response inhibition and reactivity reached a steady level between 6 and 16 h of sleep deprivation, which was followed by sustained impairment after 18 h. Channels F7 and Fp2 had the highest correlation to the indices of performance. Measures of response inhibition (RNGacc and SNGacc) were correlated to the alpha and theta waves’ power for most of the channels, especially in the F7 channel (r = 0.82 and 0.84, respectively). The reactivity (GRT) exhibited the highest correlation to the power of gamma waves in channel Fp2 (0.76). We conclude that quantitative measures of EEG provide information that can help us to better understand chang |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2024-10-22T16:53:46Z |
dc.date.available.none.fl_str_mv |
2024-10-22T16:53:46Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
1662-453X |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/3339 |
dc.identifier.eissn.spa.fl_str_mv |
1662-453X |
dc.identifier.instname.spa.fl_str_mv |
Universidad Escuela Colombiana de Ingeniería Julio Garavito |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Digital |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.escuelaing.edu.co |
identifier_str_mv |
1662-453X Universidad Escuela Colombiana de Ingeniería Julio Garavito Repositorio Digital |
url |
https://repositorio.escuelaing.edu.co/handle/001/3339 https://repositorio.escuelaing.edu.co |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationedition.spa.fl_str_mv |
Vol. 13 September 2019 |
dc.relation.citationendpage.spa.fl_str_mv |
9 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
13 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Frontiers in Neuroscience |
dc.relation.references.spa.fl_str_mv |
Baumeister, J., Barthel, T., Geiss, K. R., and Weiss, M. (2008). Influence of phosphatidylserine on cognitive performance and cortical activity after induced stress. Nutr. Neurosci. 11, 103–110. doi: 10.1179/147683008X30 1478 Bernardi, G., Siclari, F., Yu, X., Zennig, C., Bellesi, M., Ricciardi, E., et al. (2015). Neural and behavioral correlates of extended training during sleep deprivation in humans: evidence for local, task-specific effects. J. Neurosci. 35, 4487–4500. doi: 10.1523/JNEUROSCI.4567-14.2015 Borbély, A. A., Daan, S., Wirz-Justice, A., and Deboer, T. (2016). The two-process model of sleep regulation: a reappraisal. J. Sleep Res. 25, 131–143. doi: 10.1111/ jsr.12371 Bush, G., Luu, P., and Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4, 215–222. doi: 10.1016/s1364- 6613(00)01483-2 Cajochen, C., Foy, R., and Dijk, D.-J. (1999). Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans. Sleep Res. Online 2, 65–69. Corsi-Cabrera, M., Arce, C., Ramos, J., Lorenzo, I., and Guevara, M. A. (1996). Time course of reaction time and EEG while performing a vigilance task during total sleep deprivation. Sleep 19, 563–569. doi: 10.1093/sleep/19.7.563 Costa, G. (1996). The impact of shift and night work on health. Appl. Ergon. 27, 9–16. doi: 10.1016/0003-6870(95)00047-x Dement, W. C. (1974). Some Must Watch While Some Must Sleep. New York, NY: WH Freeman. Fattinger, S., Kurth, S., Ringli, M., Jenni, O. G., and Huber, R. (2017). Theta waves in children’s waking electroencephalogram resemble local aspects of sleep during wakefulness. Sci. Rep. 7:11187. doi: 10.1038/s41598-017-11577-3 Forest, G., and Godbout, R. (2000). Effects of sleep deprivation on performance and EEG spectral analysis in young adults. Brain Cogn. 43, 195–200 Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., and Donchin, E. (1993). A neural system for error detection and compensation. Psychol. Sci. 4, 385–390. doi: 10.1111/j.1467-9280.1993.tb00586.x Gorgoni, M., Ferlazzo, F., Ferrara, M., Moroni, F., D’Atri, A., Fanelli, S., et al. (2014). Topographic electroencephalogram changes associated with psychomotor vigilance task performance after sleep deprivation. Sleep Med. 15, 1132–1139. doi: 10.1016/j.sleep.2014.04.022 Gray, C. M. (1999). The temporal correlation hypothesis of visual feature integration: still alive and well. Neuron 24, 31–47. doi: 10.1016/s0896-6273(00) 80820-x Hester, R., Foxe, J. J., Molholm, S., Shpaner, M., and Garavan, H. (2005). Neural mechanisms involved in error processing: a comparison of errors made with and without awareness. Neuroimage 27, 602–608. doi: 10.1016/j.neuroimage. 2005.04.035 Hung, C.-S., Sarasso, S., Ferrarelli, F., Riedner, B., Ghilardi, M. F., Cirelli, C., et al. (2013). Local experience-dependent changes in the wake EEG after prolonged wakefulness. Sleep 36, 59–72. doi: 10.5665/sleep.2302 Kamarajan, C., Porjesz, B., Jones, K. A., Choi, K., Chorlian, D. B., Padmanabhapillai, A., et al. (2004). The role of brain oscillations as functional correlates of cognitive systems: a study of frontal inhibitory control in alcoholism. Int. J. Psychophysiol. 51, 155–180. doi: 10.1016/j.ijpsycho.2003. 09.004 Kanayama, N., Sato, A., and Ohira, H. (2007). Crossmodal effect with rubber hand illusion and gamma-band activity. Psychophysiology 44, 392–402. doi: 10.1111/ j.1469-8986.2007.00511.x Kirmizi-Alsan, E., Bayraktaroglu, Z., Gurvit, H., Keskin, Y. H., Emre, M., and Demiralp, T. (2006). Comparative analysis of event-related potentials during Go/NoGo and CPT: decomposition of electrophysiological markers of response inhibition and sustained attention. Brain Res. 1104, 114–128. doi: 10.1016/j. brainres.2006.03.010 Kisley, M. A., and Cornwell, Z. M. (2006). Gamma and beta neural activity evoked during a sensory gating paradigm: effects of auditory, somatosensory and crossmodal stimulation. Clin. Neurophysiol. 117, 2549–2563. doi: 10.1016/j.clinph. 2006.08.003 Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 16, 606–617. doi: 10.1016/j.tics.2012. 10.007 Kropotov, J. D. (2010). Quantitative EEG, Event-Related Potentials and Neurotherapy. Cambridge, MA: Academic Press. Lalo, E., Gilbertson, T., Doyle, L., Di Lazzaro, V., Cioni, B., and Brown, P. (2007). Phasic increases in cortical beta activity are associated with alterations in sensory processing in the human. Exp. Brain Res. 177, 137–145. doi: 10.1007/ s00221-006-0655-8 Leger, D. (1994). The cost of sleep-related accidents: a report for the national commission on sleep disorders research. Sleep 17, 84–93. doi: 10.1093/sleep/ 17.1.84 Lim, J., and Dinges, D. F. (2008). Sleep deprivation and vigilant attention. Ann. N. Y. Acad. Sci. 1129, 305–322. doi: 10.1196/annals.1417.002 Lorenzo, I., Ramos, J., Arce, C., Guevara, M. A., and Corsi-Cabrera, M. (1995). Effect of total sleep deprivation on reaction time and waking EEG activity in man. Sleep 18, 346–354 Lyznicki, J. M., Doege, T. C., Davis, R. M., and Williams, M. A. (1998). Sleepiness, driving, and motor vehicle crashes. Council on scientific affairs, American medical association. JAMA 279, 1908–1913 Marsaglia, G., Tsang, W. W., and Wang, J. (2003). Evaluating kolmogorov’s distribution. J. Stat. Softw. 8, 1–4. Massey, F. J. Jr. (1951). The kolmogorov-smirnov test for goodness of fit. J. Am. Stat. Assoc. 46, 68–78. Miller, L. H. (1956). Table of percentage points of kolmogorov statistics. J. Am. Stat. Assoc. 51, 111–121. doi: 10.1080/01621459.1956.10501314 Monastra, V. J., Lubar, J. F., and Linden, M. (2001). The development of a quantitative electroencephalographic scanning process for attention deficit– hyperactivity disorder: reliability and validity studies. Neuropsychology 15, 136–144. doi: 10.1037/0894-4105.15.1.136 Palva, S., and Palva, J. M. (2007). New vistas for alpha-frequency band oscillations. Trends Neurosci. 30, 150–158. doi: 10.1016/j.tins.2007.02.001 Pavlov, Y. G., and Kotchoubey, B. (2017). EEG correlates of working memory performance in females. BMC Neurosci. 18:26. doi: 10.1186/s12868-017- 0344-5 Porkka-Heiskanen, T., Strecker, R. E., Thakkar, M., Bjørkum, A. A., Greene, R. W., and McCarley, R. W. (1997). Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276, 1265–1268. doi: 10.1126/science.276. 5316.1265 Posada-Quintero, H. F., Bolkhovsky, J. B., Qin, M., and Chon, K. H. (2018). Human performance deterioration due to prolonged wakefulness can be accurately detected using time-varying spectral analysis of electrodermal activity. Hum. Factors 60, 1035–1047. doi: 10.1177/0018720818781196 Posada-Quintero, H. F., Bolkhovsky, J. B., Reljin, N., and Chon, K. H. (2017). Sleep deprivation in young and healthy subjects is more sensitively identified by higher frequencies of electrodermal activity than by skin conductance level evaluated in the time domain. Front. Physiol. 8:409. doi: 10.3389/fphys.2017. 00409 Quercia, A., Zappasodi, F., Committeri, G., and Ferrara, M. (2018). Local usedependent sleep in wakefulness links performance errors to learning. Front. Hum. Neurosci. 12:122. doi: 10.3389/fnhum.2018.00122 Spiegel, M. R. (1961). Theory and Problems of Statistics. Schaum’s Outline Series in Mathematics. New York, NY: McGraw-Hill Steriade, M., Datta, S., Paré, D., Oakson, G., and Curró Dossi, R. C. (1990). Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J. Neurosci. 10, 2541–2559. doi: 10.1523/ jneurosci.10-08-02541.1990 Stroop, J. R. (1935). Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643–662. doi: 10.1037/h0054651 Tatum, W. O. (2014). Ellen R. Grass lecture: extraordinary EEG. Neurodiagnostic J. 54, 3–21. doi: 10.1080/21646821.2014.11079932 Ullsperger, M., and von Cramon, D. Y. (2001). Subprocesses of performance monitoring: a dissociation of error processing and response competition revealed by event-related fMRI and ERPs. Neuroimage 14, 1387–1401. doi: 10.1006/nimg.2001.0935 Vanderwolf, C. H. (2000). Are neocortical gamma waves related to consciousness? Brain Res. 855, 217–224. doi: 10.1016/s0006-8993(99)02351-3 Yokoi, M., Aoki, K., Shimomura, Y., Iwanaga, K., Katsuura, T., and Shiomura, Y. (2003). Effect of bright light on EEG activities and subjective sleepiness to mental task during nocturnal sleep deprivation. J. Physiol. Anthropol. Appl. Hum. Sci. 22, 257–263. doi: 10.2114/jpa.22.257 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.extent.spa.fl_str_mv |
9 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Yuval Nir Tel Aviv University, Israel |
dc.publisher.place.spa.fl_str_mv |
Suiza |
dc.source.spa.fl_str_mv |
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2019.01001/full |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/3339/4/Brain%20Activity%20Correlates%20With%20Cognitive%20Performance%20Deterioration%20During%20Sleep%20Deprivation.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/3339/3/Portada%20Brain%20Activity%20Correlates%20With%20Cognitive%20Performance%20Deterioration%20During%20Sleep%20Deprivation.PNG https://repositorio.escuelaing.edu.co/bitstream/001/3339/5/Brain%20Activity%20Correlates%20With%20Cognitive%20Performance%20Deterioration%20During%20Sleep%20Deprivation.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/3339/2/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/3339/1/Brain%20Activity%20Correlates%20With%20Cognitive%20Performance%20Deterioration%20During%20Sleep%20Deprivation.pdf |
bitstream.checksum.fl_str_mv |
7e80221688f075d9670250dedb83a634 28e2d27ff78183f24fdfbd3b10038abe 31e0f5973e8503600c9140b0c419b78e 5a7ca94c2e5326ee169f979d71d0f06e 3c34ae6509ba14417f31f35ca2958b60 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355580790243328 |
spelling |
Posada Quintero, Hugo9530927398cb1c7174ad577bb2972966Reljin, Natasade782581af7acdf7a253827fba54356eBolkhovsky, Jeffrey260f83ce9252566f9ca462919b23a0ecOrjuela Cañón, Álvaro63fc44e7b7c03556ee44fa8f9fb7faf4Chon, Ki33c081b677942dccdaf9eab39e92a29fGiBiome2024-10-22T16:53:46Z2024-10-22T16:53:46Z20191662-453Xhttps://repositorio.escuelaing.edu.co/handle/001/33391662-453XUniversidad Escuela Colombiana de Ingeniería Julio GaravitoRepositorio Digitalhttps://repositorio.escuelaing.edu.coWe studied the correlation between oscillatory brain activity and performance in healthy subjects performing the error awareness task (EAT) every 2 h, for 24 h. In the EAT, subjects were shown on a screen the names of colors and were asked to press a key if the name of the color and the color it was shown in matched, and the screen was not a duplicate of the one before (“Go” trials). In the event of a duplicate screen (“Repeat No-Go” trial) or a color mismatch (“Stroop No-Go” trial), the subjects were asked to withhold from pressing the key. We assessed subjects’ (N = 10) response inhibition by measuring accuracy of the “Stroop No-Go” (SNGacc) and “Repeat NoGo” trials (RNGacc). We assessed their reactivity by measuring reaction time in the “Go” trials (GRT). Simultaneously, nine electroencephalographic (EEG) channels were recorded (Fp2, F7, F8, O1, Oz, Pz, O2, T7, and T8). The correlation between reactivity and response inhibition measures to brain activity was tested using quantitative measures of brain activity based on the relative power of gamma, beta, alpha, theta, and delta waves. In general, response inhibition and reactivity reached a steady level between 6 and 16 h of sleep deprivation, which was followed by sustained impairment after 18 h. Channels F7 and Fp2 had the highest correlation to the indices of performance. Measures of response inhibition (RNGacc and SNGacc) were correlated to the alpha and theta waves’ power for most of the channels, especially in the F7 channel (r = 0.82 and 0.84, respectively). The reactivity (GRT) exhibited the highest correlation to the power of gamma waves in channel Fp2 (0.76). We conclude that quantitative measures of EEG provide information that can help us to better understand changEstudiamos la correlación entre la actividad cerebral oscilatoria y el rendimiento en personas sanas. sujetos que realizan la tarea de conciencia de errores (EAT) cada 2 h, durante 24 h. En el COME, A los sujetos se les mostraron en una pantalla los nombres de los colores y se les pidió que presionaran un clave si el nombre del color y el color en el que se mostró coinciden, y la pantalla no era un duplicado del anterior (ensayos "Go"). En caso de pantalla duplicada (ensayo "Repeat No-Go") o una discrepancia de color (ensayo "Stroop No-Go"), los sujetos fueron Se le pide que se abstenga de presionar la tecla. Evaluamos la respuesta de los sujetos (N = 10) inhibición midiendo la precisión de las pruebas "Stroop No-Go" (SNGacc) y "Repeat NoGo" (RNGacc). Evaluamos su reactividad midiendo el tiempo de reacción en el Pruebas “Go” (TRB). Simultáneamente, se detectaron nueve canales electroencefalográficos (EEG). grabados (Fp2, F7, F8, O1, Oz, Pz, O2, T7 y T8). La correlación entre reactividad y Las medidas de inhibición de la respuesta a la actividad cerebral se probaron utilizando medidas cuantitativas. de la actividad cerebral basada en el poder relativo de gamma, beta, alfa, theta y delta ondas. En general, la inhibición de la respuesta y la reactividad alcanzaron un nivel estable entre 6 y 16 h de privación del sueño, seguida de un deterioro sostenido después 18 h. Los canales F7 y Fp2 tuvieron la mayor correlación con los índices de desempeño. Las medidas de inhibición de la respuesta (RNGacc y SNGacc) se correlacionaron con el alfa y potencia de las ondas theta para la mayoría de los canales, especialmente en el canal F7 (r = 0,82 y 0,84, respectivamente). La reactividad (TRB) exhibió la mayor correlación con la potencia. de ondas gamma en el canal Fp2 (0,76). Concluimos que las medidas cuantitativas de EEG proporciona información que puede ayudarnos a comprender mejor el cambio.9 páginasapplication/pdfengYuval NirTel Aviv University, IsraelSuizahttps://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2019.01001/fullBrain Activity Correlates With Cognitive Performance Deterioration During Sleep DeprivationArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85Vol. 13 September 20199113Frontiers in NeuroscienceBaumeister, J., Barthel, T., Geiss, K. R., and Weiss, M. (2008). Influence of phosphatidylserine on cognitive performance and cortical activity after induced stress. Nutr. Neurosci. 11, 103–110. doi: 10.1179/147683008X30 1478Bernardi, G., Siclari, F., Yu, X., Zennig, C., Bellesi, M., Ricciardi, E., et al. (2015). Neural and behavioral correlates of extended training during sleep deprivation in humans: evidence for local, task-specific effects. J. Neurosci. 35, 4487–4500. doi: 10.1523/JNEUROSCI.4567-14.2015Borbély, A. A., Daan, S., Wirz-Justice, A., and Deboer, T. (2016). The two-process model of sleep regulation: a reappraisal. J. Sleep Res. 25, 131–143. doi: 10.1111/ jsr.12371Bush, G., Luu, P., and Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4, 215–222. doi: 10.1016/s1364- 6613(00)01483-2Cajochen, C., Foy, R., and Dijk, D.-J. (1999). Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans. Sleep Res. Online 2, 65–69.Corsi-Cabrera, M., Arce, C., Ramos, J., Lorenzo, I., and Guevara, M. A. (1996). Time course of reaction time and EEG while performing a vigilance task during total sleep deprivation. Sleep 19, 563–569. doi: 10.1093/sleep/19.7.563Costa, G. (1996). The impact of shift and night work on health. Appl. Ergon. 27, 9–16. doi: 10.1016/0003-6870(95)00047-xDement, W. C. (1974). Some Must Watch While Some Must Sleep. New York, NY: WH Freeman.Fattinger, S., Kurth, S., Ringli, M., Jenni, O. G., and Huber, R. (2017). Theta waves in children’s waking electroencephalogram resemble local aspects of sleep during wakefulness. Sci. Rep. 7:11187. doi: 10.1038/s41598-017-11577-3Forest, G., and Godbout, R. (2000). Effects of sleep deprivation on performance and EEG spectral analysis in young adults. Brain Cogn. 43, 195–200Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., and Donchin, E. (1993). A neural system for error detection and compensation. Psychol. Sci. 4, 385–390. doi: 10.1111/j.1467-9280.1993.tb00586.xGorgoni, M., Ferlazzo, F., Ferrara, M., Moroni, F., D’Atri, A., Fanelli, S., et al. (2014). Topographic electroencephalogram changes associated with psychomotor vigilance task performance after sleep deprivation. Sleep Med. 15, 1132–1139. doi: 10.1016/j.sleep.2014.04.022Gray, C. M. (1999). The temporal correlation hypothesis of visual feature integration: still alive and well. Neuron 24, 31–47. doi: 10.1016/s0896-6273(00) 80820-xHester, R., Foxe, J. J., Molholm, S., Shpaner, M., and Garavan, H. (2005). Neural mechanisms involved in error processing: a comparison of errors made with and without awareness. Neuroimage 27, 602–608. doi: 10.1016/j.neuroimage. 2005.04.035Hung, C.-S., Sarasso, S., Ferrarelli, F., Riedner, B., Ghilardi, M. F., Cirelli, C., et al. (2013). Local experience-dependent changes in the wake EEG after prolonged wakefulness. Sleep 36, 59–72. doi: 10.5665/sleep.2302Kamarajan, C., Porjesz, B., Jones, K. A., Choi, K., Chorlian, D. B., Padmanabhapillai, A., et al. (2004). The role of brain oscillations as functional correlates of cognitive systems: a study of frontal inhibitory control in alcoholism. Int. J. Psychophysiol. 51, 155–180. doi: 10.1016/j.ijpsycho.2003. 09.004Kanayama, N., Sato, A., and Ohira, H. (2007). Crossmodal effect with rubber hand illusion and gamma-band activity. Psychophysiology 44, 392–402. doi: 10.1111/ j.1469-8986.2007.00511.xKirmizi-Alsan, E., Bayraktaroglu, Z., Gurvit, H., Keskin, Y. H., Emre, M., and Demiralp, T. (2006). Comparative analysis of event-related potentials during Go/NoGo and CPT: decomposition of electrophysiological markers of response inhibition and sustained attention. Brain Res. 1104, 114–128. doi: 10.1016/j. brainres.2006.03.010Kisley, M. A., and Cornwell, Z. M. (2006). Gamma and beta neural activity evoked during a sensory gating paradigm: effects of auditory, somatosensory and crossmodal stimulation. Clin. Neurophysiol. 117, 2549–2563. doi: 10.1016/j.clinph. 2006.08.003Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 16, 606–617. doi: 10.1016/j.tics.2012. 10.007Kropotov, J. D. (2010). Quantitative EEG, Event-Related Potentials and Neurotherapy. Cambridge, MA: Academic Press.Lalo, E., Gilbertson, T., Doyle, L., Di Lazzaro, V., Cioni, B., and Brown, P. (2007). Phasic increases in cortical beta activity are associated with alterations in sensory processing in the human. Exp. Brain Res. 177, 137–145. doi: 10.1007/ s00221-006-0655-8Leger, D. (1994). The cost of sleep-related accidents: a report for the national commission on sleep disorders research. Sleep 17, 84–93. doi: 10.1093/sleep/ 17.1.84Lim, J., and Dinges, D. F. (2008). Sleep deprivation and vigilant attention. Ann. N. Y. Acad. Sci. 1129, 305–322. doi: 10.1196/annals.1417.002Lorenzo, I., Ramos, J., Arce, C., Guevara, M. A., and Corsi-Cabrera, M. (1995). Effect of total sleep deprivation on reaction time and waking EEG activity in man. Sleep 18, 346–354Lyznicki, J. M., Doege, T. C., Davis, R. M., and Williams, M. A. (1998). Sleepiness, driving, and motor vehicle crashes. Council on scientific affairs, American medical association. JAMA 279, 1908–1913Marsaglia, G., Tsang, W. W., and Wang, J. (2003). Evaluating kolmogorov’s distribution. J. Stat. Softw. 8, 1–4.Massey, F. J. Jr. (1951). The kolmogorov-smirnov test for goodness of fit. J. Am. Stat. Assoc. 46, 68–78.Miller, L. H. (1956). Table of percentage points of kolmogorov statistics. J. Am. Stat. Assoc. 51, 111–121. doi: 10.1080/01621459.1956.10501314Monastra, V. J., Lubar, J. F., and Linden, M. (2001). The development of a quantitative electroencephalographic scanning process for attention deficit– hyperactivity disorder: reliability and validity studies. Neuropsychology 15, 136–144. doi: 10.1037/0894-4105.15.1.136Palva, S., and Palva, J. M. (2007). New vistas for alpha-frequency band oscillations. Trends Neurosci. 30, 150–158. doi: 10.1016/j.tins.2007.02.001Pavlov, Y. G., and Kotchoubey, B. (2017). EEG correlates of working memory performance in females. BMC Neurosci. 18:26. doi: 10.1186/s12868-017- 0344-5Porkka-Heiskanen, T., Strecker, R. E., Thakkar, M., Bjørkum, A. A., Greene, R. W., and McCarley, R. W. (1997). Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276, 1265–1268. doi: 10.1126/science.276. 5316.1265Posada-Quintero, H. F., Bolkhovsky, J. B., Qin, M., and Chon, K. H. (2018). Human performance deterioration due to prolonged wakefulness can be accurately detected using time-varying spectral analysis of electrodermal activity. Hum. Factors 60, 1035–1047. doi: 10.1177/0018720818781196Posada-Quintero, H. F., Bolkhovsky, J. B., Reljin, N., and Chon, K. H. (2017). Sleep deprivation in young and healthy subjects is more sensitively identified by higher frequencies of electrodermal activity than by skin conductance level evaluated in the time domain. Front. Physiol. 8:409. doi: 10.3389/fphys.2017. 00409Quercia, A., Zappasodi, F., Committeri, G., and Ferrara, M. (2018). Local usedependent sleep in wakefulness links performance errors to learning. Front. Hum. Neurosci. 12:122. doi: 10.3389/fnhum.2018.00122Spiegel, M. R. (1961). Theory and Problems of Statistics. Schaum’s Outline Series in Mathematics. New York, NY: McGraw-HillSteriade, M., Datta, S., Paré, D., Oakson, G., and Curró Dossi, R. C. (1990). Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J. Neurosci. 10, 2541–2559. doi: 10.1523/ jneurosci.10-08-02541.1990Stroop, J. R. (1935). Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643–662. doi: 10.1037/h0054651Tatum, W. O. (2014). Ellen R. Grass lecture: extraordinary EEG. Neurodiagnostic J. 54, 3–21. doi: 10.1080/21646821.2014.11079932Ullsperger, M., and von Cramon, D. Y. (2001). Subprocesses of performance monitoring: a dissociation of error processing and response competition revealed by event-related fMRI and ERPs. Neuroimage 14, 1387–1401. doi: 10.1006/nimg.2001.0935Vanderwolf, C. H. (2000). Are neocortical gamma waves related to consciousness? Brain Res. 855, 217–224. doi: 10.1016/s0006-8993(99)02351-3Yokoi, M., Aoki, K., Shimomura, Y., Iwanaga, K., Katsuura, T., and Shiomura, Y. (2003). Effect of bright light on EEG activities and subjective sleepiness to mental task during nocturnal sleep deprivation. J. Physiol. Anthropol. Appl. Hum. Sci. 22, 257–263. doi: 10.2114/jpa.22.257info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbActividad nerviosa superiorHigher nervous activityTrastornos cognitivosCognition disordersCerebro - Enfermedades - DiagnósticoBrain - Diseases - DiagnosisElectrodiagnósticoElectrodiagnosisElectroencefalografíaPrueba de conciencia de errorPrivación de sueñoRendimientoReactividadRespuesta inhibiciónElectroencephalographyError awareness testSleep deprivationPerformanceReactivityResponse inhibitionTEXTBrain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation.pdf.txtBrain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation.pdf.txtExtracted texttext/plain44634https://repositorio.escuelaing.edu.co/bitstream/001/3339/4/Brain%20Activity%20Correlates%20With%20Cognitive%20Performance%20Deterioration%20During%20Sleep%20Deprivation.pdf.txt7e80221688f075d9670250dedb83a634MD54metadata only accessTHUMBNAILPortada Brain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation.PNGPortada Brain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation.PNGimage/png194737https://repositorio.escuelaing.edu.co/bitstream/001/3339/3/Portada%20Brain%20Activity%20Correlates%20With%20Cognitive%20Performance%20Deterioration%20During%20Sleep%20Deprivation.PNG28e2d27ff78183f24fdfbd3b10038abeMD53open accessBrain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation.pdf.jpgBrain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation.pdf.jpgGenerated Thumbnailimage/jpeg14735https://repositorio.escuelaing.edu.co/bitstream/001/3339/5/Brain%20Activity%20Correlates%20With%20Cognitive%20Performance%20Deterioration%20During%20Sleep%20Deprivation.pdf.jpg31e0f5973e8503600c9140b0c419b78eMD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3339/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALBrain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation.pdfBrain Activity Correlates With Cognitive Performance Deterioration During Sleep Deprivation.pdfapplication/pdf1618824https://repositorio.escuelaing.edu.co/bitstream/001/3339/1/Brain%20Activity%20Correlates%20With%20Cognitive%20Performance%20Deterioration%20During%20Sleep%20Deprivation.pdf3c34ae6509ba14417f31f35ca2958b60MD51metadata only access001/3339oai:repositorio.escuelaing.edu.co:001/33392024-10-23 03:00:15.209metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |