Analysis of muscular activity and dynamic response of the lower limb adding vibration to cycling

Vibration in cycling has been proved to have undesirable effects over health, comfort and performance of the rider. In this study, 15 participants performed eight 6-min sub-maximal pedalling exercises at a constant power output (150W) and pedalling cadence (80 RPM) being exposed to vibration at diff...

Full description

Autores:
Munera Ramirez, Marcela Cristina
Chiementin, Xavier
Duc, Sebastien
Bertucci, William
Tipo de recurso:
Article of investigation
Fecha de publicación:
2018
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1556
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1556
https://doi.org/10.1080/02640414.2017.1398407
Palabra clave:
Ciclismo
Carreras de bicicletas - Carreras (Deporte)
Oxígeno en el organismo
Pedalling
acceleration
oxygen consumption
transmissibility
EMG
Pedaleo
Aceleración
Consumo de oxigeno
Transmisibilidad
EMG
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id ESCUELAIG2_1341c49dbe7537ba1f867580ed0d4925
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1556
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.spa.fl_str_mv Analysis of muscular activity and dynamic response of the lower limb adding vibration to cycling
title Analysis of muscular activity and dynamic response of the lower limb adding vibration to cycling
spellingShingle Analysis of muscular activity and dynamic response of the lower limb adding vibration to cycling
Ciclismo
Carreras de bicicletas - Carreras (Deporte)
Oxígeno en el organismo
Pedalling
acceleration
oxygen consumption
transmissibility
EMG
Pedaleo
Aceleración
Consumo de oxigeno
Transmisibilidad
EMG
title_short Analysis of muscular activity and dynamic response of the lower limb adding vibration to cycling
title_full Analysis of muscular activity and dynamic response of the lower limb adding vibration to cycling
title_fullStr Analysis of muscular activity and dynamic response of the lower limb adding vibration to cycling
title_full_unstemmed Analysis of muscular activity and dynamic response of the lower limb adding vibration to cycling
title_sort Analysis of muscular activity and dynamic response of the lower limb adding vibration to cycling
dc.creator.fl_str_mv Munera Ramirez, Marcela Cristina
Chiementin, Xavier
Duc, Sebastien
Bertucci, William
dc.contributor.author.none.fl_str_mv Munera Ramirez, Marcela Cristina
Chiementin, Xavier
Duc, Sebastien
Bertucci, William
dc.contributor.researchgroup.spa.fl_str_mv GiBiome
dc.subject.armarc.none.fl_str_mv Ciclismo
Carreras de bicicletas - Carreras (Deporte)
Oxígeno en el organismo
topic Ciclismo
Carreras de bicicletas - Carreras (Deporte)
Oxígeno en el organismo
Pedalling
acceleration
oxygen consumption
transmissibility
EMG
Pedaleo
Aceleración
Consumo de oxigeno
Transmisibilidad
EMG
dc.subject.proposal.eng.fl_str_mv Pedalling
acceleration
oxygen consumption
transmissibility
EMG
dc.subject.proposal.spa.fl_str_mv Pedaleo
Aceleración
Consumo de oxigeno
Transmisibilidad
EMG
description Vibration in cycling has been proved to have undesirable effects over health, comfort and performance of the rider. In this study, 15 participants performed eight 6-min sub-maximal pedalling exercises at a constant power output (150W) and pedalling cadence (80 RPM) being exposed to vibration at different frequencies (20, 30, 40, 50, 60, 70 Hz) or without vibration. Oxygen uptake (VO2), heart rate (HR), surface EMG activity of seven lower limb muscles (GMax, RF, BF, VM, GAS, SOL and TA) and 3-dimentional accelerations at ankle, knee and hip were measured during the exercises. To analyse the dynamic response, the influence of the pedalling movement was taken into account. The results show that there was not significant influence of vibrations on HR and VO2 during this pedalling exercise. However, muscular activity presents a significant increase with the presence of vibration that is influenced by the frequency, but this increase was very low (< 1%). Also, the dynamic response shows an influence of the frequency as well as an influence of the different parts of the pedalling cycle. Those results help to explain the effects of vibration on the human body and the influence of the rider/bike interaction in those effects.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2021-06-04T20:56:48Z
2021-10-01T17:16:53Z
dc.date.available.none.fl_str_mv 2021-06-04T20:56:48Z
2021-10-01T17:16:53Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1466-447X
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1556
dc.identifier.ark.none.fl_str_mv https://doi.org/10.1080/02640414.2017.1398407
dc.identifier.doi.none.fl_str_mv 10.1080/02640414.2017.1398407
identifier_str_mv 1466-447X
10.1080/02640414.2017.1398407
url https://repositorio.escuelaing.edu.co/handle/001/1556
https://doi.org/10.1080/02640414.2017.1398407
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Journal of Sports Sciences : Volume 36, 2018 - Issue 13
dc.relation.citationendpage.spa.fl_str_mv 1475
dc.relation.citationissue.spa.fl_str_mv 13
dc.relation.citationstartpage.spa.fl_str_mv 1465
dc.relation.citationvolume.spa.fl_str_mv 36
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Sports Sciences
dc.relation.references.eng.fl_str_mv Abercromby, A. F. J., Amonette, W. E., Layne, C. S., McFarlin, B. K., Hinman, M. R., & Paloski, W. H. (2007). Variation in neuromuscular responses during acute whole-body vibration exercise. Medicine and Science in Sports and Exercise, 39(9), 1642–1650. doi:10.1249/mss.0b013e318093f551
Arpinar-Avsar, P., Birlik, G., Sezgin, Ö. C., & Soylu, A. R. (2013). The effects of surface-induced loads on forearm muscle activity during steering a bicycle. Journal of Sports Science & Medicine, 12(February), 512–520. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772596/
Bressel, E., Smith, G., & Branscomb, J. (2010). Transmission of whole body vibration in children while standing. Clinical Biomechanics, 25(2), 181–186. doi:10.1016/j.clinbiomech.2009.10.016
Carlso, S. (1982). The effect of vibration on the skeleton, joints and muscles. Applied Ergonomics, 13(4), 251–258. doi:10.1016/0003-6870(82)90064-3
Chiementin, X., Rigaut, M., Crequy, S., & Bertucci, W. (2011). Hand-arm vibration in cycling. Journal Vibration and Control, 19(16), 2551–2560. doi:10.1177/1077546312461024
De Luca, C. J. (1997). The use of surface electromyography in biomechanics. Journal of Applied Biomechanics, 13(2), 135-163. doi:10.1123/jab.13.2.135
Dorel, S., Couturier, A., & Hug, F. (2008). Intra-session repeatability of lower limb muscles activation pattern during pedaling. Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology, 18(5), 857–865. doi:10.1016/j.jelekin.2007.03.002
Fattorini, L., Tirabasso, A., Lunghi, A., Di Giovanni, R., Sacco, F., & Marchetti, E. (2015). Muscular forearm activation in hand-grip tasks with superimposition of mechanical vibrations. Journal of Electromyography and Kinesiology, 26(2016), 143–148. doi:10.1016/j.jelekin.2015.10.015
Filingeri, D., Jemni, M., Bianco, A., Zeinstra, E., & Jimenez, A. (2012). The effects of vibration during maximal graded cycling exercise: A pilot study. Journal of Sports Science & Medicine, 11(3), 423–429. Retrieved from http://jssm.org/researchjssm-11-423.xml.xml
Fratini, A., La Gatta, A., Bifulco, P., Romano, M., & Cesarelli, M. (2009). Muscle motion and EMG activity in vibration treatment. Medical Engineering & Physics, 31(9), 1166–1172. doi:10.1016/j.medengphy.2009.07.014
Giubilato, F., & Petrone, N. (2012). A method for evaluating the vibrational response of racing bicycles wheels under road roughness excitation. Procedia Engineering, 34, 409–414. doi:10.1016/j.proeng.2012.04.070
Griffin, M. J. (1996). Handbook of human vibration. London: Academic Press, Elsevier.
Harazin, B., & Grzesik, J. (1998). The transmission of vertical whole-body vibration to the body segments of standing subjects. Journal of Sound and Vibration, 215(4), 775–787. doi:10.1006/jsvi.1998.1675
Hazell, T. J., Jakobi, J. M., & Kenno, K. A. (2007). The effects of whole-body vibration on upper- and lower-body EMG during static and dynamic contractions. Applied Physiology, Nutrition, and Metabolism, 32(6), 1156–1163. doi:10.1139/H07-116
Hermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10(5), 361–374. doi:10.1016/S1050-6411(00)00027-4
Hölzel, C., Höchtl, F., & Senner, V. (2012). Cycling comfort on different road surfaces. Procedia Engineering, 34, 479–484. doi:10.1016/j.proeng.2012.04.082
Kiiski, J., Heinonen, A., & Kannus, P. (2008). Transmission of vertical whole body vibration to the human body. Journal of Bone and Mineral Research, 23(8), 1318–1325. doi:10.1359/jbmr.080315
Lienhard, K., Cabasson, A., Meste, O., & Colson, S. S. (2014). Determination of the optimal parameters maximizing muscle activity of the lower limbs during vertical synchronous whole-body vibration. European Journal of Applied Physiology, 114(7), 1493–1501. doi:10.1007/s00421-014-2874-1
Liikavainio, T., Bragge, T., Hakkarainen, M., Jurvelin, J. S., Karjalainen, P. A., & Arokoski, J. P. (2007). Reproducibility of loading measurements with skin-mounted accelerometers during walking. Archives of Physical Medicine and Rehabilitation, 88(7), 907–915. doi:10.1016/j.apmr.2007.03.031
Martin, B. J., & Park, H. (1997). Analysis of the tonic vibration reflex: Influence of vibration variables on motor unit synchronization and fatigue. Eur J Appl Physiol, 75, 504–511. doi:10.1007/s004210050196
Mester, J., Spitzenfeil, P., Schwarzer, J., & Seifriz, F. (1999). Biological reaction to vibration–Implications for sport. Journal of Science and Medicine in Sport/Sports Medicine Australia, 2(3), 211–226. doi:10.1016/S1440-2440(99)80174-1
Munera, M., Bertucci, W., Duc, S., & Chiementin, X. (2016). Transmission of whole body vibration to the lower body in static and dynamic half-squat exercises. Sports Biomechanics, 15(4), 409–428. doi:10.1080/14763141.2016.1171894
Munera, M., Chiementin, X., Crequy, S., & Bertucci, W. (2014). Physical risk associated with vibration at cycling. Mechanics & Industry, 15(6), 535–540. doi:10.1051/meca/2014057
Munera, M., Chiementin, X., Murer, S., & Bertucci, W. (2015). Model of the risk assessment of hand-arm system vibrations in cycling: Case of cobblestone road. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 229(4), 231–238. doi:10.1177/1754337115579606
Munera, M., Duc, S., Bertucci, W., & Chiementin, X. (2015). Physiological and dynamic response to vibration in cycling: A feasibility study. Mechanics & Industry, 16(5), 503. doi:10.1051/meca/2015028 [
Olieman, M., Marin-Perianu, R., & Marin-Perianu, M. (2012). Measurement of dynamic comfort in cycling using wireless acceleration sensors. Procedia Engineering, 34, 568–573. doi:10.1016/j.proeng.2012.04.097
Padulo, J., Chamari, K., & Ardigo, L. (2014). Walking and running on treadmill: The standard criteria for kinematics studies. Muscles Ligaments Tendons, 159–162. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187596/
Padulo, J., Di Capua, R., & Viggiano, D. (2012). Pedaling time variability is increased in dropped riding position. European Journal of Applied Physiology, 112(8), 3161–3165. doi:10.1007/s00421-011-2282-8
Padulo, J., Di Giminiani, R., Ibba, G., Zarrouk, N., Moalla, W., Attene, G., … Chamiari, K. (2014). The acute effect of whole body vibration on repeated shuttle-running in young soccer players. International Journal of Sports Medicine, 35(1), 49–54. doi:10.1055/s-0033-1345171
Padulo, J., Powell, D. W., Ardigo, L. P., & Viggiano, D. (2015). Modifications in activation pf lower limbs muscles as a function of initial foot position in cycling. Journal of Electromyography Kinesiology, 25(4), 648–652. doi:10.1016/j.jelekin.2015.03.005
Parkin, J., & Sainte Cluque, E. (2014). The impact of vibration on comfort and bodily stress while cycling. In UTSG 46th Annual Conference, Newcastle University (pp. 6–8). Retrieved from: http://eprints.uwe.ac.uk/22320/1/Parkin%20and%20Cluque%20UTSG%20Paper.pdf
Peretti, A., Pignalosa, L., Bonomini, F., Paoli, A., & Bartolucci, G. (2009). Vibrazioni su biciclette da corsa e da città. Giornale Degli Ignienisti Industriali, 34(3), 283–293. Retrieved from http://hdl.handle.net/11577/2487606
Petrone, N., & Giubilatoa, F. (2013). Development of a test method for the comparative analysis of bicycle saddle vibration transmissibility. In 6th Asia-Pacific Congress on Sports Technology (APCST) (pp. 288–293). DOI: 10.1016/j.proeng.2013.07.063
Pollock, R. D., Woledge, R. C., Mills, K. R., Martin, F. C., & Newham, D. J. (2010). Muscle activity and acceleration during whole body vibration: Effect of frequency and amplitude. Clinical Biomechanics (Bristol, Avon), 25(8), 840–846. doi:10.1016/j.clinbiomech.2010.05.004
Ritzman, R., Gollhofer, A., & Kramer, A. (2013). The influence of vibration type, frecuency, body position and additional load on the neuromuscular activity during whole body vibration. European Journal of Applied Physiological, 113(1), 1–11. doi:10.1007/s00421-012-2402-0
Rosdahl, H., Gullstrand, L., Salier-Eriksson, J., Johansson, P., & Schantz, P. (2010). Evaluation of the Oxycon Mobile metabolic system against the Douglas bag method. European Journal of Applied Physiology, 109(2), 159–171. doi:10.1007/s00421-009-1326-9
Samuelson, B., Jorfeldt, L., & Ahlborg, B. (1989). Influence of vibration on work performance during ergometer cycling. Upsala Journal of Medical Sciences, 94(1), 73–79. doi:10.3109/03009738909179249
Schwellnus, M., & Derman, E. (2005). Common injuries in cycling: Prevention, diagnosis and management. SA Fam Pract, 47(7), 14–19. doi:10.1080/20786204.2005.10873255
Sperlich, B., & Kleinoeder, H. (2009). Physiological and perceptual responses of adding vibration to cycling. Journal of Exercise Physiology, 12(2), 40–46. Retrieved from https://www.asep.org/asep/asep/JEPonlineSperlichApril2009.doc
Srinivasan, J., & Balasubramanian, V. (2007). Low back pain and muscle fatigue due to road cycling—An sEMG study. Journal of Bodywork and Movement Therapies, 11(3), 260–266. doi:10.1016/j.jbmt.2006.08.009
Stegeman, D. F., & Hermens, H. J. (2007). Standards for surface electromyography: The european project “surface emg for non-invasive assessment of muscles (seniam). Retrieved from: https://www.med.uni-jena.de/motorik/pdf/stegeman.pdf
Tanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology, 37(1), 153–156. doi:10.1016/S0735-1097(00)01054-8
Weiss, B. D. (1983). Nontraumatic injuries in amateur long distance bicyclists. The American Journal of Sports Medicine, 13(3), 187–192. doi:10.1177/036354658501300308
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Routledge
dc.publisher.place.spa.fl_str_mv Estados Unidos
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1556/6/Analysis%20of%20muscular%20activity%20and%20dynamic%20response%20of%20the%20lower%20limb%20adding%20vibration%20to%20cycling.png
https://repositorio.escuelaing.edu.co/bitstream/001/1556/7/Analysis%20of%20muscular%20activity%20and%20dynamic%20response%20of%20the%20lower%20limb%20adding%20vibration%20to%20cycling.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/1556/5/Analysis%20of%20muscular%20activity%20and%20dynamic%20response%20of%20the%20lower%20limb%20adding%20vibration%20to%20cycling.pdf
https://repositorio.escuelaing.edu.co/bitstream/001/1556/4/Analysis%20of%20muscular%20activity%20and%20dynamic%20response%20of%20the%20lower%20limb%20adding%20vibration%20to%20cycling.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1556/2/license.txt
bitstream.checksum.fl_str_mv 6181bc8d89395f8ec4859a179a815d95
f18a8f937b9575c5bc5cf217054d9fe8
f995140acc1dac863dd91f1c5cd6b094
ce17bbb4d4f1cbe9a2413e4ea88bb0b2
5a7ca94c2e5326ee169f979d71d0f06e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355636030275584
spelling Munera Ramirez, Marcela Cristinac7b2f5daa754327476b7992dea703f6a600Chiementin, Xavier5381418aa944cc4518e7bd78724f965c600Duc, Sebastien9a2f797027ee27d025c98641cf66deb0600Bertucci, William76c71037ec4e3298af5560e3e23120c9600GiBiome2021-06-04T20:56:48Z2021-10-01T17:16:53Z2021-06-04T20:56:48Z2021-10-01T17:16:53Z20181466-447Xhttps://repositorio.escuelaing.edu.co/handle/001/1556https://doi.org/10.1080/02640414.2017.139840710.1080/02640414.2017.1398407Vibration in cycling has been proved to have undesirable effects over health, comfort and performance of the rider. In this study, 15 participants performed eight 6-min sub-maximal pedalling exercises at a constant power output (150W) and pedalling cadence (80 RPM) being exposed to vibration at different frequencies (20, 30, 40, 50, 60, 70 Hz) or without vibration. Oxygen uptake (VO2), heart rate (HR), surface EMG activity of seven lower limb muscles (GMax, RF, BF, VM, GAS, SOL and TA) and 3-dimentional accelerations at ankle, knee and hip were measured during the exercises. To analyse the dynamic response, the influence of the pedalling movement was taken into account. The results show that there was not significant influence of vibrations on HR and VO2 during this pedalling exercise. However, muscular activity presents a significant increase with the presence of vibration that is influenced by the frequency, but this increase was very low (< 1%). Also, the dynamic response shows an influence of the frequency as well as an influence of the different parts of the pedalling cycle. Those results help to explain the effects of vibration on the human body and the influence of the rider/bike interaction in those effects.Se ha demostrado que la vibración en el ciclismo tiene efectos indeseables sobre la salud, la comodidad y el rendimiento del ciclista. En este estudio, 15 participantes realizaron ocho ejercicios de pedaleo submáximo de 6 minutos a una potencia constante (150W) y una cadencia de pedaleo (80 RPM) estando expuestos a vibraciones a diferentes frecuencias (20, 30, 40, 50, 60, 70 Hz) o sin vibración. Durante los ejercicios se midió el consumo de oxígeno (VO2), la frecuencia cardíaca (FC), la actividad EMG de superficie de siete músculos de las extremidades inferiores (GMax, RF, BF, VM, GAS, SOL y TA) y las aceleraciones en tres dimensiones en el tobillo, la rodilla y la cadera. Para analizar la respuesta dinámica, se tuvo en cuenta la influencia del movimiento de pedaleo. Los resultados muestran que no hubo una influencia significativa de las vibraciones en la FC y el VO2 durante este ejercicio de pedaleo. Sin embargo, la actividad muscular presenta un aumento significativo con la presencia de la vibración que está influenciada por la frecuencia, pero este aumento fue muy bajo (< 1%). Asimismo, la respuesta dinámica muestra una influencia de la frecuencia, así como una influencia de las diferentes partes del ciclo de pedaleo. Estos resultados ayudan a explicar los efectos de la vibración en el cuerpo humano y la influencia de la interacción ciclista/bicicleta en dichos efectos.application/pdfengRoutledgeEstados UnidosAnalysis of muscular activity and dynamic response of the lower limb adding vibration to cyclingArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Journal of Sports Sciences : Volume 36, 2018 - Issue 13147513146536N/AJournal of Sports SciencesAbercromby, A. F. J., Amonette, W. E., Layne, C. S., McFarlin, B. K., Hinman, M. R., & Paloski, W. H. (2007). Variation in neuromuscular responses during acute whole-body vibration exercise. Medicine and Science in Sports and Exercise, 39(9), 1642–1650. doi:10.1249/mss.0b013e318093f551Arpinar-Avsar, P., Birlik, G., Sezgin, Ö. C., & Soylu, A. R. (2013). The effects of surface-induced loads on forearm muscle activity during steering a bicycle. Journal of Sports Science & Medicine, 12(February), 512–520. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3772596/Bressel, E., Smith, G., & Branscomb, J. (2010). Transmission of whole body vibration in children while standing. Clinical Biomechanics, 25(2), 181–186. doi:10.1016/j.clinbiomech.2009.10.016Carlso, S. (1982). The effect of vibration on the skeleton, joints and muscles. Applied Ergonomics, 13(4), 251–258. doi:10.1016/0003-6870(82)90064-3Chiementin, X., Rigaut, M., Crequy, S., & Bertucci, W. (2011). Hand-arm vibration in cycling. Journal Vibration and Control, 19(16), 2551–2560. doi:10.1177/1077546312461024De Luca, C. J. (1997). The use of surface electromyography in biomechanics. Journal of Applied Biomechanics, 13(2), 135-163. doi:10.1123/jab.13.2.135Dorel, S., Couturier, A., & Hug, F. (2008). Intra-session repeatability of lower limb muscles activation pattern during pedaling. Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology, 18(5), 857–865. doi:10.1016/j.jelekin.2007.03.002Fattorini, L., Tirabasso, A., Lunghi, A., Di Giovanni, R., Sacco, F., & Marchetti, E. (2015). Muscular forearm activation in hand-grip tasks with superimposition of mechanical vibrations. Journal of Electromyography and Kinesiology, 26(2016), 143–148. doi:10.1016/j.jelekin.2015.10.015Filingeri, D., Jemni, M., Bianco, A., Zeinstra, E., & Jimenez, A. (2012). The effects of vibration during maximal graded cycling exercise: A pilot study. Journal of Sports Science & Medicine, 11(3), 423–429. Retrieved from http://jssm.org/researchjssm-11-423.xml.xmlFratini, A., La Gatta, A., Bifulco, P., Romano, M., & Cesarelli, M. (2009). Muscle motion and EMG activity in vibration treatment. Medical Engineering & Physics, 31(9), 1166–1172. doi:10.1016/j.medengphy.2009.07.014Giubilato, F., & Petrone, N. (2012). A method for evaluating the vibrational response of racing bicycles wheels under road roughness excitation. Procedia Engineering, 34, 409–414. doi:10.1016/j.proeng.2012.04.070Griffin, M. J. (1996). Handbook of human vibration. London: Academic Press, Elsevier.Harazin, B., & Grzesik, J. (1998). The transmission of vertical whole-body vibration to the body segments of standing subjects. Journal of Sound and Vibration, 215(4), 775–787. doi:10.1006/jsvi.1998.1675Hazell, T. J., Jakobi, J. M., & Kenno, K. A. (2007). The effects of whole-body vibration on upper- and lower-body EMG during static and dynamic contractions. Applied Physiology, Nutrition, and Metabolism, 32(6), 1156–1163. doi:10.1139/H07-116Hermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10(5), 361–374. doi:10.1016/S1050-6411(00)00027-4Hölzel, C., Höchtl, F., & Senner, V. (2012). Cycling comfort on different road surfaces. Procedia Engineering, 34, 479–484. doi:10.1016/j.proeng.2012.04.082Kiiski, J., Heinonen, A., & Kannus, P. (2008). Transmission of vertical whole body vibration to the human body. Journal of Bone and Mineral Research, 23(8), 1318–1325. doi:10.1359/jbmr.080315Lienhard, K., Cabasson, A., Meste, O., & Colson, S. S. (2014). Determination of the optimal parameters maximizing muscle activity of the lower limbs during vertical synchronous whole-body vibration. European Journal of Applied Physiology, 114(7), 1493–1501. doi:10.1007/s00421-014-2874-1Liikavainio, T., Bragge, T., Hakkarainen, M., Jurvelin, J. S., Karjalainen, P. A., & Arokoski, J. P. (2007). Reproducibility of loading measurements with skin-mounted accelerometers during walking. Archives of Physical Medicine and Rehabilitation, 88(7), 907–915. doi:10.1016/j.apmr.2007.03.031Martin, B. J., & Park, H. (1997). Analysis of the tonic vibration reflex: Influence of vibration variables on motor unit synchronization and fatigue. Eur J Appl Physiol, 75, 504–511. doi:10.1007/s004210050196Mester, J., Spitzenfeil, P., Schwarzer, J., & Seifriz, F. (1999). Biological reaction to vibration–Implications for sport. Journal of Science and Medicine in Sport/Sports Medicine Australia, 2(3), 211–226. doi:10.1016/S1440-2440(99)80174-1Munera, M., Bertucci, W., Duc, S., & Chiementin, X. (2016). Transmission of whole body vibration to the lower body in static and dynamic half-squat exercises. Sports Biomechanics, 15(4), 409–428. doi:10.1080/14763141.2016.1171894Munera, M., Chiementin, X., Crequy, S., & Bertucci, W. (2014). Physical risk associated with vibration at cycling. Mechanics & Industry, 15(6), 535–540. doi:10.1051/meca/2014057Munera, M., Chiementin, X., Murer, S., & Bertucci, W. (2015). Model of the risk assessment of hand-arm system vibrations in cycling: Case of cobblestone road. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 229(4), 231–238. doi:10.1177/1754337115579606Munera, M., Duc, S., Bertucci, W., & Chiementin, X. (2015). Physiological and dynamic response to vibration in cycling: A feasibility study. Mechanics & Industry, 16(5), 503. doi:10.1051/meca/2015028 [Olieman, M., Marin-Perianu, R., & Marin-Perianu, M. (2012). Measurement of dynamic comfort in cycling using wireless acceleration sensors. Procedia Engineering, 34, 568–573. doi:10.1016/j.proeng.2012.04.097Padulo, J., Chamari, K., & Ardigo, L. (2014). Walking and running on treadmill: The standard criteria for kinematics studies. Muscles Ligaments Tendons, 159–162. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187596/Padulo, J., Di Capua, R., & Viggiano, D. (2012). Pedaling time variability is increased in dropped riding position. European Journal of Applied Physiology, 112(8), 3161–3165. doi:10.1007/s00421-011-2282-8Padulo, J., Di Giminiani, R., Ibba, G., Zarrouk, N., Moalla, W., Attene, G., … Chamiari, K. (2014). The acute effect of whole body vibration on repeated shuttle-running in young soccer players. International Journal of Sports Medicine, 35(1), 49–54. doi:10.1055/s-0033-1345171Padulo, J., Powell, D. W., Ardigo, L. P., & Viggiano, D. (2015). Modifications in activation pf lower limbs muscles as a function of initial foot position in cycling. Journal of Electromyography Kinesiology, 25(4), 648–652. doi:10.1016/j.jelekin.2015.03.005Parkin, J., & Sainte Cluque, E. (2014). The impact of vibration on comfort and bodily stress while cycling. In UTSG 46th Annual Conference, Newcastle University (pp. 6–8). Retrieved from: http://eprints.uwe.ac.uk/22320/1/Parkin%20and%20Cluque%20UTSG%20Paper.pdfPeretti, A., Pignalosa, L., Bonomini, F., Paoli, A., & Bartolucci, G. (2009). Vibrazioni su biciclette da corsa e da città. Giornale Degli Ignienisti Industriali, 34(3), 283–293. Retrieved from http://hdl.handle.net/11577/2487606Petrone, N., & Giubilatoa, F. (2013). Development of a test method for the comparative analysis of bicycle saddle vibration transmissibility. In 6th Asia-Pacific Congress on Sports Technology (APCST) (pp. 288–293). DOI: 10.1016/j.proeng.2013.07.063Pollock, R. D., Woledge, R. C., Mills, K. R., Martin, F. C., & Newham, D. J. (2010). Muscle activity and acceleration during whole body vibration: Effect of frequency and amplitude. Clinical Biomechanics (Bristol, Avon), 25(8), 840–846. doi:10.1016/j.clinbiomech.2010.05.004Ritzman, R., Gollhofer, A., & Kramer, A. (2013). The influence of vibration type, frecuency, body position and additional load on the neuromuscular activity during whole body vibration. European Journal of Applied Physiological, 113(1), 1–11. doi:10.1007/s00421-012-2402-0Rosdahl, H., Gullstrand, L., Salier-Eriksson, J., Johansson, P., & Schantz, P. (2010). Evaluation of the Oxycon Mobile metabolic system against the Douglas bag method. European Journal of Applied Physiology, 109(2), 159–171. doi:10.1007/s00421-009-1326-9Samuelson, B., Jorfeldt, L., & Ahlborg, B. (1989). Influence of vibration on work performance during ergometer cycling. Upsala Journal of Medical Sciences, 94(1), 73–79. doi:10.3109/03009738909179249Schwellnus, M., & Derman, E. (2005). Common injuries in cycling: Prevention, diagnosis and management. SA Fam Pract, 47(7), 14–19. doi:10.1080/20786204.2005.10873255Sperlich, B., & Kleinoeder, H. (2009). Physiological and perceptual responses of adding vibration to cycling. Journal of Exercise Physiology, 12(2), 40–46. Retrieved from https://www.asep.org/asep/asep/JEPonlineSperlichApril2009.docSrinivasan, J., & Balasubramanian, V. (2007). Low back pain and muscle fatigue due to road cycling—An sEMG study. Journal of Bodywork and Movement Therapies, 11(3), 260–266. doi:10.1016/j.jbmt.2006.08.009Stegeman, D. F., & Hermens, H. J. (2007). Standards for surface electromyography: The european project “surface emg for non-invasive assessment of muscles (seniam). Retrieved from: https://www.med.uni-jena.de/motorik/pdf/stegeman.pdfTanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology, 37(1), 153–156. doi:10.1016/S0735-1097(00)01054-8Weiss, B. D. (1983). Nontraumatic injuries in amateur long distance bicyclists. The American Journal of Sports Medicine, 13(3), 187–192. doi:10.1177/036354658501300308info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCiclismoCarreras de bicicletas - Carreras (Deporte)Oxígeno en el organismoPedallingaccelerationoxygen consumptiontransmissibilityEMGPedaleoAceleraciónConsumo de oxigenoTransmisibilidadEMGTHUMBNAILAnalysis of muscular activity and dynamic response of the lower limb adding vibration to cycling.pngAnalysis of muscular activity and dynamic response of the lower limb adding vibration to cycling.pngimage/png74618https://repositorio.escuelaing.edu.co/bitstream/001/1556/6/Analysis%20of%20muscular%20activity%20and%20dynamic%20response%20of%20the%20lower%20limb%20adding%20vibration%20to%20cycling.png6181bc8d89395f8ec4859a179a815d95MD56open accessAnalysis of muscular activity and dynamic response of the lower limb adding vibration to cycling.pdf.jpgAnalysis of muscular activity and dynamic response of the lower limb adding vibration to cycling.pdf.jpgGenerated Thumbnailimage/jpeg9459https://repositorio.escuelaing.edu.co/bitstream/001/1556/7/Analysis%20of%20muscular%20activity%20and%20dynamic%20response%20of%20the%20lower%20limb%20adding%20vibration%20to%20cycling.pdf.jpgf18a8f937b9575c5bc5cf217054d9fe8MD57metadata only accessORIGINALAnalysis of muscular activity and dynamic response of the lower limb adding vibration to cycling.pdfAnalysis of muscular activity and dynamic response of the lower limb adding vibration to cycling.pdfArtículo de revistaapplication/pdf1984517https://repositorio.escuelaing.edu.co/bitstream/001/1556/5/Analysis%20of%20muscular%20activity%20and%20dynamic%20response%20of%20the%20lower%20limb%20adding%20vibration%20to%20cycling.pdff995140acc1dac863dd91f1c5cd6b094MD55metadata only accessTEXTAnalysis of muscular activity and dynamic response of the lower limb adding vibration to cycling.pdf.txtAnalysis of muscular activity and dynamic response of the lower limb adding vibration to cycling.pdf.txtExtracted texttext/plain4https://repositorio.escuelaing.edu.co/bitstream/001/1556/4/Analysis%20of%20muscular%20activity%20and%20dynamic%20response%20of%20the%20lower%20limb%20adding%20vibration%20to%20cycling.pdf.txtce17bbb4d4f1cbe9a2413e4ea88bb0b2MD54open accessLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1556/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open access001/1556oai:repositorio.escuelaing.edu.co:001/15562022-11-25 03:01:51.671metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK