Open source intelligence (OSINT) as support of cybersecurity operations. Use of OSINT in a colombian context and sentiment Analysis

Open source intelligence (OSINT) is used to obtain and analyze information related to adversaries, so it can support risk assessments aimed to prevent damages against critical assets. This paper presents a research about different OSINT technologies and how these can be used to perform cyber intelli...

Full description

Autores:
Hernandez Mediná, Martin Jose
Pinzón Hernández, Cristian Camilo
Díaz López, Daniel Orlando
Garcia Ruiz, Juan Carlos
Pinto Rico, Ricardo Andrés
Tipo de recurso:
Article of investigation
Fecha de publicación:
2018
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/1459
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/1459
https://doi.org/10.14483/2322939X.13504
https://revistas.udistrital.edu.co/index.php/vinculos/article/view/13504
Palabra clave:
OSINT
Ciberinteligencia (seguridad informática)
Seguridad informática
Cyberintelligence
Open source intelligence
Adversary profiling
Machine learning
Sentiment analysis
Data science
Análisis de sentimientos
Aprendizaje automático
Ciber inteligencia
Ciencia de datos
Inteligencia de fuentes abiertas
Perfilamiento de adversarios
Rights
openAccess
License
https://creativecommons.org/licenses/by/4.0/
id ESCUELAIG2_0db0b67528c505e01020d74d2cee8d7b
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/1459
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.spa.fl_str_mv Open source intelligence (OSINT) as support of cybersecurity operations. Use of OSINT in a colombian context and sentiment Analysis
dc.title.alternative.spa.fl_str_mv Inteligencia de fuentes abierta (OSINT) para operaciones de ciberseguridad. “Aplicación de OSINT en un contexto colombiano y análisis de sentimientos
title Open source intelligence (OSINT) as support of cybersecurity operations. Use of OSINT in a colombian context and sentiment Analysis
spellingShingle Open source intelligence (OSINT) as support of cybersecurity operations. Use of OSINT in a colombian context and sentiment Analysis
OSINT
Ciberinteligencia (seguridad informática)
Seguridad informática
Cyberintelligence
Open source intelligence
Adversary profiling
Machine learning
Sentiment analysis
Data science
Análisis de sentimientos
Aprendizaje automático
Ciber inteligencia
Ciencia de datos
Inteligencia de fuentes abiertas
Perfilamiento de adversarios
title_short Open source intelligence (OSINT) as support of cybersecurity operations. Use of OSINT in a colombian context and sentiment Analysis
title_full Open source intelligence (OSINT) as support of cybersecurity operations. Use of OSINT in a colombian context and sentiment Analysis
title_fullStr Open source intelligence (OSINT) as support of cybersecurity operations. Use of OSINT in a colombian context and sentiment Analysis
title_full_unstemmed Open source intelligence (OSINT) as support of cybersecurity operations. Use of OSINT in a colombian context and sentiment Analysis
title_sort Open source intelligence (OSINT) as support of cybersecurity operations. Use of OSINT in a colombian context and sentiment Analysis
dc.creator.fl_str_mv Hernandez Mediná, Martin Jose
Pinzón Hernández, Cristian Camilo
Díaz López, Daniel Orlando
Garcia Ruiz, Juan Carlos
Pinto Rico, Ricardo Andrés
dc.contributor.author.none.fl_str_mv Hernandez Mediná, Martin Jose
Pinzón Hernández, Cristian Camilo
Díaz López, Daniel Orlando
Garcia Ruiz, Juan Carlos
Pinto Rico, Ricardo Andrés
dc.contributor.researchgroup.spa.fl_str_mv CTG-Informática
dc.subject.armarc.eng.fl_str_mv OSINT
topic OSINT
Ciberinteligencia (seguridad informática)
Seguridad informática
Cyberintelligence
Open source intelligence
Adversary profiling
Machine learning
Sentiment analysis
Data science
Análisis de sentimientos
Aprendizaje automático
Ciber inteligencia
Ciencia de datos
Inteligencia de fuentes abiertas
Perfilamiento de adversarios
dc.subject.armarc.spa.fl_str_mv Ciberinteligencia (seguridad informática)
Seguridad informática
dc.subject.proposal.eng.fl_str_mv Cyberintelligence
Open source intelligence
Adversary profiling
Machine learning
Sentiment analysis
Data science
dc.subject.proposal.spa.fl_str_mv Análisis de sentimientos
Aprendizaje automático
Ciber inteligencia
Ciencia de datos
Inteligencia de fuentes abiertas
Perfilamiento de adversarios
description Open source intelligence (OSINT) is used to obtain and analyze information related to adversaries, so it can support risk assessments aimed to prevent damages against critical assets. This paper presents a research about different OSINT technologies and how these can be used to perform cyber intelligence tasks. One of the key components in the operation of OSINT tools are the “transforms”, which are used to establish relations between entities of information from queries to different open sources. A set of transforms addressed to the Colombian context are presented, which were implemented and contributed to the community allowing to the law enforcement agencies to develop information gathering process from Colombian open sources. Additionally, this paper shows the implementation of three machine learning models used to perform sentiment analysis over the information obtained from an adversary. Sentiment analysis can be extremely useful to understand the motivation that an adversary can have and, in this way, define proper cyber defense strategies. Finally, some challenges related to the application of OSINT techniques are identified and described.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2021-05-20T23:11:38Z
2021-10-01T17:22:49Z
dc.date.available.none.fl_str_mv 2021-05-20
2021-10-01T17:22:49Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1794-211X
2322-939X
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/1459
dc.identifier.doi.none.fl_str_mv https://doi.org/10.14483/2322939X.13504
dc.identifier.url.none.fl_str_mv https://revistas.udistrital.edu.co/index.php/vinculos/article/view/13504
identifier_str_mv 1794-211X
2322-939X
url https://repositorio.escuelaing.edu.co/handle/001/1459
https://doi.org/10.14483/2322939X.13504
https://revistas.udistrital.edu.co/index.php/vinculos/article/view/13504
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 214
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.spa.fl_str_mv 195
dc.relation.citationvolume.spa.fl_str_mv 15
dc.relation.indexed.spa.fl_str_mv N/A
dc.relation.ispartofjournal.spa.fl_str_mv Vinculos
dc.relation.references.spa.fl_str_mv M. Glassman and M. J. Kang, “Intelligence in the internet age: The emergence and evolu-tion of Open Source Intelligence (OSINT)”, Computers in Human Behavior, vol. 28, no. 2, pp. 673–682, 2012, https://doi.org/10.1016/j.chb.2011.11.014
L. brotherston and A. berlin, “Defensive se-curity handbook: best practices for securing infrastructure”. O’Reilly Media, 2017
W. Alcorn, C. Frichot, and M. Orrù, “The brow-ser hacker’s handbook”,New Jersey: John Wiley and Sons, 2014.
M. Gregg, “Certified Ethical Hacker (CEH) Ver-sion 9 Cert Guide” London: Pearson Education, 2017.
P. Engebretson, “The basics of hacking and pe-netration testing” Syngressr Publishing, 2013.
D. bradbury, “In plain view: open source inte-lligence”, Computers in Human Behavior, no. 4, pp. 5–9, 2011.
b. de S. G. Rodrigues, “Open-source intelligen-ce em sistemas SIEM” Lisboa: Universidade de Lisboa, 2015.
C. Pérez, “Minería de datos: técnicas y herra-mientas” Paraninfo Cengage Learning, 2007.
G. Subramanian, “R Data analysis projects: build end to end analytics systems to get deeper insights from your data”, birmingham: Packt Publishing, 2017.
L. Zhang and b. Liu, “Sentiment Analysis and Opinion Mining”. in Encyclopedia of Ma-chine Learning and Data Mining, boston: Springer, 2017, pp. 1152–1161, https://doi.org/10.1007/978-1-4899-7687-1_907
E. Cambria, b. Schuller, Y. Xia, and C. Havasi, “New Avenues in Opinion Mining and Senti-ment Analysis”, IEEE Intelligent Systems, vol. 28, no. 2, pp. 15–21, 2013, https://doi.org/10.1109/MIS.2013.30
A. Ortony, G. L. Clore, and A. Collins, “The cognitive structure of emotions” Cambridge: Cambridge University Press, 1988, https://doi.org/10.1017/CbO9780511571299
R. A. Stevenson, J. A. Mikels, and T. W. Ja-mes, “Characterization of the Affective Nor-ms for English Words by discrete emotional categories”, Behavior Research Methods, vol. 39, no. 4, pp. 1020–1024, 2007, https://doi.org/10.3758/bF03192999
P. D. Turney, “Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews”, In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphia, july 2002, pp. 417-424.
S. M. Kim and E. Hovy, “Identifying and Analyzing Judgment Opinions”, Association for Computatio-nal Linguistics Stroudsburg, pp. 200–207, 2006, https://doi.org/10.3115/1220835.1220861
Liangxiao Jiang, H. Zhang, and Zhihua Cai, “A Novel bayes Model: Hidden Naive bayes”, IEEE Transactions on Knowledge and Data Enginee-ring, vol. 21, no. 10, pp. 1361–1371, 2009, https://doi.org/10.1109/TKDE.2008.234
Y. Yang and G. I. Webb, “A Comparative Study of Discretization Methods for Naive-bayes Clas-sifiers”, J. Res., vol. 2, p. 267-324, 2007.
M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and b. Scholkopf, “Support vector machines”, IEEE Intelligent Systems and their Applications, vol. 13, no. 4, pp. 18–28, 1998, https://doi.org/10.1109/5254.708428
F. Sebastiani, “Machine Learning in Automated Text Categorization”, ACM Computing Sur-veys, vol. 34, no. 1, pp. 1–47, 1999, https://doi.org/10.1145/505282.505283
b. Pang and L. Lee, “A Sentimental Education: Sentiment Analysis Using Subjectivity Sum-marization based on Minimum Cuts”, Proce-edings of ACL, pp. 271-278, 2004, https://doi.org/10.3115/1218955.1218990
T. Wilson, J. Wiebe, and P. Hoffmann, “Recogni-zing contextual polarity in phrase-level sentiment analysis”, Proceedings of the conference on Hu-man Language Technology and Empirical Methods in Natural Language Processing, pp. 347–354, 2005, https://doi.org/10.3115/1220575.1220619
H. Wang, D. Can, A. Kazemzadeh, F. bar and S. Narayanan, “A System for Real-time Twitter Sentiment Analysis of 2012 U.S. Presidential Election Cycl,”. In 50th Annual Meeting of the Association for Computational Linguistics, Jeju Island, july, 2012.
C-SPAN, “Robert Mueller on Cyberse-curity” [En línea] Disponible en: ht-tps://www.c-span.org/video/?319726-3/robert-mueller-cybersecurity&start=1876
Departamento Nacional de Planeación, “CONPES 3701 - Lineamientos de Política para Ciberseguridad y Ciberdefensa. Colombia”. Consejo Nacional de Política Económica y So-cial, 2011.
R. Rodríguez, “Guerra Asimétrica”. [En línea]. Disponible en: https://dialnet.unirioja.es/des-carga/articulo/4602435.pdf
J. Nye, “bound to Lead: The Changing Nature of American Power” Hachette U. basic books, 2016.
G. S. Medero, “Ciberespacio y el crimen or-ganizado. Los nuevos desafíos del siglo XXI”, Revista Enfoques, vol.10, no. 16, pp. 71–87, 2012.
R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon”, IEEE Security and Privacy, vol. 9, no. 3, pp. 49–51, 2011, https://doi.org/10.1109/MSP.2011.67
G. Friedman, “The next 100 years: a forecast for the 21st century”, Knopf Doubleday Publishing Group, 2009, pp. 193–212.
R. Steele, “Handbook of Intelligence Studies” London: Routledge, 2007.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
Atribución 4.0 Internacional (CC BY 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 20 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Distrital Francisco José de Caldas-Facultad Tecnológica
dc.publisher.place.spa.fl_str_mv Colombia
dc.source.spa.fl_str_mv https://revistas.udistrital.edu.co/index.php/vinculos/article/view/13504
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/1459/1/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1459/2/Open%20source%20intelligence%20%28OSINT%29%20as%20support%20of%20cybersecurity%20operations.%20Use%20of%20OSINT%20in%20a%20colombian%20context%20and%20sentiment%20Analysis.pdf
https://repositorio.escuelaing.edu.co/bitstream/001/1459/3/Open%20source%20intelligence%20%28OSINT%29%20as%20support%20of%20cybersecurity%20operations.%20Use%20of%20OSINT%20in%20a%20colombian%20context%20and%20sentiment%20Analysis.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/1459/4/Open%20source%20intelligence%20%28OSINT%29%20as%20support%20of%20cybersecurity%20operations.%20Use%20of%20OSINT%20in%20a%20colombian%20context%20and%20sentiment%20Analysis.pdf.jpg
bitstream.checksum.fl_str_mv 5a7ca94c2e5326ee169f979d71d0f06e
73268ca60f61cc07c620ad4c09aa35c1
38e2c139d2ba211e5151cb413b33c183
c9e421dcbb2e3a8d71697055277d63e4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355622676660224
spelling Hernandez Mediná, Martin Joseba5eee6d42c837fe2d70e9e88b0b521f600Pinzón Hernández, Cristian Camilo158382a94c73bf7c25639480988b2515600Díaz López, Daniel Orlandoa6116efa385deb85832ad5a8a801ab68600Garcia Ruiz, Juan Carlos1e5e9669d6ab22f310cbfa989a30ea60600Pinto Rico, Ricardo Andrése7cae25174364a79260842503a5d0b75600CTG-Informática2021-05-20T23:11:38Z2021-10-01T17:22:49Z2021-05-202021-10-01T17:22:49Z20181794-211X2322-939Xhttps://repositorio.escuelaing.edu.co/handle/001/1459https://doi.org/10.14483/2322939X.13504https://revistas.udistrital.edu.co/index.php/vinculos/article/view/13504Open source intelligence (OSINT) is used to obtain and analyze information related to adversaries, so it can support risk assessments aimed to prevent damages against critical assets. This paper presents a research about different OSINT technologies and how these can be used to perform cyber intelligence tasks. One of the key components in the operation of OSINT tools are the “transforms”, which are used to establish relations between entities of information from queries to different open sources. A set of transforms addressed to the Colombian context are presented, which were implemented and contributed to the community allowing to the law enforcement agencies to develop information gathering process from Colombian open sources. Additionally, this paper shows the implementation of three machine learning models used to perform sentiment analysis over the information obtained from an adversary. Sentiment analysis can be extremely useful to understand the motivation that an adversary can have and, in this way, define proper cyber defense strategies. Finally, some challenges related to the application of OSINT techniques are identified and described.La Inteligencia de fuentes abiertas (OSINT) es una rama de la ciber inteligencia usada para obtener y analizar información relacionada a posibles adversarios, para que esta pueda apoyar evaluaciones de riesgo y ayudar a prevenir afectaciones contra activos críticos. Este artículo presenta una investigación acerca de diferentes tecnologías OSINT y como estas pueden ser usadas para desarrollar tareas de ciber inteligencia de una nación. Un conjunto de transformadas apropiadas para un contexto colombiano son presentadas y contribuidas a la comunidad, permitiendo a organismos de seguridad adelantar procesos de recolección de información de fuentes abiertas colombianas. Sin embargo, el verdadero aprovechamiento de la información recolectada se da mediante la implementación de tres modelos de aprendizaje automático usados para desarrollar análisis de sentimientos sobre dicha información, con el fin de saber la posición del adversario respecto a determinados temas y así entender la motivación que puede tener, lo cual permite definir estrategias de ciberdefensa apropiadas. Finalmente, algunos desafíos relacionados a la aplicación de técnicas OSINT también son identificados y descritos al respecto de su aplicación por agencias de seguridad del estado.Estudiante Ingeniería de Sistemas. Escuela Colombiana de Ingeniería Julio Garavito. Correo electrónico: ricardo.pinto@mail.escuelaing.edu.co Estudiante Ingeniería de Sistemas. Escuela Colombiana de Ingeniería Julio Garavito. Correo electrónico: martin.hernandez@mail.escuelaing.edu.co Estudiante Ingeniería de Sistemas. Escuela Colombiana de Ingeniería Julio Garavito. Correo electrónico: cristian.pinzon@mail.escuelaing.edu.co Doctor en Informática; profesor asistente, Escuela Colombiana de Ingeniería Julio Garavito. Correo electrónico: daniel.diaz@escuelaing.edu.co Especialista en Seguridad Informática; jefe División de Ciberdefensa, Dirección de Cibernética Naval. Armada Nacional. Correo electrónico: juan.garciaru@armada.mil.coA+T AcTuAlidAd TecnologicA20 páginasapplication/pdfengUniversidad Distrital Francisco José de Caldas-Facultad TecnológicaColombiahttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessAtribución 4.0 Internacional (CC BY 4.0)http://purl.org/coar/access_right/c_abf2https://revistas.udistrital.edu.co/index.php/vinculos/article/view/13504Open source intelligence (OSINT) as support of cybersecurity operations. Use of OSINT in a colombian context and sentiment AnalysisInteligencia de fuentes abierta (OSINT) para operaciones de ciberseguridad. “Aplicación de OSINT en un contexto colombiano y análisis de sentimientosArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85214219515N/AVinculosM. Glassman and M. J. Kang, “Intelligence in the internet age: The emergence and evolu-tion of Open Source Intelligence (OSINT)”, Computers in Human Behavior, vol. 28, no. 2, pp. 673–682, 2012, https://doi.org/10.1016/j.chb.2011.11.014L. brotherston and A. berlin, “Defensive se-curity handbook: best practices for securing infrastructure”. O’Reilly Media, 2017W. Alcorn, C. Frichot, and M. Orrù, “The brow-ser hacker’s handbook”,New Jersey: John Wiley and Sons, 2014.M. Gregg, “Certified Ethical Hacker (CEH) Ver-sion 9 Cert Guide” London: Pearson Education, 2017.P. Engebretson, “The basics of hacking and pe-netration testing” Syngressr Publishing, 2013.D. bradbury, “In plain view: open source inte-lligence”, Computers in Human Behavior, no. 4, pp. 5–9, 2011.b. de S. G. Rodrigues, “Open-source intelligen-ce em sistemas SIEM” Lisboa: Universidade de Lisboa, 2015.C. Pérez, “Minería de datos: técnicas y herra-mientas” Paraninfo Cengage Learning, 2007.G. Subramanian, “R Data analysis projects: build end to end analytics systems to get deeper insights from your data”, birmingham: Packt Publishing, 2017.L. Zhang and b. Liu, “Sentiment Analysis and Opinion Mining”. in Encyclopedia of Ma-chine Learning and Data Mining, boston: Springer, 2017, pp. 1152–1161, https://doi.org/10.1007/978-1-4899-7687-1_907E. Cambria, b. Schuller, Y. Xia, and C. Havasi, “New Avenues in Opinion Mining and Senti-ment Analysis”, IEEE Intelligent Systems, vol. 28, no. 2, pp. 15–21, 2013, https://doi.org/10.1109/MIS.2013.30A. Ortony, G. L. Clore, and A. Collins, “The cognitive structure of emotions” Cambridge: Cambridge University Press, 1988, https://doi.org/10.1017/CbO9780511571299R. A. Stevenson, J. A. Mikels, and T. W. Ja-mes, “Characterization of the Affective Nor-ms for English Words by discrete emotional categories”, Behavior Research Methods, vol. 39, no. 4, pp. 1020–1024, 2007, https://doi.org/10.3758/bF03192999P. D. Turney, “Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews”, In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphia, july 2002, pp. 417-424.S. M. Kim and E. Hovy, “Identifying and Analyzing Judgment Opinions”, Association for Computatio-nal Linguistics Stroudsburg, pp. 200–207, 2006, https://doi.org/10.3115/1220835.1220861Liangxiao Jiang, H. Zhang, and Zhihua Cai, “A Novel bayes Model: Hidden Naive bayes”, IEEE Transactions on Knowledge and Data Enginee-ring, vol. 21, no. 10, pp. 1361–1371, 2009, https://doi.org/10.1109/TKDE.2008.234Y. Yang and G. I. Webb, “A Comparative Study of Discretization Methods for Naive-bayes Clas-sifiers”, J. Res., vol. 2, p. 267-324, 2007.M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and b. Scholkopf, “Support vector machines”, IEEE Intelligent Systems and their Applications, vol. 13, no. 4, pp. 18–28, 1998, https://doi.org/10.1109/5254.708428F. Sebastiani, “Machine Learning in Automated Text Categorization”, ACM Computing Sur-veys, vol. 34, no. 1, pp. 1–47, 1999, https://doi.org/10.1145/505282.505283b. Pang and L. Lee, “A Sentimental Education: Sentiment Analysis Using Subjectivity Sum-marization based on Minimum Cuts”, Proce-edings of ACL, pp. 271-278, 2004, https://doi.org/10.3115/1218955.1218990T. Wilson, J. Wiebe, and P. Hoffmann, “Recogni-zing contextual polarity in phrase-level sentiment analysis”, Proceedings of the conference on Hu-man Language Technology and Empirical Methods in Natural Language Processing, pp. 347–354, 2005, https://doi.org/10.3115/1220575.1220619H. Wang, D. Can, A. Kazemzadeh, F. bar and S. Narayanan, “A System for Real-time Twitter Sentiment Analysis of 2012 U.S. Presidential Election Cycl,”. In 50th Annual Meeting of the Association for Computational Linguistics, Jeju Island, july, 2012.C-SPAN, “Robert Mueller on Cyberse-curity” [En línea] Disponible en: ht-tps://www.c-span.org/video/?319726-3/robert-mueller-cybersecurity&start=1876Departamento Nacional de Planeación, “CONPES 3701 - Lineamientos de Política para Ciberseguridad y Ciberdefensa. Colombia”. Consejo Nacional de Política Económica y So-cial, 2011.R. Rodríguez, “Guerra Asimétrica”. [En línea]. Disponible en: https://dialnet.unirioja.es/des-carga/articulo/4602435.pdfJ. Nye, “bound to Lead: The Changing Nature of American Power” Hachette U. basic books, 2016.G. S. Medero, “Ciberespacio y el crimen or-ganizado. Los nuevos desafíos del siglo XXI”, Revista Enfoques, vol.10, no. 16, pp. 71–87, 2012.R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon”, IEEE Security and Privacy, vol. 9, no. 3, pp. 49–51, 2011, https://doi.org/10.1109/MSP.2011.67G. Friedman, “The next 100 years: a forecast for the 21st century”, Knopf Doubleday Publishing Group, 2009, pp. 193–212.R. Steele, “Handbook of Intelligence Studies” London: Routledge, 2007.OSINTCiberinteligencia (seguridad informática)Seguridad informáticaCyberintelligenceOpen source intelligenceAdversary profilingMachine learningSentiment analysisData scienceAnálisis de sentimientosAprendizaje automáticoCiber inteligenciaCiencia de datosInteligencia de fuentes abiertasPerfilamiento de adversariosLICENSElicense.txttext/plain1881https://repositorio.escuelaing.edu.co/bitstream/001/1459/1/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD51open accessORIGINALOpen source intelligence (OSINT) as support of cybersecurity operations. Use of OSINT in a colombian context and sentiment Analysis.pdfapplication/pdf891149https://repositorio.escuelaing.edu.co/bitstream/001/1459/2/Open%20source%20intelligence%20%28OSINT%29%20as%20support%20of%20cybersecurity%20operations.%20Use%20of%20OSINT%20in%20a%20colombian%20context%20and%20sentiment%20Analysis.pdf73268ca60f61cc07c620ad4c09aa35c1MD52metadata only accessTEXTOpen source intelligence (OSINT) as support of cybersecurity operations. Use of OSINT in a colombian context and sentiment Analysis.pdf.txtOpen source intelligence (OSINT) as support of cybersecurity operations. Use of OSINT in a colombian context and sentiment Analysis.pdf.txtExtracted texttext/plain69551https://repositorio.escuelaing.edu.co/bitstream/001/1459/3/Open%20source%20intelligence%20%28OSINT%29%20as%20support%20of%20cybersecurity%20operations.%20Use%20of%20OSINT%20in%20a%20colombian%20context%20and%20sentiment%20Analysis.pdf.txt38e2c139d2ba211e5151cb413b33c183MD53open accessTHUMBNAILOpen source intelligence (OSINT) as support of cybersecurity operations. Use of OSINT in a colombian context and sentiment Analysis.pdf.jpgOpen source intelligence (OSINT) as support of cybersecurity operations. Use of OSINT in a colombian context and sentiment Analysis.pdf.jpgGenerated Thumbnailimage/jpeg14930https://repositorio.escuelaing.edu.co/bitstream/001/1459/4/Open%20source%20intelligence%20%28OSINT%29%20as%20support%20of%20cybersecurity%20operations.%20Use%20of%20OSINT%20in%20a%20colombian%20context%20and%20sentiment%20Analysis.pdf.jpgc9e421dcbb2e3a8d71697055277d63e4MD54open access001/1459oai:repositorio.escuelaing.edu.co:001/14592022-08-08 17:56:14.946metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK