A comparative surface analysis of explanted hip joint prostheses made of different biomedical alloys

The introduction of modular design in total hip arthroplasty has enabled the use of different materials in one single configuration and the adjustment of the prosthesis to the patient’s body, and facilitated medical revisions. However, modularity leads to the presence of new interfaces created betwe...

Full description

Autores:
Bermúdez-Castañeda, Angela
Esguerra Arce, Johanna
Esguerra Arce, Adriana
Vargas-Pabón, Sofia Valentina
Ortiz-Martínez, Juan Guillermo
Blanco-Estupiñán, David Leonardo
Castaño, Juan Guillermo
Mischler, Stefano
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio:
Repositorio Institucional ECI
Idioma:
eng
OAI Identifier:
oai:repositorio.escuelaing.edu.co:001/3331
Acceso en línea:
https://repositorio.escuelaing.edu.co/handle/001/3331
https://repositorio.escuelaing.edu.co/
Palabra clave:
Steel
Acero
Electrochemistry
Electroquímica
Biomedical sciences
Ciencias biomédicas
Retrieval explants
Tribocorrosion
Modular hip joint implants
wear
Corrosión
Explantes
Modulares de cadera
Desgaste
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id ESCUELAIG2_070559637f495ace9fa25292fab3dad4
oai_identifier_str oai:repositorio.escuelaing.edu.co:001/3331
network_acronym_str ESCUELAIG2
network_name_str Repositorio Institucional ECI
repository_id_str
dc.title.eng.fl_str_mv A comparative surface analysis of explanted hip joint prostheses made of different biomedical alloys
title A comparative surface analysis of explanted hip joint prostheses made of different biomedical alloys
spellingShingle A comparative surface analysis of explanted hip joint prostheses made of different biomedical alloys
Steel
Acero
Electrochemistry
Electroquímica
Biomedical sciences
Ciencias biomédicas
Retrieval explants
Tribocorrosion
Modular hip joint implants
wear
Corrosión
Explantes
Modulares de cadera
Desgaste
title_short A comparative surface analysis of explanted hip joint prostheses made of different biomedical alloys
title_full A comparative surface analysis of explanted hip joint prostheses made of different biomedical alloys
title_fullStr A comparative surface analysis of explanted hip joint prostheses made of different biomedical alloys
title_full_unstemmed A comparative surface analysis of explanted hip joint prostheses made of different biomedical alloys
title_sort A comparative surface analysis of explanted hip joint prostheses made of different biomedical alloys
dc.creator.fl_str_mv Bermúdez-Castañeda, Angela
Esguerra Arce, Johanna
Esguerra Arce, Adriana
Vargas-Pabón, Sofia Valentina
Ortiz-Martínez, Juan Guillermo
Blanco-Estupiñán, David Leonardo
Castaño, Juan Guillermo
Mischler, Stefano
dc.contributor.author.none.fl_str_mv Bermúdez-Castañeda, Angela
Esguerra Arce, Johanna
Esguerra Arce, Adriana
Vargas-Pabón, Sofia Valentina
Ortiz-Martínez, Juan Guillermo
Blanco-Estupiñán, David Leonardo
Castaño, Juan Guillermo
Mischler, Stefano
dc.contributor.researchgroup.spa.fl_str_mv Diseño Sostenible en Ingeniería Mecánica (DSIM)
dc.subject.armarc.none.fl_str_mv Steel
Acero
Electrochemistry
Electroquímica
Biomedical sciences
Ciencias biomédicas
topic Steel
Acero
Electrochemistry
Electroquímica
Biomedical sciences
Ciencias biomédicas
Retrieval explants
Tribocorrosion
Modular hip joint implants
wear
Corrosión
Explantes
Modulares de cadera
Desgaste
dc.subject.proposal.eng.fl_str_mv Retrieval explants
Tribocorrosion
Modular hip joint implants
wear
Corrosión
dc.subject.proposal.spa.fl_str_mv Explantes
Modulares de cadera
Desgaste
description The introduction of modular design in total hip arthroplasty has enabled the use of different materials in one single configuration and the adjustment of the prosthesis to the patient’s body, and facilitated medical revisions. However, modularity leads to the presence of new interfaces created between pieces in contact, raising the issue of degradation. Tribocorrosion phenomena have been identified as the main degradation mechanism due to the mechanical, chemical, and electrochemical conditions acting on the materials. In addition, conditions inside the human body are unclear, regarding electrochemical settings and the interaction between the electrochemical and mechanical action. This work is focused on the degradation of monopolar hip joint implants made from biomedical alloys such as stainless steel, Ti, and CoCr alloys. Three cases are presented and analyzed in terms of the degradation level along the trunnion length. Surface analysis done on a titanium trunnion showed a significant ploughing on the distal part, compared to what was found for stainless steel and cobalt-chromium alloys, which can produce a stuck in this area. Meanwhile, in the proximal part, wear debris is found, which suggests more movement in the internal part. Although few debris particles were identified in CoCr trunnion, a large amount of material inside the contact was observed. This could be related to the ploughing generated in the distal thread pattern, which allowed the material to come inside and outside the contact.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-09
dc.date.accessioned.none.fl_str_mv 2024-10-18T00:17:08Z
dc.date.available.none.fl_str_mv 2024-10-18T00:17:08Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 2422-2844
dc.identifier.uri.none.fl_str_mv https://repositorio.escuelaing.edu.co/handle/001/3331
dc.identifier.eissn.spa.fl_str_mv 2422-2844
dc.identifier.instname.spa.fl_str_mv Escuela Colombiana de Ingeniería Julio Garavito
dc.identifier.reponame.spa.fl_str_mv Repositorio digital
dc.identifier.repourl.spa.fl_str_mv https://repositorio.escuelaing.edu.co/
identifier_str_mv 2422-2844
Escuela Colombiana de Ingeniería Julio Garavito
Repositorio digital
url https://repositorio.escuelaing.edu.co/handle/001/3331
https://repositorio.escuelaing.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 47
dc.relation.citationstartpage.spa.fl_str_mv 35
dc.relation.citationvolume.spa.fl_str_mv 100
dc.relation.ispartofjournal.eng.fl_str_mv Revista Facultad de Ingeniería, Universidad de Antioquia
dc.relation.references.spa.fl_str_mv S. R. Knight, R. Aujla, and y S. P. Biswas, “Total hip arthroplasty - over 100 years of operative history,” Journal orthopedic reviews, vol. 3, no. 2, Sep. 06
S. Affatato, “1 - the history of total hip arthroplasty (tha),” in Perspectives in Total Hip Arthroplasty. Woodhead Publishing, 2014, pp. 3–18. [Online]. Available: https://doi.org/10.1533/ 9781782420392.1.3
(1999-2019, Sep-Dec.) Hip, knee & shoulder arthroplasty. Australian Orthopaedic Association National Joint Replacement Registry. Adelaide, Aus. [Online]. Available: t.ly/v5cC
] C. I. Esposito, T. M. Wright, S. B. Goodman, and y D. J. Berry, “What is the trouble with trunnions?” Clinical Orthopaedics and Related Research, no. 479, Jul. 01, 2014. [Online]. Available: https://doi.org/10.1007/s11999-014-3746-z
J. M. Nossa and et. al., “Reemplazo de cadera en pacientes jóvenes: Experiencia con vástago corto preservador de cuello femoral,” Revista Colombiana de Ortopedia y Traumatología, vol. 33, no. 3-4, Sep-Dec 2019. [Online]. Available: https://doi.org/10.1016/j.rccot. 2020.02.011
F. D. Puccio and L. Mattei, “Biotribology of artificial hip joints,” World Journal of Orthopedics, vol. 6, no. 1, Jan. 18, 2015. [Online]. Available: https://doi.org/10.5312/wjo.v6.i1.77
I. D. Martino, J. B. Assini, M. E. Elpers, T. M. Wright, and G. H. Westrich, “Corrosion and fretting of a modular hip system: A retrieval analysis of 60 rejuvenate stems,” The Journal of Arthroplasty, vol. 30, no. 8, Aug. 2015. [Online]. Available: https: //doi.org/10.1016/j.arth.2015.03.010
A. M. Kop and E. Swarts, “Corrosion of a hip stem with a modular neck taper junction: A retrieval study of 16 cases,” The Journal of Arthroplasty, vol. 24, no. 7, Oct. 2009. [Online]. Available: https://doi.org/10.1016/j.arth.2008.09.009
] M. L. Mroczkowski, J. S. Hertzler, S. M. Humphrey, T. Johnson, and C. R. Blanchard, “Effect of impact assembly on the fretting corrosion of modular hip taperss,” Journal of Orthopaedic Research, vol. 24, no. 2, Feb. 2006. [Online]. Available: https://doi.org/10.1002/ jor.20048
J. Parekh, H. Jones, N. Chan, and y P. Noble, “Effect of angular mismatch tolerance on trunnion micro-motion in metal-on-metal tha designs,” Orthopaedic Proceedings, vol. 95-B, no. SUPP-34, Feb. 21, 2018. [Online]. Available: https://online.boneandjoint.org.uk/ doi/abs/10.1302/1358-992x.95bsupp_34.ista2013-261
S. Y. Jauch, G. Huber, H. Haschke, K. Sellenschloh, and M. M. Morlock, “Design parameters and the material coupling are decisive for the micromotion magnitude at the stem–neck interface of bi-modular hip implants,” Medical Engineering & Physics, vol. 36, no. 3, Mar. 2014. [Online]. Available: https://doi.org/10.1016/j. medengphy.2013.11.009
H. Haschke, S. Y. Jauch-Matt, K. Sellenschloh, G. Huber, and y M. M. Morlock, “Assembly force and taper angle difference influence the relative motion at the stem–neck interface of bi-modular hip prostheses,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 230, no. 7, May. 10, 2016. [Online]. Available: https://doi.org/10. 1177/0954411916648717
] V. Pacheco-Marte and S. Roldán-Vasco, “Enzymes and cytokines disease in total hip arthroplasty: promoters of immune loosening,” Revista de la Facultad de Medicina, vol. 66, no. 3, 2018. [Online]. Available: https://doi.org/10.15446/revfacmed.v66n3.61525
total de cadera y recubrimientos bioactivos de quitosano para mejorar su desempeño,” Revista Ingeniería Biomédica, vol. 10, no. 19, Jan-Jun 2016. [Online]. Available: https: //dialnet.unirioja.es/servlet/articulo?codigo=6155540
J. E. Lemons, “Retrieval and analysis of explanted and in situ implants including bone grafts,” Oral and Maxillofacial Surgery Clinics, vol. 22, no. 3, Aug. 01 2010. [Online]. Available: https: //doi.org/10.1016/j.coms.2010.06.002
G. Gkagkalis, P. Mettraux, P. Omoumi, S. Mischler, and H. A. Rüdiger, “Adverse tissue reaction to corrosion at the neck-stem junction after modular primary total hip arthroplasty,” Orthopaedics & Traumatology: Surgery & Research, vol. 101, no. 1, Feb. 2015.[Online]. Available: https://doi.org/10.1016/j.otsr.2014.11.003
D. O. Molloy and et al., “Fretting and corrosion in modular-neck total hip arthroplasty femoral stems,” The Journal of Bone & Joint Surgery, vol. 96, no. 6, Mar. 19, 2014. [Online]. Available: https://doi.org/10.2106/JBJS.L.01625
S. D. Werner, J. V. Bono, S. Nandi, D. M. Ward, and C. T. Talmo, “Adverse tissue reactions in modular exchangeable neck implants: A report of two cases,” The Journal of Arthroplasty, vol. 28, no. 3, Mar. 2013. [Online]. Available: https://doi.org/10.1016/j.arth.2012.07.026
M. Rodelo, J. Muñiz, A. Diaz, and M. M. Cely, “Caracterización de componentes modulares en implantes de cadera retirados anticipadamente de pacientes en las diferentes clínicas en la ciudad de barranquilla,” Prospectiva, vol. 10, no. 1, Jan-Jun 2012. [Online]. Available: https://www.redalyc.org/pdf/4962/496250733016.pd
A. Lanzutti and et al., “Corrosion fatigue failure of a high carbon cocrmo modular hip prosthesis: Failure analysis and electrochemical study,” Engineering Failure Analysis, vol. 105, Nov. 2019. [Online]. Available: https://doi.org/10.1016/j.engfailanal.2019. 07.044
] H. Breme, V. Biehl, N. Reger, and E. Gawalt, “Chapter 1c metallic biomaterials: Titanium and titanium alloys,” in Handbook of Biomaterial Properties, W. Murphy, J. Black, and G. Hastings, Eds. New York, NY: Springer, 2016. [Online]. Available: https: //doi.org/10.1007/978-1-4939-3305-1_16
G. Mani, “Chapter 1b metallic biomaterials: Cobalt-chromium alloys,” in Handbook of Biomaterial Properties, W. Murphy, J. Black, and y G. Hastings, Eds. New York, NY: Springer, 2016. [Online]. Available: https://doi.org/10.1007/978-1-4939-3305-1_15
A. Ashkanfar, D. J. Langton, and y T. J. Joyce, “A large taper mismatch is one of the key factors behind high wear rates and failure at the taper junction of total hip replacements: A finite element wear analysis,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 69, May. 2017. [Online]. Available: https://doi.org/10.1016/j.jmbbm.2017.01.018
S. L. Su and et al., “Retrieval analysis of neck-stem coupling in modular hip prostheses,” The Journal of Arthroplasty, vol. 32, no. 7, Jul. 2017. [Online]. Available: https://doi.org/10.1016/j.arth.2017. 02.016
N. Espallargas, A. Fischer, A. I. Muñoz, S. Mischler, and M. A. Wimmer, “In-situ generated tribomaterial in metal/metal contacts: Current understanding and future implications for implants,” Biotribology, vol. 10, Jun. 2017. [Online]. Available: https://doi.org/ 10.1016/j.biotri.2017.03.006
A. I. Munoz, N. Espallargas, and S. Mischler, “Case studies,” in Tribocorrosion. New York, NY: Springer, 2020. [Online]. Available: https://doi.org/10.1007/978-3-030-48107-0
H. J. Cooper, R. M. Urban, R. L. Wixson, R. M. Meneghini, and J. J. Jacobs, “Adverse local tissue reaction arising from corrosion at the femoral neck-body junction in a dual-taper stem with a cobalt-chromium modular neck,” The Journal of Bone and Joint Surgery, vol. 95, May. 2013. [Online]. Available: https://doi.org/10.2106/JBJS.L.0104
M. Huber, G. Reinisch, G. Trettenhahn, K. Zweymüller, and F. Lintner, “Presence of corrosion products and hypersensitivity-associated reactions in periprosthetic tissue after aseptic loosening of total hip replacements with metal bearing surfaces,” Acta Biomaterialia, vol. 5, no. 1, Jan. 2009. [Online]. Available: https://doi.org/10.1016/ j.actbio.2008.07.032
] M. Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications,” vol. 1, no. 1, Jan. 2008. [Online]. Available: https://doi.org/10.1016/j.jmbbm.2007.07.001
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.spa.fl_str_mv 13 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv CIELO S. A. .S
dc.publisher.place.spa.fl_str_mv Colombia
dc.source.spa.fl_str_mv https://doi.org/10.17533/udea.redin.20210320
institution Escuela Colombiana de Ingeniería Julio Garavito
bitstream.url.fl_str_mv https://repositorio.escuelaing.edu.co/bitstream/001/3331/4/A%20comparative%20surface%20analysis%20of%20explanted.pdf.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3331/3/A%20comparative%20surface%20analysis%20of%20explanted.PNG
https://repositorio.escuelaing.edu.co/bitstream/001/3331/5/A%20comparative%20surface%20analysis%20of%20explanted.pdf.jpg
https://repositorio.escuelaing.edu.co/bitstream/001/3331/2/license.txt
https://repositorio.escuelaing.edu.co/bitstream/001/3331/1/A%20comparative%20surface%20analysis%20of%20explanted.pdf
bitstream.checksum.fl_str_mv 22828fdb5c1af0a70fd552cf6477471d
e221c6f45b22377e7027c8d38634452e
6327630c71888df3a95d2dda6861673d
5a7ca94c2e5326ee169f979d71d0f06e
440d799d877df61ce2434c8357ea2329
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Escuela Colombiana de Ingeniería Julio Garavito
repository.mail.fl_str_mv repositorio.eci@escuelaing.edu.co
_version_ 1814355626503962624
spelling Bermúdez-Castañeda, Angela62a4a5c6da98d3f570ff0f9c82a52440Esguerra Arce, Johanna73f8a03f0ed78598cb6560c3dce51f80Esguerra Arce, Adriana6ff2e418e5f33a06cac9149759877ea5Vargas-Pabón, Sofia Valentinaa2286979e696b391a50a26d404743817Ortiz-Martínez, Juan Guillermo2a3df84c264d602f529cf407bd061bc7Blanco-Estupiñán, David Leonardo940ae9964cfefa2cf6173b1a4268298bCastaño, Juan Guillermoe81e5ed641d5c7015d1c9ec1596771ebMischler, Stefanoc5d4054a11ea0dbdb739dbc56f6e597cDiseño Sostenible en Ingeniería Mecánica (DSIM)2024-10-18T00:17:08Z2024-10-18T00:17:08Z2021-092422-2844https://repositorio.escuelaing.edu.co/handle/001/33312422-2844Escuela Colombiana de Ingeniería Julio GaravitoRepositorio digitalhttps://repositorio.escuelaing.edu.co/The introduction of modular design in total hip arthroplasty has enabled the use of different materials in one single configuration and the adjustment of the prosthesis to the patient’s body, and facilitated medical revisions. However, modularity leads to the presence of new interfaces created between pieces in contact, raising the issue of degradation. Tribocorrosion phenomena have been identified as the main degradation mechanism due to the mechanical, chemical, and electrochemical conditions acting on the materials. In addition, conditions inside the human body are unclear, regarding electrochemical settings and the interaction between the electrochemical and mechanical action. This work is focused on the degradation of monopolar hip joint implants made from biomedical alloys such as stainless steel, Ti, and CoCr alloys. Three cases are presented and analyzed in terms of the degradation level along the trunnion length. Surface analysis done on a titanium trunnion showed a significant ploughing on the distal part, compared to what was found for stainless steel and cobalt-chromium alloys, which can produce a stuck in this area. Meanwhile, in the proximal part, wear debris is found, which suggests more movement in the internal part. Although few debris particles were identified in CoCr trunnion, a large amount of material inside the contact was observed. This could be related to the ploughing generated in the distal thread pattern, which allowed the material to come inside and outside the contact.La introducción del diseño modular en la artroplastia total de cadera ha permitido el uso de diferentes materiales en una única configuración y el ajuste del prótesis al cuerpo del paciente, y facilitó revisiones médicas. Sin embargo, la modularidad conduce a la presencia de nuevas interfaces creadas entre piezas en contacto, elevando la cuestión de la degradación. Los fenómenos de tribocorrosión han sido identificados como Principal mecanismo de degradación debido a las reacciones mecánicas, químicas y electroquímicas. condiciones que actúan sobre los materiales. Además, las condiciones internas del cuerpo humano. no están claros con respecto a los ajustes electroquímicos y la interacción entre los Acción electroquímica y mecánica. Este trabajo se centra en la degradación de Implantes monopolares de articulación de cadera fabricados con aleaciones biomédicas como acero inoxidable, Ti, y aleaciones de CoCr. Se presentan y analizan tres casos en términos de degradación nivelado a lo largo de la longitud del muñón. El análisis de superficie realizado en un muñón de titanio mostró una arado significativo en la parte distal, en comparación con lo encontrado para el acero inoxidable y aleaciones de cobalto-cromo, que pueden producir un atascamiento en esta zona. Mientras tanto, en el En la parte proximal, se encuentran restos de desgaste, lo que sugiere más movimiento en el interior. parte. Aunque se identificaron pocas partículas de desechos en el muñón de CoCr, una gran cantidad de material dentro del contacto. Esto podría estar relacionado con el arado. generado en el patrón de hilo distal, lo que permitió que el material entrara y fuera del contacto.13 páginasapplication/pdfengCIELO S. A. .SColombiahttps://doi.org/10.17533/udea.redin.20210320A comparative surface analysis of explanted hip joint prostheses made of different biomedical alloysArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a854735100Revista Facultad de Ingeniería, Universidad de AntioquiaS. R. Knight, R. Aujla, and y S. P. Biswas, “Total hip arthroplasty - over 100 years of operative history,” Journal orthopedic reviews, vol. 3, no. 2, Sep. 06S. Affatato, “1 - the history of total hip arthroplasty (tha),” in Perspectives in Total Hip Arthroplasty. Woodhead Publishing, 2014, pp. 3–18. [Online]. Available: https://doi.org/10.1533/ 9781782420392.1.3(1999-2019, Sep-Dec.) Hip, knee & shoulder arthroplasty. Australian Orthopaedic Association National Joint Replacement Registry. Adelaide, Aus. [Online]. Available: t.ly/v5cC] C. I. Esposito, T. M. Wright, S. B. Goodman, and y D. J. Berry, “What is the trouble with trunnions?” Clinical Orthopaedics and Related Research, no. 479, Jul. 01, 2014. [Online]. Available: https://doi.org/10.1007/s11999-014-3746-zJ. M. Nossa and et. al., “Reemplazo de cadera en pacientes jóvenes: Experiencia con vástago corto preservador de cuello femoral,” Revista Colombiana de Ortopedia y Traumatología, vol. 33, no. 3-4, Sep-Dec 2019. [Online]. Available: https://doi.org/10.1016/j.rccot. 2020.02.011F. D. Puccio and L. Mattei, “Biotribology of artificial hip joints,” World Journal of Orthopedics, vol. 6, no. 1, Jan. 18, 2015. [Online]. Available: https://doi.org/10.5312/wjo.v6.i1.77I. D. Martino, J. B. Assini, M. E. Elpers, T. M. Wright, and G. H. Westrich, “Corrosion and fretting of a modular hip system: A retrieval analysis of 60 rejuvenate stems,” The Journal of Arthroplasty, vol. 30, no. 8, Aug. 2015. [Online]. Available: https: //doi.org/10.1016/j.arth.2015.03.010A. M. Kop and E. Swarts, “Corrosion of a hip stem with a modular neck taper junction: A retrieval study of 16 cases,” The Journal of Arthroplasty, vol. 24, no. 7, Oct. 2009. [Online]. Available: https://doi.org/10.1016/j.arth.2008.09.009] M. L. Mroczkowski, J. S. Hertzler, S. M. Humphrey, T. Johnson, and C. R. Blanchard, “Effect of impact assembly on the fretting corrosion of modular hip taperss,” Journal of Orthopaedic Research, vol. 24, no. 2, Feb. 2006. [Online]. Available: https://doi.org/10.1002/ jor.20048J. Parekh, H. Jones, N. Chan, and y P. Noble, “Effect of angular mismatch tolerance on trunnion micro-motion in metal-on-metal tha designs,” Orthopaedic Proceedings, vol. 95-B, no. SUPP-34, Feb. 21, 2018. [Online]. Available: https://online.boneandjoint.org.uk/ doi/abs/10.1302/1358-992x.95bsupp_34.ista2013-261S. Y. Jauch, G. Huber, H. Haschke, K. Sellenschloh, and M. M. Morlock, “Design parameters and the material coupling are decisive for the micromotion magnitude at the stem–neck interface of bi-modular hip implants,” Medical Engineering & Physics, vol. 36, no. 3, Mar. 2014. [Online]. Available: https://doi.org/10.1016/j. medengphy.2013.11.009H. Haschke, S. Y. Jauch-Matt, K. Sellenschloh, G. Huber, and y M. M. Morlock, “Assembly force and taper angle difference influence the relative motion at the stem–neck interface of bi-modular hip prostheses,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 230, no. 7, May. 10, 2016. [Online]. Available: https://doi.org/10. 1177/0954411916648717] V. Pacheco-Marte and S. Roldán-Vasco, “Enzymes and cytokines disease in total hip arthroplasty: promoters of immune loosening,” Revista de la Facultad de Medicina, vol. 66, no. 3, 2018. [Online]. Available: https://doi.org/10.15446/revfacmed.v66n3.61525total de cadera y recubrimientos bioactivos de quitosano para mejorar su desempeño,” Revista Ingeniería Biomédica, vol. 10, no. 19, Jan-Jun 2016. [Online]. Available: https: //dialnet.unirioja.es/servlet/articulo?codigo=6155540J. E. Lemons, “Retrieval and analysis of explanted and in situ implants including bone grafts,” Oral and Maxillofacial Surgery Clinics, vol. 22, no. 3, Aug. 01 2010. [Online]. Available: https: //doi.org/10.1016/j.coms.2010.06.002G. Gkagkalis, P. Mettraux, P. Omoumi, S. Mischler, and H. A. Rüdiger, “Adverse tissue reaction to corrosion at the neck-stem junction after modular primary total hip arthroplasty,” Orthopaedics & Traumatology: Surgery & Research, vol. 101, no. 1, Feb. 2015.[Online]. Available: https://doi.org/10.1016/j.otsr.2014.11.003D. O. Molloy and et al., “Fretting and corrosion in modular-neck total hip arthroplasty femoral stems,” The Journal of Bone & Joint Surgery, vol. 96, no. 6, Mar. 19, 2014. [Online]. Available: https://doi.org/10.2106/JBJS.L.01625S. D. Werner, J. V. Bono, S. Nandi, D. M. Ward, and C. T. Talmo, “Adverse tissue reactions in modular exchangeable neck implants: A report of two cases,” The Journal of Arthroplasty, vol. 28, no. 3, Mar. 2013. [Online]. Available: https://doi.org/10.1016/j.arth.2012.07.026M. Rodelo, J. Muñiz, A. Diaz, and M. M. Cely, “Caracterización de componentes modulares en implantes de cadera retirados anticipadamente de pacientes en las diferentes clínicas en la ciudad de barranquilla,” Prospectiva, vol. 10, no. 1, Jan-Jun 2012. [Online]. Available: https://www.redalyc.org/pdf/4962/496250733016.pdA. Lanzutti and et al., “Corrosion fatigue failure of a high carbon cocrmo modular hip prosthesis: Failure analysis and electrochemical study,” Engineering Failure Analysis, vol. 105, Nov. 2019. [Online]. Available: https://doi.org/10.1016/j.engfailanal.2019. 07.044] H. Breme, V. Biehl, N. Reger, and E. Gawalt, “Chapter 1c metallic biomaterials: Titanium and titanium alloys,” in Handbook of Biomaterial Properties, W. Murphy, J. Black, and G. Hastings, Eds. New York, NY: Springer, 2016. [Online]. Available: https: //doi.org/10.1007/978-1-4939-3305-1_16G. Mani, “Chapter 1b metallic biomaterials: Cobalt-chromium alloys,” in Handbook of Biomaterial Properties, W. Murphy, J. Black, and y G. Hastings, Eds. New York, NY: Springer, 2016. [Online]. Available: https://doi.org/10.1007/978-1-4939-3305-1_15A. Ashkanfar, D. J. Langton, and y T. J. Joyce, “A large taper mismatch is one of the key factors behind high wear rates and failure at the taper junction of total hip replacements: A finite element wear analysis,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 69, May. 2017. [Online]. Available: https://doi.org/10.1016/j.jmbbm.2017.01.018S. L. Su and et al., “Retrieval analysis of neck-stem coupling in modular hip prostheses,” The Journal of Arthroplasty, vol. 32, no. 7, Jul. 2017. [Online]. Available: https://doi.org/10.1016/j.arth.2017. 02.016N. Espallargas, A. Fischer, A. I. Muñoz, S. Mischler, and M. A. Wimmer, “In-situ generated tribomaterial in metal/metal contacts: Current understanding and future implications for implants,” Biotribology, vol. 10, Jun. 2017. [Online]. Available: https://doi.org/ 10.1016/j.biotri.2017.03.006A. I. Munoz, N. Espallargas, and S. Mischler, “Case studies,” in Tribocorrosion. New York, NY: Springer, 2020. [Online]. Available: https://doi.org/10.1007/978-3-030-48107-0H. J. Cooper, R. M. Urban, R. L. Wixson, R. M. Meneghini, and J. J. Jacobs, “Adverse local tissue reaction arising from corrosion at the femoral neck-body junction in a dual-taper stem with a cobalt-chromium modular neck,” The Journal of Bone and Joint Surgery, vol. 95, May. 2013. [Online]. Available: https://doi.org/10.2106/JBJS.L.0104M. Huber, G. Reinisch, G. Trettenhahn, K. Zweymüller, and F. Lintner, “Presence of corrosion products and hypersensitivity-associated reactions in periprosthetic tissue after aseptic loosening of total hip replacements with metal bearing surfaces,” Acta Biomaterialia, vol. 5, no. 1, Jan. 2009. [Online]. Available: https://doi.org/10.1016/ j.actbio.2008.07.032] M. Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications,” vol. 1, no. 1, Jan. 2008. [Online]. Available: https://doi.org/10.1016/j.jmbbm.2007.07.001info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbSteelAceroElectrochemistryElectroquímicaBiomedical sciencesCiencias biomédicasRetrieval explantsTribocorrosionModular hip joint implantswearCorrosiónExplantesModulares de caderaDesgasteTEXTA comparative surface analysis of explanted.pdf.txtA comparative surface analysis of explanted.pdf.txtExtracted texttext/plain37051https://repositorio.escuelaing.edu.co/bitstream/001/3331/4/A%20comparative%20surface%20analysis%20of%20explanted.pdf.txt22828fdb5c1af0a70fd552cf6477471dMD54metadata only accessTHUMBNAILA comparative surface analysis of explanted.PNGA comparative surface analysis of explanted.PNGimage/png165296https://repositorio.escuelaing.edu.co/bitstream/001/3331/3/A%20comparative%20surface%20analysis%20of%20explanted.PNGe221c6f45b22377e7027c8d38634452eMD53open accessA comparative surface analysis of explanted.pdf.jpgA comparative surface analysis of explanted.pdf.jpgGenerated Thumbnailimage/jpeg15621https://repositorio.escuelaing.edu.co/bitstream/001/3331/5/A%20comparative%20surface%20analysis%20of%20explanted.pdf.jpg6327630c71888df3a95d2dda6861673dMD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/3331/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALA comparative surface analysis of explanted.pdfA comparative surface analysis of explanted.pdfapplication/pdf5683794https://repositorio.escuelaing.edu.co/bitstream/001/3331/1/A%20comparative%20surface%20analysis%20of%20explanted.pdf440d799d877df61ce2434c8357ea2329MD51metadata only access001/3331oai:repositorio.escuelaing.edu.co:001/33312024-10-18 03:02:49.312metadata only accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK