The �-Hausdorff, �-regular and �-normal ideal spaces
We introduce and study new extensions of some separation axioms to ideal topological spaces, which we have called ����-Hausdorff, ����-regular and ����-normal. These extensions are quite natural and represent a good improvement with respect to other extensions that have recently occurred, in which a...
- Autores:
-
Pachón R., Néstor Raúl
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2020
- Institución:
- Escuela Colombiana de Ingeniería Julio Garavito
- Repositorio:
- Repositorio Institucional ECI
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.escuelaing.edu.co:001/2340
- Acceso en línea:
- https://repositorio.escuelaing.edu.co/handle/001/2340
http://dx.doi.org/10.22199/issn.0717-6279-2020-03-0043
https://www.scielo.cl/scielo.php?pid=S0716-09172020000300693&script=sci_arttext
- Palabra clave:
- Separación en espacios topológicos ideales
Hausdorff módulo ℐ; ℐ-
Hausdorff
ℐ-normal
ℐ normales
Separación en espacios topológicos ideales
Hausdorff módulo ℐ; ℐ-
Hausdorff
ℐ-regular
ℐ-normal
ℐ normales
Separation in ideal topological spaces
Hausdorff módulo ℐ; ℐ-
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
ESCUELAIG2_0533c2458d199714f4b9c71f5d3adae3 |
---|---|
oai_identifier_str |
oai:repositorio.escuelaing.edu.co:001/2340 |
network_acronym_str |
ESCUELAIG2 |
network_name_str |
Repositorio Institucional ECI |
repository_id_str |
|
dc.title.eng.fl_str_mv |
The �-Hausdorff, �-regular and �-normal ideal spaces |
title |
The �-Hausdorff, �-regular and �-normal ideal spaces |
spellingShingle |
The �-Hausdorff, �-regular and �-normal ideal spaces Separación en espacios topológicos ideales Hausdorff módulo ℐ; ℐ- Hausdorff ℐ-normal ℐ normales Separación en espacios topológicos ideales Hausdorff módulo ℐ; ℐ- Hausdorff ℐ-regular ℐ-normal ℐ normales Separation in ideal topological spaces Hausdorff módulo ℐ; ℐ- |
title_short |
The �-Hausdorff, �-regular and �-normal ideal spaces |
title_full |
The �-Hausdorff, �-regular and �-normal ideal spaces |
title_fullStr |
The �-Hausdorff, �-regular and �-normal ideal spaces |
title_full_unstemmed |
The �-Hausdorff, �-regular and �-normal ideal spaces |
title_sort |
The �-Hausdorff, �-regular and �-normal ideal spaces |
dc.creator.fl_str_mv |
Pachón R., Néstor Raúl |
dc.contributor.author.none.fl_str_mv |
Pachón R., Néstor Raúl |
dc.contributor.researchgroup.spa.fl_str_mv |
GIMATH: Grupo de investigación en Matemáticas de la Escuela Colombiana de Ingeniería |
dc.subject.armarc.none.fl_str_mv |
Separación en espacios topológicos ideales Hausdorff módulo ℐ; ℐ- Hausdorff ℐ-normal ℐ normales |
topic |
Separación en espacios topológicos ideales Hausdorff módulo ℐ; ℐ- Hausdorff ℐ-normal ℐ normales Separación en espacios topológicos ideales Hausdorff módulo ℐ; ℐ- Hausdorff ℐ-regular ℐ-normal ℐ normales Separation in ideal topological spaces Hausdorff módulo ℐ; ℐ- |
dc.subject.proposal.spa.fl_str_mv |
Separación en espacios topológicos ideales Hausdorff módulo ℐ; ℐ- Hausdorff ℐ-regular ℐ-normal ℐ normales |
dc.subject.proposal.eng.fl_str_mv |
Separation in ideal topological spaces Hausdorff módulo ℐ; ℐ- |
description |
We introduce and study new extensions of some separation axioms to ideal topological spaces, which we have called ����-Hausdorff, ����-regular and ����-normal. These extensions are quite natural and represent a good improvement with respect to other extensions that have recently occurred, in which a level of separation that can be considered acceptable is not perceived. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2023-05-16T20:23:01Z |
dc.date.available.none.fl_str_mv |
2023-05-16T20:23:01Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
0717-6279 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.escuelaing.edu.co/handle/001/2340 |
dc.identifier.doi.none.fl_str_mv |
http://dx.doi.org/10.22199/issn.0717-6279-2020-03-0043 |
dc.identifier.url.none.fl_str_mv |
https://www.scielo.cl/scielo.php?pid=S0716-09172020000300693&script=sci_arttext |
identifier_str_mv |
0717-6279 |
url |
https://repositorio.escuelaing.edu.co/handle/001/2340 http://dx.doi.org/10.22199/issn.0717-6279-2020-03-0043 https://www.scielo.cl/scielo.php?pid=S0716-09172020000300693&script=sci_arttext |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationedition.spa.fl_str_mv |
Proyecciones (Antofagasta) vol.39 no.3 Antofagasta jun. 2020 |
dc.relation.citationendpage.spa.fl_str_mv |
710 |
dc.relation.citationissue.spa.fl_str_mv |
fasc: 3 |
dc.relation.citationstartpage.spa.fl_str_mv |
693 |
dc.relation.citationvolume.spa.fl_str_mv |
vol:39 |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.ispartofjournal.eng.fl_str_mv |
Proyecciones |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
18 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Chile |
institution |
Escuela Colombiana de Ingeniería Julio Garavito |
bitstream.url.fl_str_mv |
https://repositorio.escuelaing.edu.co/bitstream/001/2340/4/The%20P-Hausdorff%2c%20P-regular%20and%20P-normal%20ideal%20spaces.pdf.jpg https://repositorio.escuelaing.edu.co/bitstream/001/2340/3/The%20P-Hausdorff%2c%20P-regular%20and%20P-normal%20ideal%20spaces.pdf.txt https://repositorio.escuelaing.edu.co/bitstream/001/2340/2/license.txt https://repositorio.escuelaing.edu.co/bitstream/001/2340/1/The%20P-Hausdorff%2c%20P-regular%20and%20P-normal%20ideal%20spaces.pdf |
bitstream.checksum.fl_str_mv |
800dd94654ca71e0bf5011fc9c47b524 e91f289af1408db107fa2798b3b665ea 5a7ca94c2e5326ee169f979d71d0f06e 86e2367311c2122d91e042d9522b9ad1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Escuela Colombiana de Ingeniería Julio Garavito |
repository.mail.fl_str_mv |
repositorio.eci@escuelaing.edu.co |
_version_ |
1814355638019424256 |
spelling |
Pachón R., Néstor Raúl6398a72831e84dae0c1e993df3495ca4600GIMATH: Grupo de investigación en Matemáticas de la Escuela Colombiana de Ingeniería2023-05-16T20:23:01Z2023-05-16T20:23:01Z20200717-6279https://repositorio.escuelaing.edu.co/handle/001/2340http://dx.doi.org/10.22199/issn.0717-6279-2020-03-0043https://www.scielo.cl/scielo.php?pid=S0716-09172020000300693&script=sci_arttextWe introduce and study new extensions of some separation axioms to ideal topological spaces, which we have called ����-Hausdorff, ����-regular and ����-normal. These extensions are quite natural and represent a good improvement with respect to other extensions that have recently occurred, in which a level of separation that can be considered acceptable is not perceived.Introducimos y estudiamos nuevas extensiones de algunos axiomas de separación a espacios topológicos ideales, a los que hemos llamado ���-Hausdorff, ���-regular y ���-normal. Estas ampliaciones son bastante naturales y suponen una buena mejora respecto a otras ampliaciones que se han producido recientemente, en las que no se percibe un nivel de separación que pueda considerarse aceptable.18 páginasapplication/pdfengThe �-Hausdorff, �-regular and �-normal ideal spacesArtículo de revistainfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85ChileProyecciones (Antofagasta) vol.39 no.3 Antofagasta jun. 2020710fasc: 3693vol:39N/AProyeccionesinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Separación en espacios topológicos idealesHausdorff módulo ℐ; ℐ-Hausdorffℐ-normalℐ normalesSeparación en espacios topológicos idealesHausdorff módulo ℐ; ℐ-Hausdorffℐ-regularℐ-normalℐ normalesSeparation in ideal topological spacesHausdorff módulo ℐ; ℐ-THUMBNAILThe P-Hausdorff, P-regular and P-normal ideal spaces.pdf.jpgThe P-Hausdorff, P-regular and P-normal ideal spaces.pdf.jpgGenerated Thumbnailimage/jpeg11906https://repositorio.escuelaing.edu.co/bitstream/001/2340/4/The%20P-Hausdorff%2c%20P-regular%20and%20P-normal%20ideal%20spaces.pdf.jpg800dd94654ca71e0bf5011fc9c47b524MD54open accessTEXTThe P-Hausdorff, P-regular and P-normal ideal spaces.pdf.txtThe P-Hausdorff, P-regular and P-normal ideal spaces.pdf.txtExtracted texttext/plain34951https://repositorio.escuelaing.edu.co/bitstream/001/2340/3/The%20P-Hausdorff%2c%20P-regular%20and%20P-normal%20ideal%20spaces.pdf.txte91f289af1408db107fa2798b3b665eaMD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81881https://repositorio.escuelaing.edu.co/bitstream/001/2340/2/license.txt5a7ca94c2e5326ee169f979d71d0f06eMD52open accessORIGINALThe P-Hausdorff, P-regular and P-normal ideal spaces.pdfThe P-Hausdorff, P-regular and P-normal ideal spaces.pdfapplication/pdf1688421https://repositorio.escuelaing.edu.co/bitstream/001/2340/1/The%20P-Hausdorff%2c%20P-regular%20and%20P-normal%20ideal%20spaces.pdf86e2367311c2122d91e042d9522b9ad1MD51open access001/2340oai:repositorio.escuelaing.edu.co:001/23402023-05-17 03:01:31.866open accessRepositorio Escuela Colombiana de Ingeniería Julio Garavitorepositorio.eci@escuelaing.edu.coU0kgVVNURUQgSEFDRSBQQVJURSBERUwgR1JVUE8gREUgUEFSRVMgRVZBTFVBRE9SRVMgREUgTEEgQ09MRUNDScOTTiAiUEVFUiBSRVZJRVciLCBPTUlUQSBFU1RBIExJQ0VOQ0lBLgoKQXV0b3Jpem8gYSBsYSBFc2N1ZWxhIENvbG9tYmlhbmEgZGUgSW5nZW5pZXLDrWEgSnVsaW8gR2FyYXZpdG8gcGFyYSBwdWJsaWNhciBlbCB0cmFiYWpvIGRlIGdyYWRvLCBhcnTDrWN1bG8sIHZpZGVvLCAKY29uZmVyZW5jaWEsIGxpYnJvLCBpbWFnZW4sIGZvdG9ncmFmw61hLCBhdWRpbywgcHJlc2VudGFjacOzbiB1IG90cm8gKGVuICAgIGFkZWxhbnRlIGRvY3VtZW50bykgcXVlIGVuIGxhIGZlY2hhIAplbnRyZWdvIGVuIGZvcm1hdG8gZGlnaXRhbCwgeSBsZSBwZXJtaXRvIGRlIGZvcm1hIGluZGVmaW5pZGEgcXVlIGxvIHB1YmxpcXVlIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwsIAplbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIHkgZGVtw6FzIGxleWVzIHkganVyaXNwcnVkZW5jaWEgdmlnZW50ZQphbCByZXNwZWN0bywgcGFyYSBmaW5lcyBlZHVjYXRpdm9zIHkgbm8gbHVjcmF0aXZvcy4gRXN0YSBhdXRvcml6YWNpw7NuIGVzIHbDoWxpZGEgcGFyYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIAp1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbDsgeSBwYXJhIHVzb3MgZW4gcmVkZXMsIGludGVybmV0LCBleHRyYW5ldCwgeSBjdWFscXVpZXIgCmZvcm1hdG8gbyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLgpFbiBtaSBjYWxpZGFkIGRlIGF1dG9yLCBleHByZXNvIHF1ZSBlbCBkb2N1bWVudG8gb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsbyBlbGFib3LDqSBzaW4gCnF1ZWJyYW50YXIgbmkgc3VwbGFudGFyIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gUG9yIGxvIHRhbnRvLCBlcyBkZSBtaSBleGNsdXNpdmEgYXV0b3LDrWEgeSwgZW4gY29uc2VjdWVuY2lhLCAKdGVuZ28gbGEgdGl0dWxhcmlkYWQgc29icmUgw6lsLiBFbiBjYXNvIGRlIHF1ZWphIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyByZWZlcmVudGUgYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgCmVsIGRvY3VtZW50byBlbiBjdWVzdGnDs24sIGFzdW1pcsOpIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCB5IHNhbGRyw6kgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3MuIEVzdG8gCnNpZ25pZmljYSBxdWUsIHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MsIGxhIEVzY3VlbGEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIEVzY3VlbGEsIGVsIENhdMOhbG9nbyBlbiBsw61uZWEgdSBvdHJvIG1lZGlvIGVsZWN0csOzbmljbywgCnBvZHLDoSBjb3BpYXIgYXBhcnRlcyBkZWwgdGV4dG8sIGNvbiBlbCBjb21wcm9taXNvIGRlIGNpdGFyIHNpZW1wcmUgbGEgZnVlbnRlLCBsYSBjdWFsIGluY2x1eWUgZWwgdMOtdHVsbyBkZWwgdHJhYmFqbyB5IGVsIAphdXRvci5Fc3RhIGF1dG9yaXphY2nDs24gbm8gaW1wbGljYSByZW51bmNpYSBhIGxhIGZhY3VsdGFkIHF1ZSB0ZW5nbyBkZSBwdWJsaWNhciB0b3RhbCBvIHBhcmNpYWxtZW50ZSBsYSBvYnJhIGVuIG90cm9zIAptZWRpb3MuRXN0YSBhdXRvcml6YWNpw7NuIGVzdMOhIHJlc3BhbGRhZGEgcG9yIGxhcyBmaXJtYXMgZGVsIChsb3MpIGF1dG9yKGVzKSBkZWwgZG9jdW1lbnRvLiAKU8OtIGF1dG9yaXpvIChhbWJvcykK |