Anomalous consistency in Mild Cognitive Impairment: A complex networks approach
Increased variability in performance has been associated with the emergence of several neurological and psychiatric pathologies. However, whether and how consistency of neuronal activity may also be indicative of an underlying pathology is still poorly understood. Here we propose a novel method for...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/23648
- Acceso en línea:
- https://doi.org/10.1016/j.chaos.2014.10.013
https://repository.urosario.edu.co/handle/10336/23648
- Palabra clave:
- Brain
Brain mapping
Heterogeneous networks
Magnetoencephalography
Pathology
Topology
Complex networks theories
Functional activities
Mild cognitive impairments
Mild cognitive impairments (MCI)
Network structures
Neuronal activities
Pathological conditions
Topological properties
Complex networks
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_fdd29eb9e35d7610759cc54ffe088549 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/23648 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
b694ae7e-282d-4700-8629-9ce9ab41a15b-19b2f8298-2810-4d84-8928-6d6eefced4e7-183c82036-bcc6-45cd-bb4b-d7eff41929c8-13fbb2f0b-b162-40c8-9967-e8722ee352dd-1e68d1a65-d479-40a9-9101-23b5e23129d9-10a686577-bb39-4af9-a994-1d84732dcd29-16b69342a-1431-46e8-af01-f81803012ffd-15d5a44b5-aea0-470d-9437-77fd8a722a0d-19888fd4e-4b56-48ad-adf3-9cef67385572-12020-05-26T00:04:00Z2020-05-26T00:04:00Z2015Increased variability in performance has been associated with the emergence of several neurological and psychiatric pathologies. However, whether and how consistency of neuronal activity may also be indicative of an underlying pathology is still poorly understood. Here we propose a novel method for evaluating consistency from non-invasive brain recordings. We evaluate the consistency of the cortical activity recorded with magnetoencephalography in a group of subjects diagnosed with Mild Cognitive Impairment (MCI), a condition sometimes prodromal of dementia, during the execution of a memory task. We use metrics coming from nonlinear dynamics to evaluate the consistency of cortical regions. A representation known as parenclitic networks is constructed, where atypical features are endowed with a network structure, the topological properties of which can be studied at various scales. Pathological conditions correspond to strongly heterogeneous networks, whereas typical or normative conditions are characterized by sparsely connected networks with homogeneous nodes. The analysis of this kind of networks allows identifying the extent to which consistency is affected in the MCI group and the focal points where MCI is especially severe. To the best of our knowledge, these results represent the first attempt at evaluating the consistency of brain functional activity using complex networks theory. © 2014 Elsevier Ltd. All rights reserved.application/pdfhttps://doi.org/10.1016/j.chaos.2014.10.0139600779https://repository.urosario.edu.co/handle/10336/23648engElsevier Ltd155No. 1144Chaos, Solitons and FractalsVol. 70Chaos, Solitons and Fractals, ISSN:9600779, Vol.70, No.1 (2015); pp. 144-155https://www.scopus.com/inward/record.uri?eid=2-s2.0-84932613931&doi=10.1016%2fj.chaos.2014.10.013&partnerID=40&md5=a3cf8158df70a35dbb33ab32087baeb5Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURBrainBrain mappingHeterogeneous networksMagnetoencephalographyPathologyTopologyComplex networks theoriesFunctional activitiesMild cognitive impairmentsMild cognitive impairments (MCI)Network structuresNeuronal activitiesPathological conditionsTopological propertiesComplex networksAnomalous consistency in Mild Cognitive Impairment: A complex networks approacharticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Martínez, J.H.Ariza, P.Zanin, M.Papo, D.Maestú, F.Pastor, J.M.Bajo, R.Boccaletti, S.Buldú, J.M.ORIGINAL10-1-1-765-1050.pdfapplication/pdf913538https://repository.urosario.edu.co/bitstreams/83e3513a-360e-44f3-b743-39ccff292767/download3791f31ffad54dc95e0b00385acc91ddMD51TEXT10-1-1-765-1050.pdf.txt10-1-1-765-1050.pdf.txtExtracted texttext/plain54197https://repository.urosario.edu.co/bitstreams/1d596dc6-9dc1-4825-afe0-8c1304ea02cb/download0fbf44d654ee792015b0d93eee0816bfMD52THUMBNAIL10-1-1-765-1050.pdf.jpg10-1-1-765-1050.pdf.jpgGenerated Thumbnailimage/jpeg4607https://repository.urosario.edu.co/bitstreams/fd9e5e79-63d5-45a0-a1f7-1cf3a62f6cd8/downloadf5a4c07ccd867123eafe72d95982dabfMD5310336/23648oai:repository.urosario.edu.co:10336/236482022-05-02 07:37:21.183691https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Anomalous consistency in Mild Cognitive Impairment: A complex networks approach |
title |
Anomalous consistency in Mild Cognitive Impairment: A complex networks approach |
spellingShingle |
Anomalous consistency in Mild Cognitive Impairment: A complex networks approach Brain Brain mapping Heterogeneous networks Magnetoencephalography Pathology Topology Complex networks theories Functional activities Mild cognitive impairments Mild cognitive impairments (MCI) Network structures Neuronal activities Pathological conditions Topological properties Complex networks |
title_short |
Anomalous consistency in Mild Cognitive Impairment: A complex networks approach |
title_full |
Anomalous consistency in Mild Cognitive Impairment: A complex networks approach |
title_fullStr |
Anomalous consistency in Mild Cognitive Impairment: A complex networks approach |
title_full_unstemmed |
Anomalous consistency in Mild Cognitive Impairment: A complex networks approach |
title_sort |
Anomalous consistency in Mild Cognitive Impairment: A complex networks approach |
dc.subject.keyword.spa.fl_str_mv |
Brain Brain mapping Heterogeneous networks Magnetoencephalography Pathology Topology Complex networks theories Functional activities Mild cognitive impairments Mild cognitive impairments (MCI) Network structures Neuronal activities Pathological conditions Topological properties Complex networks |
topic |
Brain Brain mapping Heterogeneous networks Magnetoencephalography Pathology Topology Complex networks theories Functional activities Mild cognitive impairments Mild cognitive impairments (MCI) Network structures Neuronal activities Pathological conditions Topological properties Complex networks |
description |
Increased variability in performance has been associated with the emergence of several neurological and psychiatric pathologies. However, whether and how consistency of neuronal activity may also be indicative of an underlying pathology is still poorly understood. Here we propose a novel method for evaluating consistency from non-invasive brain recordings. We evaluate the consistency of the cortical activity recorded with magnetoencephalography in a group of subjects diagnosed with Mild Cognitive Impairment (MCI), a condition sometimes prodromal of dementia, during the execution of a memory task. We use metrics coming from nonlinear dynamics to evaluate the consistency of cortical regions. A representation known as parenclitic networks is constructed, where atypical features are endowed with a network structure, the topological properties of which can be studied at various scales. Pathological conditions correspond to strongly heterogeneous networks, whereas typical or normative conditions are characterized by sparsely connected networks with homogeneous nodes. The analysis of this kind of networks allows identifying the extent to which consistency is affected in the MCI group and the focal points where MCI is especially severe. To the best of our knowledge, these results represent the first attempt at evaluating the consistency of brain functional activity using complex networks theory. © 2014 Elsevier Ltd. All rights reserved. |
publishDate |
2015 |
dc.date.created.spa.fl_str_mv |
2015 |
dc.date.accessioned.none.fl_str_mv |
2020-05-26T00:04:00Z |
dc.date.available.none.fl_str_mv |
2020-05-26T00:04:00Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.chaos.2014.10.013 |
dc.identifier.issn.none.fl_str_mv |
9600779 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/23648 |
url |
https://doi.org/10.1016/j.chaos.2014.10.013 https://repository.urosario.edu.co/handle/10336/23648 |
identifier_str_mv |
9600779 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
155 |
dc.relation.citationIssue.none.fl_str_mv |
No. 1 |
dc.relation.citationStartPage.none.fl_str_mv |
144 |
dc.relation.citationTitle.none.fl_str_mv |
Chaos, Solitons and Fractals |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 70 |
dc.relation.ispartof.spa.fl_str_mv |
Chaos, Solitons and Fractals, ISSN:9600779, Vol.70, No.1 (2015); pp. 144-155 |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84932613931&doi=10.1016%2fj.chaos.2014.10.013&partnerID=40&md5=a3cf8158df70a35dbb33ab32087baeb5 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier Ltd |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/83e3513a-360e-44f3-b743-39ccff292767/download https://repository.urosario.edu.co/bitstreams/1d596dc6-9dc1-4825-afe0-8c1304ea02cb/download https://repository.urosario.edu.co/bitstreams/fd9e5e79-63d5-45a0-a1f7-1cf3a62f6cd8/download |
bitstream.checksum.fl_str_mv |
3791f31ffad54dc95e0b00385acc91dd 0fbf44d654ee792015b0d93eee0816bf f5a4c07ccd867123eafe72d95982dabf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167457527496704 |