Anomalous consistency in Mild Cognitive Impairment: A complex networks approach

Increased variability in performance has been associated with the emergence of several neurological and psychiatric pathologies. However, whether and how consistency of neuronal activity may also be indicative of an underlying pathology is still poorly understood. Here we propose a novel method for...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/23648
Acceso en línea:
https://doi.org/10.1016/j.chaos.2014.10.013
https://repository.urosario.edu.co/handle/10336/23648
Palabra clave:
Brain
Brain mapping
Heterogeneous networks
Magnetoencephalography
Pathology
Topology
Complex networks theories
Functional activities
Mild cognitive impairments
Mild cognitive impairments (MCI)
Network structures
Neuronal activities
Pathological conditions
Topological properties
Complex networks
Rights
License
Abierto (Texto Completo)
id EDOCUR2_fdd29eb9e35d7610759cc54ffe088549
oai_identifier_str oai:repository.urosario.edu.co:10336/23648
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling b694ae7e-282d-4700-8629-9ce9ab41a15b-19b2f8298-2810-4d84-8928-6d6eefced4e7-183c82036-bcc6-45cd-bb4b-d7eff41929c8-13fbb2f0b-b162-40c8-9967-e8722ee352dd-1e68d1a65-d479-40a9-9101-23b5e23129d9-10a686577-bb39-4af9-a994-1d84732dcd29-16b69342a-1431-46e8-af01-f81803012ffd-15d5a44b5-aea0-470d-9437-77fd8a722a0d-19888fd4e-4b56-48ad-adf3-9cef67385572-12020-05-26T00:04:00Z2020-05-26T00:04:00Z2015Increased variability in performance has been associated with the emergence of several neurological and psychiatric pathologies. However, whether and how consistency of neuronal activity may also be indicative of an underlying pathology is still poorly understood. Here we propose a novel method for evaluating consistency from non-invasive brain recordings. We evaluate the consistency of the cortical activity recorded with magnetoencephalography in a group of subjects diagnosed with Mild Cognitive Impairment (MCI), a condition sometimes prodromal of dementia, during the execution of a memory task. We use metrics coming from nonlinear dynamics to evaluate the consistency of cortical regions. A representation known as parenclitic networks is constructed, where atypical features are endowed with a network structure, the topological properties of which can be studied at various scales. Pathological conditions correspond to strongly heterogeneous networks, whereas typical or normative conditions are characterized by sparsely connected networks with homogeneous nodes. The analysis of this kind of networks allows identifying the extent to which consistency is affected in the MCI group and the focal points where MCI is especially severe. To the best of our knowledge, these results represent the first attempt at evaluating the consistency of brain functional activity using complex networks theory. © 2014 Elsevier Ltd. All rights reserved.application/pdfhttps://doi.org/10.1016/j.chaos.2014.10.0139600779https://repository.urosario.edu.co/handle/10336/23648engElsevier Ltd155No. 1144Chaos, Solitons and FractalsVol. 70Chaos, Solitons and Fractals, ISSN:9600779, Vol.70, No.1 (2015); pp. 144-155https://www.scopus.com/inward/record.uri?eid=2-s2.0-84932613931&doi=10.1016%2fj.chaos.2014.10.013&partnerID=40&md5=a3cf8158df70a35dbb33ab32087baeb5Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURBrainBrain mappingHeterogeneous networksMagnetoencephalographyPathologyTopologyComplex networks theoriesFunctional activitiesMild cognitive impairmentsMild cognitive impairments (MCI)Network structuresNeuronal activitiesPathological conditionsTopological propertiesComplex networksAnomalous consistency in Mild Cognitive Impairment: A complex networks approacharticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Martínez, J.H.Ariza, P.Zanin, M.Papo, D.Maestú, F.Pastor, J.M.Bajo, R.Boccaletti, S.Buldú, J.M.ORIGINAL10-1-1-765-1050.pdfapplication/pdf913538https://repository.urosario.edu.co/bitstreams/83e3513a-360e-44f3-b743-39ccff292767/download3791f31ffad54dc95e0b00385acc91ddMD51TEXT10-1-1-765-1050.pdf.txt10-1-1-765-1050.pdf.txtExtracted texttext/plain54197https://repository.urosario.edu.co/bitstreams/1d596dc6-9dc1-4825-afe0-8c1304ea02cb/download0fbf44d654ee792015b0d93eee0816bfMD52THUMBNAIL10-1-1-765-1050.pdf.jpg10-1-1-765-1050.pdf.jpgGenerated Thumbnailimage/jpeg4607https://repository.urosario.edu.co/bitstreams/fd9e5e79-63d5-45a0-a1f7-1cf3a62f6cd8/downloadf5a4c07ccd867123eafe72d95982dabfMD5310336/23648oai:repository.urosario.edu.co:10336/236482022-05-02 07:37:21.183691https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Anomalous consistency in Mild Cognitive Impairment: A complex networks approach
title Anomalous consistency in Mild Cognitive Impairment: A complex networks approach
spellingShingle Anomalous consistency in Mild Cognitive Impairment: A complex networks approach
Brain
Brain mapping
Heterogeneous networks
Magnetoencephalography
Pathology
Topology
Complex networks theories
Functional activities
Mild cognitive impairments
Mild cognitive impairments (MCI)
Network structures
Neuronal activities
Pathological conditions
Topological properties
Complex networks
title_short Anomalous consistency in Mild Cognitive Impairment: A complex networks approach
title_full Anomalous consistency in Mild Cognitive Impairment: A complex networks approach
title_fullStr Anomalous consistency in Mild Cognitive Impairment: A complex networks approach
title_full_unstemmed Anomalous consistency in Mild Cognitive Impairment: A complex networks approach
title_sort Anomalous consistency in Mild Cognitive Impairment: A complex networks approach
dc.subject.keyword.spa.fl_str_mv Brain
Brain mapping
Heterogeneous networks
Magnetoencephalography
Pathology
Topology
Complex networks theories
Functional activities
Mild cognitive impairments
Mild cognitive impairments (MCI)
Network structures
Neuronal activities
Pathological conditions
Topological properties
Complex networks
topic Brain
Brain mapping
Heterogeneous networks
Magnetoencephalography
Pathology
Topology
Complex networks theories
Functional activities
Mild cognitive impairments
Mild cognitive impairments (MCI)
Network structures
Neuronal activities
Pathological conditions
Topological properties
Complex networks
description Increased variability in performance has been associated with the emergence of several neurological and psychiatric pathologies. However, whether and how consistency of neuronal activity may also be indicative of an underlying pathology is still poorly understood. Here we propose a novel method for evaluating consistency from non-invasive brain recordings. We evaluate the consistency of the cortical activity recorded with magnetoencephalography in a group of subjects diagnosed with Mild Cognitive Impairment (MCI), a condition sometimes prodromal of dementia, during the execution of a memory task. We use metrics coming from nonlinear dynamics to evaluate the consistency of cortical regions. A representation known as parenclitic networks is constructed, where atypical features are endowed with a network structure, the topological properties of which can be studied at various scales. Pathological conditions correspond to strongly heterogeneous networks, whereas typical or normative conditions are characterized by sparsely connected networks with homogeneous nodes. The analysis of this kind of networks allows identifying the extent to which consistency is affected in the MCI group and the focal points where MCI is especially severe. To the best of our knowledge, these results represent the first attempt at evaluating the consistency of brain functional activity using complex networks theory. © 2014 Elsevier Ltd. All rights reserved.
publishDate 2015
dc.date.created.spa.fl_str_mv 2015
dc.date.accessioned.none.fl_str_mv 2020-05-26T00:04:00Z
dc.date.available.none.fl_str_mv 2020-05-26T00:04:00Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.chaos.2014.10.013
dc.identifier.issn.none.fl_str_mv 9600779
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/23648
url https://doi.org/10.1016/j.chaos.2014.10.013
https://repository.urosario.edu.co/handle/10336/23648
identifier_str_mv 9600779
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 155
dc.relation.citationIssue.none.fl_str_mv No. 1
dc.relation.citationStartPage.none.fl_str_mv 144
dc.relation.citationTitle.none.fl_str_mv Chaos, Solitons and Fractals
dc.relation.citationVolume.none.fl_str_mv Vol. 70
dc.relation.ispartof.spa.fl_str_mv Chaos, Solitons and Fractals, ISSN:9600779, Vol.70, No.1 (2015); pp. 144-155
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84932613931&doi=10.1016%2fj.chaos.2014.10.013&partnerID=40&md5=a3cf8158df70a35dbb33ab32087baeb5
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier Ltd
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/83e3513a-360e-44f3-b743-39ccff292767/download
https://repository.urosario.edu.co/bitstreams/1d596dc6-9dc1-4825-afe0-8c1304ea02cb/download
https://repository.urosario.edu.co/bitstreams/fd9e5e79-63d5-45a0-a1f7-1cf3a62f6cd8/download
bitstream.checksum.fl_str_mv 3791f31ffad54dc95e0b00385acc91dd
0fbf44d654ee792015b0d93eee0816bf
f5a4c07ccd867123eafe72d95982dabf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167457527496704