Automatic quiet sleep detection based on multifractality in preterm neonates: effects of maturation

This study investigates the multifractal formalism framework for quiet sleep detection in preterm babies. EEG recordings from 25 healthy preterm infants were used in order to evaluate the performance of multifractal measures for the detection of quiet sleep. Results indicate that multifractal analys...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/28923
Acceso en línea:
https://doi.org/10.1109/EMBC.2017.8037246
https://repository.urosario.edu.co/handle/10336/28923
Palabra clave:
Fractals
Pediatrics
Sleep
Electroencephalography
Entropy
Training
Brain modeling
Rights
License
Restringido (Acceso a grupos específicos)
id EDOCUR2_fd1097710c95281ce0c6f86a8143a58d
oai_identifier_str oai:repository.urosario.edu.co:10336/28923
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 828ba1f8-7f27-432c-b460-8c737cb3131a-15b45fff5-4f13-4894-99dd-ca56f42f6aa5-17bb30133-880a-4f81-8ccc-82bf9c29b78c-10972b341-4019-4c34-a7b7-38ae0d273c5b-1df8f51ae-6ef0-4179-a77b-d75be3a821dc-138de6b05-427b-4843-8821-5161b28c7324-194f23f75-02c2-4bdf-be25-b1e6c9a34047-1141395126002020-08-28T15:50:07Z2020-08-28T15:50:07Z2017-09-14This study investigates the multifractal formalism framework for quiet sleep detection in preterm babies. EEG recordings from 25 healthy preterm infants were used in order to evaluate the performance of multifractal measures for the detection of quiet sleep. Results indicate that multifractal analysis based on wavelet leaders is able to identify quiet sleep epochs, but the classifier performances seem to be highly affected by the infant's age. In particular, from the developed classifiers, the lowest area under the curve (AUC) has been obtained for EEG recordings at very young age (? 31 weeks post-menstrual age), and the maximum at full-term age (? 37 weeks post-menstrual age). The improvement in classification performances can be due to a change in the multifractality properties of neonatal EEG during the maturation of the infant, which makes the EEG sleep stages more distinguishable.application/pdfhttps://doi.org/10.1109/EMBC.2017.8037246ISBN: 978-1-5090-2810-8EISBN: 978-1-5090-2809-2https://repository.urosario.edu.co/handle/10336/28923engIEEE201320102017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), ISBN: 978-1-5090-2810-8;EISBN: 978-1-5090-2809-2 (2017); pp. 2010-2013https://ieeexplore.ieee.org/document/8037246Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ec2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURFractalsPediatricsSleepElectroencephalographyEntropyTrainingBrain modelingAutomatic quiet sleep detection based on multifractality in preterm neonates: effects of maturationDetección automática del sueño silencioso basada en la multifractalidad en recién nacidos prematuros: efectos de la maduraciónbookPartParte de librohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248Lavanga, M.De Wel, OHeremans, EJansen, KDereymaeker, ANaulaers, GVan Huffel, SCaicedo Dorado, Alexander10336/28923oai:repository.urosario.edu.co:10336/289232021-06-03 00:49:43.714https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Automatic quiet sleep detection based on multifractality in preterm neonates: effects of maturation
dc.title.TranslatedTitle.spa.fl_str_mv Detección automática del sueño silencioso basada en la multifractalidad en recién nacidos prematuros: efectos de la maduración
title Automatic quiet sleep detection based on multifractality in preterm neonates: effects of maturation
spellingShingle Automatic quiet sleep detection based on multifractality in preterm neonates: effects of maturation
Fractals
Pediatrics
Sleep
Electroencephalography
Entropy
Training
Brain modeling
title_short Automatic quiet sleep detection based on multifractality in preterm neonates: effects of maturation
title_full Automatic quiet sleep detection based on multifractality in preterm neonates: effects of maturation
title_fullStr Automatic quiet sleep detection based on multifractality in preterm neonates: effects of maturation
title_full_unstemmed Automatic quiet sleep detection based on multifractality in preterm neonates: effects of maturation
title_sort Automatic quiet sleep detection based on multifractality in preterm neonates: effects of maturation
dc.subject.keyword.spa.fl_str_mv Fractals
Pediatrics
Sleep
Electroencephalography
Entropy
Training
Brain modeling
topic Fractals
Pediatrics
Sleep
Electroencephalography
Entropy
Training
Brain modeling
description This study investigates the multifractal formalism framework for quiet sleep detection in preterm babies. EEG recordings from 25 healthy preterm infants were used in order to evaluate the performance of multifractal measures for the detection of quiet sleep. Results indicate that multifractal analysis based on wavelet leaders is able to identify quiet sleep epochs, but the classifier performances seem to be highly affected by the infant's age. In particular, from the developed classifiers, the lowest area under the curve (AUC) has been obtained for EEG recordings at very young age (? 31 weeks post-menstrual age), and the maximum at full-term age (? 37 weeks post-menstrual age). The improvement in classification performances can be due to a change in the multifractality properties of neonatal EEG during the maturation of the infant, which makes the EEG sleep stages more distinguishable.
publishDate 2017
dc.date.created.spa.fl_str_mv 2017-09-14
dc.date.accessioned.none.fl_str_mv 2020-08-28T15:50:07Z
dc.date.available.none.fl_str_mv 2020-08-28T15:50:07Z
dc.type.eng.fl_str_mv bookPart
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.spa.spa.fl_str_mv Parte de libro
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/EMBC.2017.8037246
dc.identifier.issn.none.fl_str_mv ISBN: 978-1-5090-2810-8
EISBN: 978-1-5090-2809-2
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/28923
url https://doi.org/10.1109/EMBC.2017.8037246
https://repository.urosario.edu.co/handle/10336/28923
identifier_str_mv ISBN: 978-1-5090-2810-8
EISBN: 978-1-5090-2809-2
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 2013
dc.relation.citationStartPage.none.fl_str_mv 2010
dc.relation.citationTitle.none.fl_str_mv 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
dc.relation.ispartof.spa.fl_str_mv 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), ISBN: 978-1-5090-2810-8;EISBN: 978-1-5090-2809-2 (2017); pp. 2010-2013
dc.relation.uri.spa.fl_str_mv https://ieeexplore.ieee.org/document/8037246
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.acceso.spa.fl_str_mv Restringido (Acceso a grupos específicos)
rights_invalid_str_mv Restringido (Acceso a grupos específicos)
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IEEE
dc.source.spa.fl_str_mv 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167537192009728