Automatic quiet sleep detection based on multifractality in preterm neonates: effects of maturation
This study investigates the multifractal formalism framework for quiet sleep detection in preterm babies. EEG recordings from 25 healthy preterm infants were used in order to evaluate the performance of multifractal measures for the detection of quiet sleep. Results indicate that multifractal analys...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/28923
- Acceso en línea:
- https://doi.org/10.1109/EMBC.2017.8037246
https://repository.urosario.edu.co/handle/10336/28923
- Palabra clave:
- Fractals
Pediatrics
Sleep
Electroencephalography
Entropy
Training
Brain modeling
- Rights
- License
- Restringido (Acceso a grupos específicos)
id |
EDOCUR2_fd1097710c95281ce0c6f86a8143a58d |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/28923 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
828ba1f8-7f27-432c-b460-8c737cb3131a-15b45fff5-4f13-4894-99dd-ca56f42f6aa5-17bb30133-880a-4f81-8ccc-82bf9c29b78c-10972b341-4019-4c34-a7b7-38ae0d273c5b-1df8f51ae-6ef0-4179-a77b-d75be3a821dc-138de6b05-427b-4843-8821-5161b28c7324-194f23f75-02c2-4bdf-be25-b1e6c9a34047-1141395126002020-08-28T15:50:07Z2020-08-28T15:50:07Z2017-09-14This study investigates the multifractal formalism framework for quiet sleep detection in preterm babies. EEG recordings from 25 healthy preterm infants were used in order to evaluate the performance of multifractal measures for the detection of quiet sleep. Results indicate that multifractal analysis based on wavelet leaders is able to identify quiet sleep epochs, but the classifier performances seem to be highly affected by the infant's age. In particular, from the developed classifiers, the lowest area under the curve (AUC) has been obtained for EEG recordings at very young age (? 31 weeks post-menstrual age), and the maximum at full-term age (? 37 weeks post-menstrual age). The improvement in classification performances can be due to a change in the multifractality properties of neonatal EEG during the maturation of the infant, which makes the EEG sleep stages more distinguishable.application/pdfhttps://doi.org/10.1109/EMBC.2017.8037246ISBN: 978-1-5090-2810-8EISBN: 978-1-5090-2809-2https://repository.urosario.edu.co/handle/10336/28923engIEEE201320102017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), ISBN: 978-1-5090-2810-8;EISBN: 978-1-5090-2809-2 (2017); pp. 2010-2013https://ieeexplore.ieee.org/document/8037246Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ec2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURFractalsPediatricsSleepElectroencephalographyEntropyTrainingBrain modelingAutomatic quiet sleep detection based on multifractality in preterm neonates: effects of maturationDetección automática del sueño silencioso basada en la multifractalidad en recién nacidos prematuros: efectos de la maduraciónbookPartParte de librohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248Lavanga, M.De Wel, OHeremans, EJansen, KDereymaeker, ANaulaers, GVan Huffel, SCaicedo Dorado, Alexander10336/28923oai:repository.urosario.edu.co:10336/289232021-06-03 00:49:43.714https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Automatic quiet sleep detection based on multifractality in preterm neonates: effects of maturation |
dc.title.TranslatedTitle.spa.fl_str_mv |
Detección automática del sueño silencioso basada en la multifractalidad en recién nacidos prematuros: efectos de la maduración |
title |
Automatic quiet sleep detection based on multifractality in preterm neonates: effects of maturation |
spellingShingle |
Automatic quiet sleep detection based on multifractality in preterm neonates: effects of maturation Fractals Pediatrics Sleep Electroencephalography Entropy Training Brain modeling |
title_short |
Automatic quiet sleep detection based on multifractality in preterm neonates: effects of maturation |
title_full |
Automatic quiet sleep detection based on multifractality in preterm neonates: effects of maturation |
title_fullStr |
Automatic quiet sleep detection based on multifractality in preterm neonates: effects of maturation |
title_full_unstemmed |
Automatic quiet sleep detection based on multifractality in preterm neonates: effects of maturation |
title_sort |
Automatic quiet sleep detection based on multifractality in preterm neonates: effects of maturation |
dc.subject.keyword.spa.fl_str_mv |
Fractals Pediatrics Sleep Electroencephalography Entropy Training Brain modeling |
topic |
Fractals Pediatrics Sleep Electroencephalography Entropy Training Brain modeling |
description |
This study investigates the multifractal formalism framework for quiet sleep detection in preterm babies. EEG recordings from 25 healthy preterm infants were used in order to evaluate the performance of multifractal measures for the detection of quiet sleep. Results indicate that multifractal analysis based on wavelet leaders is able to identify quiet sleep epochs, but the classifier performances seem to be highly affected by the infant's age. In particular, from the developed classifiers, the lowest area under the curve (AUC) has been obtained for EEG recordings at very young age (? 31 weeks post-menstrual age), and the maximum at full-term age (? 37 weeks post-menstrual age). The improvement in classification performances can be due to a change in the multifractality properties of neonatal EEG during the maturation of the infant, which makes the EEG sleep stages more distinguishable. |
publishDate |
2017 |
dc.date.created.spa.fl_str_mv |
2017-09-14 |
dc.date.accessioned.none.fl_str_mv |
2020-08-28T15:50:07Z |
dc.date.available.none.fl_str_mv |
2020-08-28T15:50:07Z |
dc.type.eng.fl_str_mv |
bookPart |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.spa.spa.fl_str_mv |
Parte de libro |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/EMBC.2017.8037246 |
dc.identifier.issn.none.fl_str_mv |
ISBN: 978-1-5090-2810-8 EISBN: 978-1-5090-2809-2 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/28923 |
url |
https://doi.org/10.1109/EMBC.2017.8037246 https://repository.urosario.edu.co/handle/10336/28923 |
identifier_str_mv |
ISBN: 978-1-5090-2810-8 EISBN: 978-1-5090-2809-2 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
2013 |
dc.relation.citationStartPage.none.fl_str_mv |
2010 |
dc.relation.citationTitle.none.fl_str_mv |
2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) |
dc.relation.ispartof.spa.fl_str_mv |
39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), ISBN: 978-1-5090-2810-8;EISBN: 978-1-5090-2809-2 (2017); pp. 2010-2013 |
dc.relation.uri.spa.fl_str_mv |
https://ieeexplore.ieee.org/document/8037246 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.acceso.spa.fl_str_mv |
Restringido (Acceso a grupos específicos) |
rights_invalid_str_mv |
Restringido (Acceso a grupos específicos) http://purl.org/coar/access_right/c_16ec |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IEEE |
dc.source.spa.fl_str_mv |
2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167537192009728 |