Análisis de la frecuencia de detección de Clostridium paraputrificum y los potenciales cambios en la composición de comunidades bacterianas en muestras de heces de animales de granja y domésticos
Clostridium paraputrificum es una bacteria anaerobia Gram-positiva, móvil y formadora de esporas que causa infecciones pediátricas, enterocolitis y bacteriemia en pacientes inmunocomprometidos. En animales puede causar lesiones quitinolíticas e intestinales relacionadas con quistes gaseosos, gangren...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- spa
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/40981
- Acceso en línea:
- https://doi.org/10.48713/10336_40981
https://repository.urosario.edu.co/handle/10336/40981
- Palabra clave:
- Clostridium paraputrificum
Comunidades bacterianas
Animales
Tracto gastrointestinal
Clostridium paraputrificum
Bacterial communities
animals
Gastrointestinal tract
- Rights
- License
- Attribution 4.0 International
id |
EDOCUR2_fb81b9b2bdf0500c43dbc6adcf93f33c |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/40981 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.none.fl_str_mv |
Análisis de la frecuencia de detección de Clostridium paraputrificum y los potenciales cambios en la composición de comunidades bacterianas en muestras de heces de animales de granja y domésticos |
dc.title.TranslatedTitle.none.fl_str_mv |
Analysis of the frequency of detection of Clostridium paraputrificum and potential changes in the composition of bacterial communities in feces samples from farm and domestic animals |
title |
Análisis de la frecuencia de detección de Clostridium paraputrificum y los potenciales cambios en la composición de comunidades bacterianas en muestras de heces de animales de granja y domésticos |
spellingShingle |
Análisis de la frecuencia de detección de Clostridium paraputrificum y los potenciales cambios en la composición de comunidades bacterianas en muestras de heces de animales de granja y domésticos Clostridium paraputrificum Comunidades bacterianas Animales Tracto gastrointestinal Clostridium paraputrificum Bacterial communities animals Gastrointestinal tract |
title_short |
Análisis de la frecuencia de detección de Clostridium paraputrificum y los potenciales cambios en la composición de comunidades bacterianas en muestras de heces de animales de granja y domésticos |
title_full |
Análisis de la frecuencia de detección de Clostridium paraputrificum y los potenciales cambios en la composición de comunidades bacterianas en muestras de heces de animales de granja y domésticos |
title_fullStr |
Análisis de la frecuencia de detección de Clostridium paraputrificum y los potenciales cambios en la composición de comunidades bacterianas en muestras de heces de animales de granja y domésticos |
title_full_unstemmed |
Análisis de la frecuencia de detección de Clostridium paraputrificum y los potenciales cambios en la composición de comunidades bacterianas en muestras de heces de animales de granja y domésticos |
title_sort |
Análisis de la frecuencia de detección de Clostridium paraputrificum y los potenciales cambios en la composición de comunidades bacterianas en muestras de heces de animales de granja y domésticos |
dc.contributor.advisor.none.fl_str_mv |
Muñoz Díaz, Marina Camargo Mancipe, Anny |
dc.contributor.none.fl_str_mv |
Ramírez, Juan David |
dc.subject.none.fl_str_mv |
Clostridium paraputrificum Comunidades bacterianas Animales Tracto gastrointestinal |
topic |
Clostridium paraputrificum Comunidades bacterianas Animales Tracto gastrointestinal Clostridium paraputrificum Bacterial communities animals Gastrointestinal tract |
dc.subject.keyword.none.fl_str_mv |
Clostridium paraputrificum Bacterial communities animals Gastrointestinal tract |
description |
Clostridium paraputrificum es una bacteria anaerobia Gram-positiva, móvil y formadora de esporas que causa infecciones pediátricas, enterocolitis y bacteriemia en pacientes inmunocomprometidos. En animales puede causar lesiones quitinolíticas e intestinales relacionadas con quistes gaseosos, gangrena gaseosa y enterocolitis necrotizante. La relevancia clínica ha sido poco descrita, aun cuando los reportes de caso de aislamientos de esta bacteria se asocian con infecciones graves en humanos y animales. En Colombia, se ha descrito el genoma y los factores de virulencia codificantes por C. paraputrificum en un grupo reducido de aislamiento obtenidos de humanos, pero no se ha estudiado la frecuencia de infección en humanos o animales, ni los cambios en la composición de la microbiota en presencia de este Clostridial. Debido a esto, en este estudio se determinó la frecuencia de circulación de C. paraputrifium en 302 muestras de heces de caninos, felinos y animales de granja del departamento de Boyacá y la ciudad de Bogotá, Cundinamarca usando Reacción en Cadena de la Polimerasa (PCR). Adicionalmente, se evaluó la composición de las comunidades microbianas en un subconjunto de muestras que incluyó individuos positivos y negativos para esta especie bacteriana en proporción 2:1, respectivamente. Para esto, se realizó secuenciación profunda del 16S-ARNr por la plataforma MinION (Oxford Nanopore Technologies). La frecuencia de detección global fue de C. paraputrificum en las muestras (C.par+) fue del 8% (n=24). Se encontró que la frecuencia de detección C.par+ en caninos fue del 30% (n=12), en felinos fue 6.5% (n=8), en caprinos fue 10% (n=2), en porcinos fue 2.5% (n=1) y en bovinos fue 2.5% (n=1). Una vez normalizadas las muestras y de acuerdo con la cantidad de lecturas obtenidas, se incluyeron 18 muestras C. par+ de caninos (n=9), caprinos (n=2) y felinos (n=7). El análisis de las comunidades bacterianas evidenció predominancia de los fila Proteobacteria, Bacteroidetes y Firmicutes en los tres grupos de animales. No obstante, los fila Tenericutes, Actinobacteria y Kiritimatiellaeota no fueron predominantes en las muestras la abundancia relativa de estos fue mayor en caprinos en comparación con los caninos y felinos. En los caninos y felinos los principales miembros diferencialmente abundantes fueron Faecalibacterium, Bacteroides y Bifidobacterium, mientras que, entre los caprinos, los principales miembros diferencialmente abundantes con los cuales se relacionó fueron Ruminococcaceae UCG-014, Alistipes y Escherichia-Shigella. Este estudio permitió ampliar el panorama de las diferencias en la frecuencia de detección de C. paraputrificum entre animales y su potencial relevancia en la composición de la microbiota. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-09-15T20:08:47Z |
dc.date.available.none.fl_str_mv |
2023-09-15T20:08:47Z |
dc.date.created.none.fl_str_mv |
2023-08-22 |
dc.type.none.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.document.none.fl_str_mv |
Trabajo de grado |
dc.type.spa.none.fl_str_mv |
Trabajo de grado |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.48713/10336_40981 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/40981 |
url |
https://doi.org/10.48713/10336_40981 https://repository.urosario.edu.co/handle/10336/40981 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Attribution 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.none.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.economicrights.none.fl_str_mv |
Universidad del Rosario |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
rights_invalid_str_mv |
Attribution 4.0 International Abierto (Texto Completo) Universidad del Rosario http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.none.fl_str_mv |
32 pp |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.none.fl_str_mv |
Facultad de Ciencias Naturales |
dc.publisher.program.none.fl_str_mv |
Biología |
publisher.none.fl_str_mv |
Universidad del Rosario |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.none.fl_str_mv |
Al-Dujaili, A.; Deragisch, F.; Hagiescu, A.; Wong, W. F. (2012) Guppy: A GPU- like soft-core processor. pp. 57 - 60; IEEE; Bedford, A.; Yu, H.; Squires, E. J.; Leeson, S.; Gong, J. (2017) Effects of supplementation level and feeding schedule of butyrate glycerides on the growth performance and carcass composition of broiler chickens. En:Poultry science; Vol. 96; No. 9; pp. 3221 - 3228; Beloshapka, A. N.; Dowd, S. E.; Suchodolski, J. S.; Steiner, J. M.; Duclos, L.; Swanson, K. S. (2013) Fecal microbial communities of healthy adult dogs fed raw meat-based diets with or without inulin or yeast cell wall extracts as assessed by 454 pyrosequencing. En:FEMS microbiology ecology; Vol. 84; No. 3; pp. 532 - 541; Bermingham, E. N.; Maclean, P.; Thomas, D. G.; Cave, N. J.; Young, W. J. P. (2017) Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. En:[sin número de volumen]; Vol. 5; Bermingham, E. N.; Young, W.; Kittelmann, S.; Kerr, K. R.; Swanson, K. S.; Roy, N. C.; Thomas, D. G. (2013) Dietary format alters fecal bacterial populations in the domestic cat (Felis catus). En:Microbiologyopen; Vol. 2; No. 1; pp. 173 - 181; Breitwieser, FP; Salzberg, SL (2020) Pavian: interactive analysis of metagenomics data for microbiome studies and pathogen identification. En:Bioinformatics; Vol. 36; pp. 1303 - 1304; Camargo, A.; Guerrero-Araya, E.; Castañeda, S.; Vega, L.; Cardenas-Alvarez, M. X.; Rodríguez, C.; Muñoz, M. (2022) Intra-species diversity of Clostridium perfringens: A diverse genetic repertoire reveals its pathogenic potential. En:Frontiers in Microbiology; Vol. 2699; Chen, J.; Chen, X.; Ho, C. L. (2021) Recent development of probiotic Bifidobacteria for treating human diseases. En:Frontiers in Bioengineering and Biotechnology; Vol. 9; pp. 1371 Cholewińska, P.; Górniak, W.; Wojnarowski, K. J. (2021) Impact of selected environmental factors on microbiome of the digestive tract of ruminants. En:[sin número de volumen]; pp. 1 - 10; Cipriano-Salazar, M.; Rojas-Hernández, S.; Olivares-Pérez, J.; Jiménez-Guillén, R.; Cruz-Lagunas, B.; Camacho-Díaz, L. M.; Ugbogu, A. E. (2018) Antibacterial activities of tannic acid against isolated ruminal bacteria from sheep. En:Microbial pathogenesis; Vol. 117; pp. 255 - 258; Ciuro, J.; Little, T.; Hiner, E.; Vakhariya, C. (2021) Clostridium paraputrificum: an atypical and rare case of septic arthritis mimicking an acute sickle cell crisis. En:IDCases; Vol. 23; pp. e01031 Cobos, M. A.; Yokoyama, M. T. (1995) Clostridium paraputrificum var. Ruminantium: Colonisation and degradation of shrimp carapaces. pp. 13 - 18; ILRI; De Coster, W.; D’Hert, S.; Schultz, DT; Cruts, M.; Van Broeckhoven, C. (2018) NanoPack: Visualizing and processing long-read sequencing data. En:Bioinformatics; Vol. 34; No. 15; pp. 2666 Dos Santos, E. T.; Pereira, M. L. A.; Da Silva, C. F. P.; Souza-Neta, L. C.; Geris, R.; Martins; Antibacterial activity of the alkaloid-enriched extract from Prosopis juliflora pods and its influence on in vitro ruminal digestion. Dos Santos, H. R. M.; Argolo, C. S.; Argôlo-Filho, R. C.; Loguercio, L. L. (2019) A 16S rDNA PCR-based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information. En:BMC microbiology; Vol. 19; No. 1; pp. 1 - 14; Dozmorov, M. G.; Cara, L. R.; Giles, C. B.; Wren, J. D. (2012) Genome runner: automating genome exploration. En:Bioinformatics; Vol. 28; No. 3; pp. 419 - 420; Duarte, M. E.; Kim, S. W. (2022) Intestinal microbiota and its interaction to intestinal health in nursery pigs. En:[sin número de volumen]; Vol. 8; pp. 169 - 184; Enright, A. M. (2022) Microbiome analysis of landfill leachate samples sourced from Powerstown landfill Co. Carlow. F. O. (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. En:Nucleic acids research; Vol. 41; No. D1; pp. D590 - D596; Fedor, P.; Zvaríková, M. (2019) Biodiversity indices. En:Encycl. Ecol; Vol. 2; pp. 337 - 346; Hagey, J. V.; Laabs, M.; Maga, E. A.; DePeters, E. J. (2022) Rumen sampling methods bias bacterial communities observed. En:PLoS One; Vol. 17; No. 5; pp. e0258176 He, X.; Zhao, S.; Li, Y. (2021) Faecalibacterium prausnitzii: A next-generation probiotic in gut disease improvement. En:Canadian Journal of Infectious Diseases and Medical Microbiology; Vol. 2021; pp. 1 - 10; Huang, Z.; Pan, Z.; Yang, R.; Bi, Y.; Xiong, X. J. (2020) The canine gastrointestinal microbiota: early studies and research frontiers. En:[sin número de volumen]; Vol. 11; No. 4; pp. 635 - 654; Jain, M.; Olsen, H. E.; Paten, B.; Akeson, M. (2016) The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. En:Genome biology; Vol. 17; pp. 1 - 11; Kikuchi, E.; Miyamoto, Y.; Narushima, S.; Itoh, K. (2002) Design of Species‐specific primers to identify 13 species of Clostridium harbored in human intestinal tracts. En:Microbiology and immunology; Vol. 46; No. 5; pp. 353 - 358; Kiu, R.; Caim, S.; Alcon-Giner, C.; Belteki, G.; Clarke, P.; Pickard, D.; Hall, L.J. (2017) Preterm infant-associated Clostridium tertium, Clostridium cadaveris, and Clostridium paraputrificum strains: genomic and evolutionary insights. En:Genome Biology and Evolution; Vol. 9; No. 10; pp. 2707 - 2714; Kraimi, N.; Dawkins, M.; Gebhardt-Henrich, S. G.; Velge, P.; Rychlik, I.; Volf, J.; Leterrier, C. (2019) Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: A review. En:Physiology & behavior; Vol. 210; pp. 112658 Kriss, M.; Hazleton, K. Z.; Nusbacher, N. M.; Martin, C. G.; Lozupone, C. A. (2018) Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. En:Current opinion in microbiology; Vol. 44; pp. 34 - 40; Kumar, A.; Chordia, N. (2015) In silico PCR primer designing and validation. En:PCR primer design; pp. 143 - 151; Lee, W.-J.; Hase, K. (2014) Gut microbiota–generated metabolites in animal health and disease. En:Nature Chemical Biology; Vol. 10; No. 6; pp. 416 - 424; Levesque, C. L.; Hooda, S.; Swanson, K. S.; De Lange, K. (2014) Alterations in ileal mucosa bacteria related to diet complexity and growth performance in young pigs. En:PLoS One; Vol. 9; No. 9; pp. e108472 Li, H.; Zhao, L.; Zhang, M. (2021) Gut microbial SNPs induced by high-fiber diet dominate nutrition metabolism and environmental adaption of Faecalibacterium prausnitzii in obese children. En:Frontiers in Microbiology; Vol. 12; pp. 683714 Liu, X.; Mao, B.; Gu, J.; Wu, J.; Cui, S.; Wang, G.; Chen, W. (2021) Blautia—a new functional genus with potential probiotic properties?. En:Gut microbes; Vol. 13; No. 1; pp. 1875796 Lo Presti, A.; Del Chierico, F.; Altomare, A.; Zorzi, F.; Monteleone, G.; Putignani, L.; Ciccozzi, M. (2023) Phylogenetic analysis of Prevotella copri from fecal and mucosal microbiota of IBS and IBD patients. En:Therapeutic Advances in Gastroenterology; Vol. 16; pp. 17562848221136328 Lorenz, T. C. (2012) Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. En:JoVE (Journal of Visualized Experiments); No. 63; pp. e3998 Lu, J.; Rincon, N.; Wood, D. E.; Breitwieser, F. P.; Pockrandt, C.; Langmead, B.; Steinegger, M. (2022) Metagenome analysis using the Kraken software suite. En:Nature protocols; Vol. 17; No. 12; pp. 2815 - 2839; Machado, D.; Barbosa, J. C.; Domingos, M.; Almeida, D.; Andrade, J. C.; Freitas, A. C.; Gomes, A. M. (2022) Revealing antimicrobial resistance profile of the novel probiotic candidate Faecalibacterium prausnitzii DSM 17677. En:International Journal of Food Microbiology; Vol. 363; pp. 109501 Mamuad, L. L.; Seo, B. J.; Al Faruk, M. S.; Espiritu, H. M.; Jin, S. J.; Kim, W.-I.; Cho, Y.-I. (2020) Treponema spp., the dominant pathogen in the lesion of bovine digital dermatitis and its characterization in dairy cattle. En:Veterinary Microbiology; Disponible en: 10.1016/j.vetmic.2020.108696. Mo, X.; Song, Y.; Chen, F.; You, C.; Li, D.; Liu, F. (2023) Replacement of plant communities altered soil bacterial diversity and structure rather than the function in similar habitats of the Yellow River Delta, China. En:Ecological Indicators; Vol. 146; pp. 109793 Moon, C. D.; Young, W.; Maclean, P. H.; Cookson, A. L.; Bermingham, E. N. (2018) Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. En:Microbiology open; Vol. 7; No. 5; pp. e00677 Mostel, Z.; Hernandez, A.; Tatem, L. (2022) Clostridium paraputrificum bacteremia in a patient with presumptive complicated appendicitis: A case report. En:IDCases; Vol. 27; pp. e01361 Mukhopadhya, I.; Hansen, R.; El-Omar, E. M.; Hold, G. L. (2012) IBD—what role do Proteobacteria play?. En:Nature Reviews Gastroenterology & Hepatology; Vol. 9; No. 4; pp. 219 - 230; Disponible en: 10.1038/nrgastro.2012.14. Muñoz, M.; Restrepo-Montoya, D.; Kumar, N.; Iraola, G.; Herrera, G.; Ríos-Chaparro, D. I.; Ramírez, J. D. (2019) Comparative genomics identifies potential virulence factors in Clostridium tertium and C. paraputrificum. En:Virulence; Vol. 10; No. 1; pp. 657 - 676; Nazki, S.; Wani, S. A.; Parveen, R.; Ahangar, S. A.; Kashoo, Z. A.; Hamid, S.; Dar, P. A. (2017) Isolation, molecular characterization and prevalence of Clostridium perfringens in sheep and goats of Kashmir Himalayas, India. En:Veterinary World; Vol. 10; No. 12; pp. 1501 Pacífico, C.; Petri, R. M.; Ricci, S.; Mickdam, E.; Wetzels, S. U.; Neubauer, V.; Zebeli, Q. (2021) Unveiling the bovine epimural microbiota composition and putative function. En:Microorganisms; Vol. 9; No. 2; pp. 342 Parker, B. J.; Wearsch, P. A.; Veloo, A. C.; Rodriguez-Palacios, A. (2020) The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. En:Frontiers in immunology; Vol. 11; pp. 906 R Core Team (2013) R: A language and environment for statistical computing. Sinha, T.; Hadi, C. (2015) Clostridium paraputrificum bacteremia associated with colonic necrosis in a patient with AIDS. En:Case Reports in Infectious Diseases; Yue, S.; Li, Z.; Hu, F.; Picimbon, J. F. (2020) Curing piglets from diarrhea and preparation of a healthy microbiome with Bacillus treatment for industrial animal breeding. En:Scientific reports; Vol. 10; No. 1; pp. 19476 |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/dba5c05f-830b-4055-bf2b-16dd70995a50/download https://repository.urosario.edu.co/bitstreams/2b82149a-8c6a-400f-9d6d-1bdd446a5413/download https://repository.urosario.edu.co/bitstreams/a1f8c3a6-2114-4a3f-8884-996df6a881cf/download https://repository.urosario.edu.co/bitstreams/60a2133c-f504-40d8-b94a-914f0991599d/download https://repository.urosario.edu.co/bitstreams/2349f388-2c17-447f-aae1-9aad226adf2c/download https://repository.urosario.edu.co/bitstreams/fa70e991-e8df-4c2d-9291-3f655f0ec1d8/download https://repository.urosario.edu.co/bitstreams/9bc83972-3de9-4fe7-9a8e-22ca025d692c/download |
bitstream.checksum.fl_str_mv |
3f303158be488c4cb503d433d0373637 e4a23ed1f993a3d34923e927723d11cf b2825df9f458e9d5d96ee8b7cd74fde6 313ea3fe4cd627df823c57a0f12776e5 58bc469436391a3c145249bcf222ab79 ddb701a7586584e5ed0d773a2e34b5ac 78033c6028df4f90ec2b2cbf3bdffe6a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1818106951002750976 |
spelling |
Ramírez, Juan DavidMuñoz Díaz, Marina11e33b66-c06e-405c-9a7d-cbb5b723fd32-1Camargo Mancipe, Annya6c8ca01-4e14-43c4-8d1a-e07efb2be4db-1De La Cruz Bermúdez, EmanuellaBiólogoPregradoFull time0303163f-e158-4610-93e3-fd069f3cabd3-12023-09-15T20:08:47Z2023-09-15T20:08:47Z2023-08-22Clostridium paraputrificum es una bacteria anaerobia Gram-positiva, móvil y formadora de esporas que causa infecciones pediátricas, enterocolitis y bacteriemia en pacientes inmunocomprometidos. En animales puede causar lesiones quitinolíticas e intestinales relacionadas con quistes gaseosos, gangrena gaseosa y enterocolitis necrotizante. La relevancia clínica ha sido poco descrita, aun cuando los reportes de caso de aislamientos de esta bacteria se asocian con infecciones graves en humanos y animales. En Colombia, se ha descrito el genoma y los factores de virulencia codificantes por C. paraputrificum en un grupo reducido de aislamiento obtenidos de humanos, pero no se ha estudiado la frecuencia de infección en humanos o animales, ni los cambios en la composición de la microbiota en presencia de este Clostridial. Debido a esto, en este estudio se determinó la frecuencia de circulación de C. paraputrifium en 302 muestras de heces de caninos, felinos y animales de granja del departamento de Boyacá y la ciudad de Bogotá, Cundinamarca usando Reacción en Cadena de la Polimerasa (PCR). Adicionalmente, se evaluó la composición de las comunidades microbianas en un subconjunto de muestras que incluyó individuos positivos y negativos para esta especie bacteriana en proporción 2:1, respectivamente. Para esto, se realizó secuenciación profunda del 16S-ARNr por la plataforma MinION (Oxford Nanopore Technologies). La frecuencia de detección global fue de C. paraputrificum en las muestras (C.par+) fue del 8% (n=24). Se encontró que la frecuencia de detección C.par+ en caninos fue del 30% (n=12), en felinos fue 6.5% (n=8), en caprinos fue 10% (n=2), en porcinos fue 2.5% (n=1) y en bovinos fue 2.5% (n=1). Una vez normalizadas las muestras y de acuerdo con la cantidad de lecturas obtenidas, se incluyeron 18 muestras C. par+ de caninos (n=9), caprinos (n=2) y felinos (n=7). El análisis de las comunidades bacterianas evidenció predominancia de los fila Proteobacteria, Bacteroidetes y Firmicutes en los tres grupos de animales. No obstante, los fila Tenericutes, Actinobacteria y Kiritimatiellaeota no fueron predominantes en las muestras la abundancia relativa de estos fue mayor en caprinos en comparación con los caninos y felinos. En los caninos y felinos los principales miembros diferencialmente abundantes fueron Faecalibacterium, Bacteroides y Bifidobacterium, mientras que, entre los caprinos, los principales miembros diferencialmente abundantes con los cuales se relacionó fueron Ruminococcaceae UCG-014, Alistipes y Escherichia-Shigella. Este estudio permitió ampliar el panorama de las diferencias en la frecuencia de detección de C. paraputrificum entre animales y su potencial relevancia en la composición de la microbiota.Clostridium paraputrificum is a Gram-positive, anaerobic bacterium that is motile and forms spores. It causes pediatric infections, enterocolitis, and bacteremia in immunocompromised patients. In animals, it can lead to chitinolytic, and intestinal lesions associated with gas-filled cysts, gas gangrene, and necrotizing enterocolitis. Clinical significance has been poorly described, even though case reports of isolates of this bacterium are linked to severe infections in humans and animals. In Colombia, the genome and virulence factors encoded by C. paraputrificum have been described in a small group of isolates obtained from humans. However, the frequency of infection in humans or animals, as well as changes in the composition of the microbiota in the presence of this Clostridial species, have not been studied. Therefore, this study determined the frequency circulation of C. paraputrificum in 302 fecal samples from dogs, cats, and farm animals from the department of Boyacá and the city of Bogotá, Cundinamarca, using Polymerase Chain Reaction (PCR). The composition of microbial communities was evaluated in a subset of samples, including individuals positive and negative for this bacterial species in a 2:1 ratio, respectively. For this, deep sequencing of 16S rRNA was performed using the MinION platform (Oxford Nanopore Technologies). The overall detection frequency of C. paraputrificum in the samples (C.par+) was 8% (n=24). The C.par+ detection frequency in dogs was 30% (n=12), in cats was 6.5% (n=8), in goats was 10% (n=2), in pigs was 2.5% (n=1), and in cattle was 2.5% (n=1). Once the samples were normalized and according to the quantity of readings obtained, 18 samples of C. par+ from canines (n=9), caprines (n=2), and felines (n=7) were included. Analysis of bacterial communities revealed a predominance of the phyla Proteobacteria, Bacteroidetes, and Firmicutes in all three animal groups. However, the phyla Tenericutes, Actinobacteria, and Kiritimatiellaeota were not predominant in the samples; their relative abundance was higher in goats compared to dogs and cats. In dogs and cats, the main differentially abundant members being Faecalibacterium, Bacteroides, and Bifidobacterium, whereas among goats, the main differentially abundant members being Ruminococcaceae UCG-014, Alistipes, and Escherichia-Shigella. This study helped broaden the understanding of differences in the detection frequency of C. paraputrificum among animals and its potential relevance in microbiota composition.32 ppapplication/pdfhttps://doi.org/10.48713/10336_40981 https://repository.urosario.edu.co/handle/10336/40981spaUniversidad del RosarioFacultad de Ciencias NaturalesBiologíaAttribution 4.0 InternationalAbierto (Texto Completo)Universidad del RosarioEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://creativecommons.org/licenses/by/4.0/http://purl.org/coar/access_right/c_abf2Al-Dujaili, A.; Deragisch, F.; Hagiescu, A.; Wong, W. F. (2012) Guppy: A GPU- like soft-core processor. pp. 57 - 60; IEEE;Bedford, A.; Yu, H.; Squires, E. J.; Leeson, S.; Gong, J. (2017) Effects of supplementation level and feeding schedule of butyrate glycerides on the growth performance and carcass composition of broiler chickens. En:Poultry science; Vol. 96; No. 9; pp. 3221 - 3228;Beloshapka, A. N.; Dowd, S. E.; Suchodolski, J. S.; Steiner, J. M.; Duclos, L.; Swanson, K. S. (2013) Fecal microbial communities of healthy adult dogs fed raw meat-based diets with or without inulin or yeast cell wall extracts as assessed by 454 pyrosequencing. En:FEMS microbiology ecology; Vol. 84; No. 3; pp. 532 - 541;Bermingham, E. N.; Maclean, P.; Thomas, D. G.; Cave, N. J.; Young, W. J. P. (2017) Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. En:[sin número de volumen]; Vol. 5;Bermingham, E. N.; Young, W.; Kittelmann, S.; Kerr, K. R.; Swanson, K. S.; Roy, N. C.; Thomas, D. G. (2013) Dietary format alters fecal bacterial populations in the domestic cat (Felis catus). En:Microbiologyopen; Vol. 2; No. 1; pp. 173 - 181;Breitwieser, FP; Salzberg, SL (2020) Pavian: interactive analysis of metagenomics data for microbiome studies and pathogen identification. En:Bioinformatics; Vol. 36; pp. 1303 - 1304;Camargo, A.; Guerrero-Araya, E.; Castañeda, S.; Vega, L.; Cardenas-Alvarez, M. X.; Rodríguez, C.; Muñoz, M. (2022) Intra-species diversity of Clostridium perfringens: A diverse genetic repertoire reveals its pathogenic potential. En:Frontiers in Microbiology; Vol. 2699;Chen, J.; Chen, X.; Ho, C. L. (2021) Recent development of probiotic Bifidobacteria for treating human diseases. En:Frontiers in Bioengineering and Biotechnology; Vol. 9; pp. 1371 Cholewińska, P.; Górniak, W.; Wojnarowski, K. J. (2021) Impact of selected environmental factors on microbiome of the digestive tract of ruminants. En:[sin número de volumen]; pp. 1 - 10;Cipriano-Salazar, M.; Rojas-Hernández, S.; Olivares-Pérez, J.; Jiménez-Guillén, R.; Cruz-Lagunas, B.; Camacho-Díaz, L. M.; Ugbogu, A. E. (2018) Antibacterial activities of tannic acid against isolated ruminal bacteria from sheep. En:Microbial pathogenesis; Vol. 117; pp. 255 - 258;Ciuro, J.; Little, T.; Hiner, E.; Vakhariya, C. (2021) Clostridium paraputrificum: an atypical and rare case of septic arthritis mimicking an acute sickle cell crisis. En:IDCases; Vol. 23; pp. e01031 Cobos, M. A.; Yokoyama, M. T. (1995) Clostridium paraputrificum var. Ruminantium: Colonisation and degradation of shrimp carapaces. pp. 13 - 18; ILRI;De Coster, W.; D’Hert, S.; Schultz, DT; Cruts, M.; Van Broeckhoven, C. (2018) NanoPack: Visualizing and processing long-read sequencing data. En:Bioinformatics; Vol. 34; No. 15; pp. 2666 Dos Santos, E. T.; Pereira, M. L. A.; Da Silva, C. F. P.; Souza-Neta, L. C.; Geris, R.; Martins; Antibacterial activity of the alkaloid-enriched extract from Prosopis juliflora pods and its influence on in vitro ruminal digestion. Dos Santos, H. R. M.; Argolo, C. S.; Argôlo-Filho, R. C.; Loguercio, L. L. (2019) A 16S rDNA PCR-based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information. En:BMC microbiology; Vol. 19; No. 1; pp. 1 - 14;Dozmorov, M. G.; Cara, L. R.; Giles, C. B.; Wren, J. D. (2012) Genome runner: automating genome exploration. En:Bioinformatics; Vol. 28; No. 3; pp. 419 - 420;Duarte, M. E.; Kim, S. W. (2022) Intestinal microbiota and its interaction to intestinal health in nursery pigs. En:[sin número de volumen]; Vol. 8; pp. 169 - 184;Enright, A. M. (2022) Microbiome analysis of landfill leachate samples sourced from Powerstown landfill Co. Carlow. F. O. (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. En:Nucleic acids research; Vol. 41; No. D1; pp. D590 - D596;Fedor, P.; Zvaríková, M. (2019) Biodiversity indices. En:Encycl. Ecol; Vol. 2; pp. 337 - 346;Hagey, J. V.; Laabs, M.; Maga, E. A.; DePeters, E. J. (2022) Rumen sampling methods bias bacterial communities observed. En:PLoS One; Vol. 17; No. 5; pp. e0258176 He, X.; Zhao, S.; Li, Y. (2021) Faecalibacterium prausnitzii: A next-generation probiotic in gut disease improvement. En:Canadian Journal of Infectious Diseases and Medical Microbiology; Vol. 2021; pp. 1 - 10;Huang, Z.; Pan, Z.; Yang, R.; Bi, Y.; Xiong, X. J. (2020) The canine gastrointestinal microbiota: early studies and research frontiers. En:[sin número de volumen]; Vol. 11; No. 4; pp. 635 - 654;Jain, M.; Olsen, H. E.; Paten, B.; Akeson, M. (2016) The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. En:Genome biology; Vol. 17; pp. 1 - 11;Kikuchi, E.; Miyamoto, Y.; Narushima, S.; Itoh, K. (2002) Design of Species‐specific primers to identify 13 species of Clostridium harbored in human intestinal tracts. En:Microbiology and immunology; Vol. 46; No. 5; pp. 353 - 358;Kiu, R.; Caim, S.; Alcon-Giner, C.; Belteki, G.; Clarke, P.; Pickard, D.; Hall, L.J. (2017) Preterm infant-associated Clostridium tertium, Clostridium cadaveris, and Clostridium paraputrificum strains: genomic and evolutionary insights. En:Genome Biology and Evolution; Vol. 9; No. 10; pp. 2707 - 2714;Kraimi, N.; Dawkins, M.; Gebhardt-Henrich, S. G.; Velge, P.; Rychlik, I.; Volf, J.; Leterrier, C. (2019) Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: A review. En:Physiology & behavior; Vol. 210; pp. 112658 Kriss, M.; Hazleton, K. Z.; Nusbacher, N. M.; Martin, C. G.; Lozupone, C. A. (2018) Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. En:Current opinion in microbiology; Vol. 44; pp. 34 - 40;Kumar, A.; Chordia, N. (2015) In silico PCR primer designing and validation. En:PCR primer design; pp. 143 - 151;Lee, W.-J.; Hase, K. (2014) Gut microbiota–generated metabolites in animal health and disease. En:Nature Chemical Biology; Vol. 10; No. 6; pp. 416 - 424;Levesque, C. L.; Hooda, S.; Swanson, K. S.; De Lange, K. (2014) Alterations in ileal mucosa bacteria related to diet complexity and growth performance in young pigs. En:PLoS One; Vol. 9; No. 9; pp. e108472 Li, H.; Zhao, L.; Zhang, M. (2021) Gut microbial SNPs induced by high-fiber diet dominate nutrition metabolism and environmental adaption of Faecalibacterium prausnitzii in obese children. En:Frontiers in Microbiology; Vol. 12; pp. 683714 Liu, X.; Mao, B.; Gu, J.; Wu, J.; Cui, S.; Wang, G.; Chen, W. (2021) Blautia—a new functional genus with potential probiotic properties?. En:Gut microbes; Vol. 13; No. 1; pp. 1875796 Lo Presti, A.; Del Chierico, F.; Altomare, A.; Zorzi, F.; Monteleone, G.; Putignani, L.; Ciccozzi, M. (2023) Phylogenetic analysis of Prevotella copri from fecal and mucosal microbiota of IBS and IBD patients. En:Therapeutic Advances in Gastroenterology; Vol. 16; pp. 17562848221136328 Lorenz, T. C. (2012) Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. En:JoVE (Journal of Visualized Experiments); No. 63; pp. e3998 Lu, J.; Rincon, N.; Wood, D. E.; Breitwieser, F. P.; Pockrandt, C.; Langmead, B.; Steinegger, M. (2022) Metagenome analysis using the Kraken software suite. En:Nature protocols; Vol. 17; No. 12; pp. 2815 - 2839;Machado, D.; Barbosa, J. C.; Domingos, M.; Almeida, D.; Andrade, J. C.; Freitas, A. C.; Gomes, A. M. (2022) Revealing antimicrobial resistance profile of the novel probiotic candidate Faecalibacterium prausnitzii DSM 17677. En:International Journal of Food Microbiology; Vol. 363; pp. 109501 Mamuad, L. L.; Seo, B. J.; Al Faruk, M. S.; Espiritu, H. M.; Jin, S. J.; Kim, W.-I.; Cho, Y.-I. (2020) Treponema spp., the dominant pathogen in the lesion of bovine digital dermatitis and its characterization in dairy cattle. En:Veterinary Microbiology; Disponible en: 10.1016/j.vetmic.2020.108696.Mo, X.; Song, Y.; Chen, F.; You, C.; Li, D.; Liu, F. (2023) Replacement of plant communities altered soil bacterial diversity and structure rather than the function in similar habitats of the Yellow River Delta, China. En:Ecological Indicators; Vol. 146; pp. 109793 Moon, C. D.; Young, W.; Maclean, P. H.; Cookson, A. L.; Bermingham, E. N. (2018) Metagenomic insights into the roles of Proteobacteria in the gastrointestinal microbiomes of healthy dogs and cats. En:Microbiology open; Vol. 7; No. 5; pp. e00677 Mostel, Z.; Hernandez, A.; Tatem, L. (2022) Clostridium paraputrificum bacteremia in a patient with presumptive complicated appendicitis: A case report. En:IDCases; Vol. 27; pp. e01361 Mukhopadhya, I.; Hansen, R.; El-Omar, E. M.; Hold, G. L. (2012) IBD—what role do Proteobacteria play?. En:Nature Reviews Gastroenterology & Hepatology; Vol. 9; No. 4; pp. 219 - 230; Disponible en: 10.1038/nrgastro.2012.14.Muñoz, M.; Restrepo-Montoya, D.; Kumar, N.; Iraola, G.; Herrera, G.; Ríos-Chaparro, D. I.; Ramírez, J. D. (2019) Comparative genomics identifies potential virulence factors in Clostridium tertium and C. paraputrificum. En:Virulence; Vol. 10; No. 1; pp. 657 - 676;Nazki, S.; Wani, S. A.; Parveen, R.; Ahangar, S. A.; Kashoo, Z. A.; Hamid, S.; Dar, P. A. (2017) Isolation, molecular characterization and prevalence of Clostridium perfringens in sheep and goats of Kashmir Himalayas, India. En:Veterinary World; Vol. 10; No. 12; pp. 1501 Pacífico, C.; Petri, R. M.; Ricci, S.; Mickdam, E.; Wetzels, S. U.; Neubauer, V.; Zebeli, Q. (2021) Unveiling the bovine epimural microbiota composition and putative function. En:Microorganisms; Vol. 9; No. 2; pp. 342 Parker, B. J.; Wearsch, P. A.; Veloo, A. C.; Rodriguez-Palacios, A. (2020) The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. En:Frontiers in immunology; Vol. 11; pp. 906 R Core Team (2013) R: A language and environment for statistical computing. Sinha, T.; Hadi, C. (2015) Clostridium paraputrificum bacteremia associated with colonic necrosis in a patient with AIDS. En:Case Reports in Infectious Diseases;Yue, S.; Li, Z.; Hu, F.; Picimbon, J. F. (2020) Curing piglets from diarrhea and preparation of a healthy microbiome with Bacillus treatment for industrial animal breeding. En:Scientific reports; Vol. 10; No. 1; pp. 19476 instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURClostridium paraputrificumComunidades bacterianasAnimalesTracto gastrointestinalClostridium paraputrificumBacterial communitiesanimalsGastrointestinal tractAnálisis de la frecuencia de detección de Clostridium paraputrificum y los potenciales cambios en la composición de comunidades bacterianas en muestras de heces de animales de granja y domésticosAnalysis of the frequency of detection of Clostridium paraputrificum and potential changes in the composition of bacterial communities in feces samples from farm and domestic animalsbachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fFacultad de Ciencias NaturalesORIGINALAnalisis-de-la frecuencia-de-deteccion-de-Clostridium-paraputrificume-LaCruzBermudez-Emanuella-2023.pdfAnalisis-de-la frecuencia-de-deteccion-de-Clostridium-paraputrificume-LaCruzBermudez-Emanuella-2023.pdfapplication/pdf729488https://repository.urosario.edu.co/bitstreams/dba5c05f-830b-4055-bf2b-16dd70995a50/download3f303158be488c4cb503d433d0373637MD51Referencias-Bibliograficas-Emanuella.risReferencias-Bibliograficas-Emanuella.ristext/plain13515https://repository.urosario.edu.co/bitstreams/2b82149a-8c6a-400f-9d6d-1bdd446a5413/downloade4a23ed1f993a3d34923e927723d11cfMD53LICENSElicense.txtlicense.txttext/plain1483https://repository.urosario.edu.co/bitstreams/a1f8c3a6-2114-4a3f-8884-996df6a881cf/downloadb2825df9f458e9d5d96ee8b7cd74fde6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81019https://repository.urosario.edu.co/bitstreams/60a2133c-f504-40d8-b94a-914f0991599d/download313ea3fe4cd627df823c57a0f12776e5MD54TEXTAnalisis-de-la frecuencia-de-deteccion-de-Clostridium-paraputrificume-LaCruzBermudez-Emanuella-2023.pdf.txtAnalisis-de-la frecuencia-de-deteccion-de-Clostridium-paraputrificume-LaCruzBermudez-Emanuella-2023.pdf.txtExtracted texttext/plain66751https://repository.urosario.edu.co/bitstreams/2349f388-2c17-447f-aae1-9aad226adf2c/download58bc469436391a3c145249bcf222ab79MD55Referencias-Bibliograficas-Emanuella.ris.txtReferencias-Bibliograficas-Emanuella.ris.txtExtracted texttext/plain13516https://repository.urosario.edu.co/bitstreams/fa70e991-e8df-4c2d-9291-3f655f0ec1d8/downloadddb701a7586584e5ed0d773a2e34b5acMD57THUMBNAILAnalisis-de-la frecuencia-de-deteccion-de-Clostridium-paraputrificume-LaCruzBermudez-Emanuella-2023.pdf.jpgAnalisis-de-la frecuencia-de-deteccion-de-Clostridium-paraputrificume-LaCruzBermudez-Emanuella-2023.pdf.jpgGenerated Thumbnailimage/jpeg2424https://repository.urosario.edu.co/bitstreams/9bc83972-3de9-4fe7-9a8e-22ca025d692c/download78033c6028df4f90ec2b2cbf3bdffe6aMD5610336/40981oai:repository.urosario.edu.co:10336/409812023-09-16 03:02:38.879http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KPGJyLz4KUEFSQUdSQUZPOiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KPGhyLz4KRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCg== |