Amyloid-? induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse

Last evidences suggest that, in Alzheimer's disease (AD) early stage, Amyloid-? (A?) peptide induces an imbalance between excitatory and inhibitory neurotransmission systems resulting in the functional impairment of neural networks. Such alterations are particularly important in the septohippoc...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/26751
Acceso en línea:
https://doi.org/10.3389/fncel.2013.00117.
https://repository.urosario.edu.co/handle/10336/26751
Palabra clave:
Septohippocampal system
Fimbria-CA3 synapse
Amyloid-?25–35 peptide
GABAB
GirK channels
Alzheimer's disease
Brain slices
Intracellular recordings
Rights
License
Abierto (Texto Completo)
id EDOCUR2_f94e10ba2ce33cded29f3f211c33d8de
oai_identifier_str oai:repository.urosario.edu.co:10336/26751
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 802165716009af7161b-c6f7-48f1-951d-aaa5e3ae5a3a10951671-8e80-4fe9-8600-a25fe31c4a56f0abfbb6-3686-4b0c-a24e-768ded800a692020-08-19T14:40:11Z2020-08-19T14:40:11Z2013-07-25Last evidences suggest that, in Alzheimer's disease (AD) early stage, Amyloid-? (A?) peptide induces an imbalance between excitatory and inhibitory neurotransmission systems resulting in the functional impairment of neural networks. Such alterations are particularly important in the septohippocampal system where learning and memory processes take place depending on accurate oscillatory activity tuned at fimbria-CA3 synapse. Here, the acute effects of A? on CA3 pyramidal neurons and their synaptic activation from septal part of the fimbria were studied in rats. A triphasic postsynaptic response defined by an excitatory potential (EPSP) followed by both early and late inhibitory potentials (IPSP) was evoked. The EPSP was glutamatergic acting on ionotropic receptors. The early IPSP was blocked by GABAA antagonists whereas the late IPSP was removed by GABAB antagonists. A? perfusion induced recorded cells to depolarize, increase their input resistance and decrease the late IPSP. A? action mechanism was localized at postsynaptic level and most likely linked to GABAB-related ion channels conductance decrease. In addition, it was found that the specific pharmacological modulation of the GABAB receptor effector, G-protein-coupled inward rectifier potassium (GirK) channels, mimicked all A? effects previously described.application/pdfhttps://doi.org/10.3389/fncel.2013.00117.ISSN: 1662-5102https://repository.urosario.edu.co/handle/10336/26751engFrontiers MediaFrontiers in Cellular NeuroscienceVol. 7Frontiers in Cellular Neuroscience, ISSN: 1662-5102, Vol.7 (2015)https://www.frontiersin.org/articles/10.3389/fncel.2013.00117/fullAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Frontiers in Cellular Neuroscienceinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURSeptohippocampal systemFimbria-CA3 synapseAmyloid-?25–35 peptideGABABGirK channelsAlzheimer's diseaseBrain slicesIntracellular recordingsAmyloid-? induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapseEl amiloide-? induce una disfunción sináptica a través de los canales de potasio rectificadores hacia adentro activados por la proteína G en la sinapsis del hipocampo fimbria-CA3articleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Nava Mesa, Mauricio OrlandoJiménez-Díaz, LidiaYajeya, JavierNavarro-Lopez, Juan D.ORIGINALfncel-07-00117.pdfapplication/pdf2366458https://repository.urosario.edu.co/bitstreams/2935ae23-01d0-46ba-aa07-df82f097aaa2/downloadcba97afca4bf818f932f3428d6f172beMD51TEXTfncel-07-00117.pdf.txtfncel-07-00117.pdf.txtExtracted texttext/plain74477https://repository.urosario.edu.co/bitstreams/ce5c9143-c76a-4134-a670-7fe5aa0d3d18/download08778a632d13025af7ffadb3d1acc311MD52THUMBNAILfncel-07-00117.pdf.jpgfncel-07-00117.pdf.jpgGenerated Thumbnailimage/jpeg4985https://repository.urosario.edu.co/bitstreams/d17ad434-f145-416f-ae4c-97f50c162610/download75dbcaee64e095091b04090fa964d039MD5310336/26751oai:repository.urosario.edu.co:10336/267512021-09-14 06:49:32.17https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Amyloid-? induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse
dc.title.TranslatedTitle.spa.fl_str_mv El amiloide-? induce una disfunción sináptica a través de los canales de potasio rectificadores hacia adentro activados por la proteína G en la sinapsis del hipocampo fimbria-CA3
title Amyloid-? induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse
spellingShingle Amyloid-? induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse
Septohippocampal system
Fimbria-CA3 synapse
Amyloid-?25–35 peptide
GABAB
GirK channels
Alzheimer's disease
Brain slices
Intracellular recordings
title_short Amyloid-? induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse
title_full Amyloid-? induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse
title_fullStr Amyloid-? induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse
title_full_unstemmed Amyloid-? induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse
title_sort Amyloid-? induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse
dc.subject.keyword.spa.fl_str_mv Septohippocampal system
Fimbria-CA3 synapse
Amyloid-?25–35 peptide
GABAB
GirK channels
Alzheimer's disease
Brain slices
Intracellular recordings
topic Septohippocampal system
Fimbria-CA3 synapse
Amyloid-?25–35 peptide
GABAB
GirK channels
Alzheimer's disease
Brain slices
Intracellular recordings
description Last evidences suggest that, in Alzheimer's disease (AD) early stage, Amyloid-? (A?) peptide induces an imbalance between excitatory and inhibitory neurotransmission systems resulting in the functional impairment of neural networks. Such alterations are particularly important in the septohippocampal system where learning and memory processes take place depending on accurate oscillatory activity tuned at fimbria-CA3 synapse. Here, the acute effects of A? on CA3 pyramidal neurons and their synaptic activation from septal part of the fimbria were studied in rats. A triphasic postsynaptic response defined by an excitatory potential (EPSP) followed by both early and late inhibitory potentials (IPSP) was evoked. The EPSP was glutamatergic acting on ionotropic receptors. The early IPSP was blocked by GABAA antagonists whereas the late IPSP was removed by GABAB antagonists. A? perfusion induced recorded cells to depolarize, increase their input resistance and decrease the late IPSP. A? action mechanism was localized at postsynaptic level and most likely linked to GABAB-related ion channels conductance decrease. In addition, it was found that the specific pharmacological modulation of the GABAB receptor effector, G-protein-coupled inward rectifier potassium (GirK) channels, mimicked all A? effects previously described.
publishDate 2013
dc.date.created.spa.fl_str_mv 2013-07-25
dc.date.accessioned.none.fl_str_mv 2020-08-19T14:40:11Z
dc.date.available.none.fl_str_mv 2020-08-19T14:40:11Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3389/fncel.2013.00117.
dc.identifier.issn.none.fl_str_mv ISSN: 1662-5102
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/26751
url https://doi.org/10.3389/fncel.2013.00117.
https://repository.urosario.edu.co/handle/10336/26751
identifier_str_mv ISSN: 1662-5102
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationTitle.none.fl_str_mv Frontiers in Cellular Neuroscience
dc.relation.citationVolume.none.fl_str_mv Vol. 7
dc.relation.ispartof.spa.fl_str_mv Frontiers in Cellular Neuroscience, ISSN: 1662-5102, Vol.7 (2015)
dc.relation.uri.spa.fl_str_mv https://www.frontiersin.org/articles/10.3389/fncel.2013.00117/full
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Frontiers Media
dc.source.spa.fl_str_mv Frontiers in Cellular Neuroscience
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/2935ae23-01d0-46ba-aa07-df82f097aaa2/download
https://repository.urosario.edu.co/bitstreams/ce5c9143-c76a-4134-a670-7fe5aa0d3d18/download
https://repository.urosario.edu.co/bitstreams/d17ad434-f145-416f-ae4c-97f50c162610/download
bitstream.checksum.fl_str_mv cba97afca4bf818f932f3428d6f172be
08778a632d13025af7ffadb3d1acc311
75dbcaee64e095091b04090fa964d039
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167724838879232