Amyloid-? induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse

Last evidences suggest that, in Alzheimer's disease (AD) early stage, Amyloid-? (A?) peptide induces an imbalance between excitatory and inhibitory neurotransmission systems resulting in the functional impairment of neural networks. Such alterations are particularly important in the septohippoc...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/26751
Acceso en línea:
https://doi.org/10.3389/fncel.2013.00117.
https://repository.urosario.edu.co/handle/10336/26751
Palabra clave:
Septohippocampal system
Fimbria-CA3 synapse
Amyloid-?25–35 peptide
GABAB
GirK channels
Alzheimer's disease
Brain slices
Intracellular recordings
Rights
License
Abierto (Texto Completo)
Description
Summary:Last evidences suggest that, in Alzheimer's disease (AD) early stage, Amyloid-? (A?) peptide induces an imbalance between excitatory and inhibitory neurotransmission systems resulting in the functional impairment of neural networks. Such alterations are particularly important in the septohippocampal system where learning and memory processes take place depending on accurate oscillatory activity tuned at fimbria-CA3 synapse. Here, the acute effects of A? on CA3 pyramidal neurons and their synaptic activation from septal part of the fimbria were studied in rats. A triphasic postsynaptic response defined by an excitatory potential (EPSP) followed by both early and late inhibitory potentials (IPSP) was evoked. The EPSP was glutamatergic acting on ionotropic receptors. The early IPSP was blocked by GABAA antagonists whereas the late IPSP was removed by GABAB antagonists. A? perfusion induced recorded cells to depolarize, increase their input resistance and decrease the late IPSP. A? action mechanism was localized at postsynaptic level and most likely linked to GABAB-related ion channels conductance decrease. In addition, it was found that the specific pharmacological modulation of the GABAB receptor effector, G-protein-coupled inward rectifier potassium (GirK) channels, mimicked all A? effects previously described.