Random motions in inhomogeneous media

Space inhomogeneous random motions of particles on the line and in the plane are considered in the paper. The changes of the movement direction are driven by a Poisson process. The particles are assumed to move according to a finite velocity field that depends on a spatial argument. The explicit dis...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2008
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/23381
Acceso en línea:
https://doi.org/10.1090/S0094-9000-08-00738-2
https://repository.urosario.edu.co/handle/10336/23381
Palabra clave:
Bessel functions
Hyperbolic equations
Poisson process
Rectifying diffeomorphism
Telegraph process
Rights
License
Abierto (Texto Completo)
id EDOCUR2_f92fe2a057f8c2aaa05e43460787fffd
oai_identifier_str oai:repository.urosario.edu.co:10336/23381
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 8a4097be-f40a-4954-979a-58795fda7ca2-14ab98391-ba48-4790-b0fb-e3a748e4361b-12020-05-26T00:01:33Z2020-05-26T00:01:33Z2008Space inhomogeneous random motions of particles on the line and in the plane are considered in the paper. The changes of the movement direction are driven by a Poisson process. The particles are assumed to move according to a finite velocity field that depends on a spatial argument. The explicit distribution of particles is obtained in the paper for the case of dimension 1 in terms of characteristics of the governing equations. In the case of dimension 2, the distribution is obtained if a rectifying diffeomorphism exists. © 2008 American Mathematical Society.application/pdfhttps://doi.org/10.1090/S0094-9000-08-00738-20094900015477363https://repository.urosario.edu.co/handle/10336/23381eng153141Theory of Probability and Mathematical StatisticsVol. 76Theory of Probability and Mathematical Statistics, ISSN:00949000, 15477363, Vol.76,(2008); pp. 141-153https://www.scopus.com/inward/record.uri?eid=2-s2.0-85009753158&doi=10.1090%2fS0094-9000-08-00738-2&partnerID=40&md5=59f8aa6f5cb23f27e5c8f06bc25b756aAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURBessel functionsHyperbolic equationsPoisson processRectifying diffeomorphismTelegraph processRandom motions in inhomogeneous mediaarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Orsingher, E.Ratanov, N.10336/23381oai:repository.urosario.edu.co:10336/233812022-05-02 07:37:21.474096https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Random motions in inhomogeneous media
title Random motions in inhomogeneous media
spellingShingle Random motions in inhomogeneous media
Bessel functions
Hyperbolic equations
Poisson process
Rectifying diffeomorphism
Telegraph process
title_short Random motions in inhomogeneous media
title_full Random motions in inhomogeneous media
title_fullStr Random motions in inhomogeneous media
title_full_unstemmed Random motions in inhomogeneous media
title_sort Random motions in inhomogeneous media
dc.subject.keyword.spa.fl_str_mv Bessel functions
Hyperbolic equations
Poisson process
Rectifying diffeomorphism
Telegraph process
topic Bessel functions
Hyperbolic equations
Poisson process
Rectifying diffeomorphism
Telegraph process
description Space inhomogeneous random motions of particles on the line and in the plane are considered in the paper. The changes of the movement direction are driven by a Poisson process. The particles are assumed to move according to a finite velocity field that depends on a spatial argument. The explicit distribution of particles is obtained in the paper for the case of dimension 1 in terms of characteristics of the governing equations. In the case of dimension 2, the distribution is obtained if a rectifying diffeomorphism exists. © 2008 American Mathematical Society.
publishDate 2008
dc.date.created.spa.fl_str_mv 2008
dc.date.accessioned.none.fl_str_mv 2020-05-26T00:01:33Z
dc.date.available.none.fl_str_mv 2020-05-26T00:01:33Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1090/S0094-9000-08-00738-2
dc.identifier.issn.none.fl_str_mv 00949000
15477363
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/23381
url https://doi.org/10.1090/S0094-9000-08-00738-2
https://repository.urosario.edu.co/handle/10336/23381
identifier_str_mv 00949000
15477363
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 153
dc.relation.citationStartPage.none.fl_str_mv 141
dc.relation.citationTitle.none.fl_str_mv Theory of Probability and Mathematical Statistics
dc.relation.citationVolume.none.fl_str_mv Vol. 76
dc.relation.ispartof.spa.fl_str_mv Theory of Probability and Mathematical Statistics, ISSN:00949000, 15477363, Vol.76,(2008); pp. 141-153
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85009753158&doi=10.1090%2fS0094-9000-08-00738-2&partnerID=40&md5=59f8aa6f5cb23f27e5c8f06bc25b756a
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167452731310080