Applying the clustering technique for characterising maintenance outsourcing

Objective Using clustering techniques for characterising companies providing health institutions with maintenance services. Methods The study analysed seven pilot areas' equipment inventory (264 medical devices). Clustering techniques were applied using 26 variables. Response time (RT), operati...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2010
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
spa
OAI Identifier:
oai:repository.urosario.edu.co:10336/23147
Acceso en línea:
https://repository.urosario.edu.co/handle/10336/23147
Palabra clave:
Biomedical engineering
Cluster analysis
Contract service
Health service accessibility
Hospital
Maintenance and engineering
Rights
License
Abierto (Texto Completo)
id EDOCUR2_f8ca077de47da9c4f722d6847988316d
oai_identifier_str oai:repository.urosario.edu.co:10336/23147
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling e9f0fff6-32e9-4711-b87d-a1569d197e92-15d69057d-db70-442d-a096-906ba439714e-136f1c47a-971d-4a6b-8f84-1cbd9f3cfd2b-11741504d-22f7-4e1b-ab9d-774437414345-12020-05-26T00:00:01Z2020-05-26T00:00:01Z2010Objective Using clustering techniques for characterising companies providing health institutions with maintenance services. Methods The study analysed seven pilot areas' equipment inventory (264 medical devices). Clustering techniques were applied using 26 variables. Response time (RT), operation duration (OD), availability and turnaround time (TAT) were amongst the most significant ones. Results Average biomedical equipment obsolescence value was 0.78. Four service provider clusters were identified: clusters 1 and 3 had better performance, lower TAT, RT and DR values (56 % of the providers coded O, L, C, B, I, S, H, F and G, had 1 to 4 day TAT values: less than TAT less than 2.56 days on average). Cluster 0 had medium performance (38 % of providers coded V, M, K, Z, T and Y, having an average 9.79 TAT value). Cluster 2 (6 % - provider J) had low performance, having very a high TAT level (101 days on average). Conclusions The methodology allowed medical equipment inventory and maintenance service suppliers to be characterised. The cluster technique was effective in identifying the most competitive suppliers.application/pdf1240064https://repository.urosario.edu.co/handle/10336/23147spaUniversidad Nacional de Colombia473No. 3464Revista de Salud PublicaVol. 12Revista de Salud Publica, ISSN:1240064, Vol.12, No.3 (2010); pp. 464-473https://www.scopus.com/inward/record.uri?eid=2-s2.0-79551704090&partnerID=40&md5=2b3a2d7578be80e1e131eb02a48ac4beAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURBiomedical engineeringCluster analysisContract serviceHealth service accessibilityHospitalMaintenance and engineeringApplying the clustering technique for characterising maintenance outsourcingAplicación de técnicas de clustering para caracterizar proveedores de servicios de mantenimientoarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Cruz A.M.Usaquén-Perilla S.P.Vanegas-Pabón N.N.Lopera C.ORIGINALv12n3a12.pdfapplication/pdf186205https://repository.urosario.edu.co/bitstreams/a8935698-9cb6-4ac0-9ead-3112eb9b2293/download225bcd5f03e6f52b6b9fffc6a956af9eMD51TEXTv12n3a12.pdf.txtv12n3a12.pdf.txtExtracted texttext/plain21299https://repository.urosario.edu.co/bitstreams/73874259-3646-4e3a-b53d-0567b5c83387/downloadf4e266434bed0f5174caaf8118f05197MD52THUMBNAILv12n3a12.pdf.jpgv12n3a12.pdf.jpgGenerated Thumbnailimage/jpeg3111https://repository.urosario.edu.co/bitstreams/51e2d41f-89e6-479d-9068-061b57faf182/download130ab58058095a85b161cf35a27cedccMD5310336/23147oai:repository.urosario.edu.co:10336/231472022-05-02 07:37:14.575264https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Applying the clustering technique for characterising maintenance outsourcing
dc.title.TranslatedTitle.spa.fl_str_mv Aplicación de técnicas de clustering para caracterizar proveedores de servicios de mantenimiento
title Applying the clustering technique for characterising maintenance outsourcing
spellingShingle Applying the clustering technique for characterising maintenance outsourcing
Biomedical engineering
Cluster analysis
Contract service
Health service accessibility
Hospital
Maintenance and engineering
title_short Applying the clustering technique for characterising maintenance outsourcing
title_full Applying the clustering technique for characterising maintenance outsourcing
title_fullStr Applying the clustering technique for characterising maintenance outsourcing
title_full_unstemmed Applying the clustering technique for characterising maintenance outsourcing
title_sort Applying the clustering technique for characterising maintenance outsourcing
dc.subject.keyword.spa.fl_str_mv Biomedical engineering
Cluster analysis
Contract service
Health service accessibility
Hospital
Maintenance and engineering
topic Biomedical engineering
Cluster analysis
Contract service
Health service accessibility
Hospital
Maintenance and engineering
description Objective Using clustering techniques for characterising companies providing health institutions with maintenance services. Methods The study analysed seven pilot areas' equipment inventory (264 medical devices). Clustering techniques were applied using 26 variables. Response time (RT), operation duration (OD), availability and turnaround time (TAT) were amongst the most significant ones. Results Average biomedical equipment obsolescence value was 0.78. Four service provider clusters were identified: clusters 1 and 3 had better performance, lower TAT, RT and DR values (56 % of the providers coded O, L, C, B, I, S, H, F and G, had 1 to 4 day TAT values: less than TAT less than 2.56 days on average). Cluster 0 had medium performance (38 % of providers coded V, M, K, Z, T and Y, having an average 9.79 TAT value). Cluster 2 (6 % - provider J) had low performance, having very a high TAT level (101 days on average). Conclusions The methodology allowed medical equipment inventory and maintenance service suppliers to be characterised. The cluster technique was effective in identifying the most competitive suppliers.
publishDate 2010
dc.date.created.spa.fl_str_mv 2010
dc.date.accessioned.none.fl_str_mv 2020-05-26T00:00:01Z
dc.date.available.none.fl_str_mv 2020-05-26T00:00:01Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.issn.none.fl_str_mv 1240064
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/23147
identifier_str_mv 1240064
url https://repository.urosario.edu.co/handle/10336/23147
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.citationEndPage.none.fl_str_mv 473
dc.relation.citationIssue.none.fl_str_mv No. 3
dc.relation.citationStartPage.none.fl_str_mv 464
dc.relation.citationTitle.none.fl_str_mv Revista de Salud Publica
dc.relation.citationVolume.none.fl_str_mv Vol. 12
dc.relation.ispartof.spa.fl_str_mv Revista de Salud Publica, ISSN:1240064, Vol.12, No.3 (2010); pp. 464-473
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-79551704090&partnerID=40&md5=2b3a2d7578be80e1e131eb02a48ac4be
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/a8935698-9cb6-4ac0-9ead-3112eb9b2293/download
https://repository.urosario.edu.co/bitstreams/73874259-3646-4e3a-b53d-0567b5c83387/download
https://repository.urosario.edu.co/bitstreams/51e2d41f-89e6-479d-9068-061b57faf182/download
bitstream.checksum.fl_str_mv 225bcd5f03e6f52b6b9fffc6a956af9e
f4e266434bed0f5174caaf8118f05197
130ab58058095a85b161cf35a27cedcc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167473538203648