Evolutionary novelty in a butterfly wing pattern through enhancer shuffling
An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/18947
- Acceso en línea:
- https://doi.org/10.1371/journal.pbio.1002353
http://repository.urosario.edu.co/handle/10336/18947
- Palabra clave:
- Alelos
Experimento con animales
Tejido animal
Mariposa
Estudio controlado
Región potenciadora
Miembro anterior
Gen
Regulación de la expresión génica
Locus de genes
Secuencia de genes
Cambio de genes
Recombinación genética
Variabilidad genética
Correlación de fenotipo genotipo
Heliconio elevado
Heliconio Melpomene
Hibridación
Genoma de insectos
Introgresión
Evolución Molecular
Filogenia molecular
No humano
Gen Optix
Identificación de especies
Genética
Fenotipo
Pigmentación
Evolución biológica
Biología
Animal
Biological Evolution
Pigmentation
Phenotype
Genetics
Species Identification
Optix Gene
Nonhuman
Molecular Phylogeny
Molecular Evolution
Introgression
Insect Genome
Hybridization
Heliconius Melpomene
Heliconius Elevatus
Genotype Phenotype Correlation
Genetic Variability
Genetic Recombination
Gene Switching
Gene Sequence
Gene Locus
Gene Expression Regulation
Gene
Forelimb
Enhancer Region
Controlled Study
Butterfly
Animal Tissue
Animal Experiment
Allele
Biología evolutiva
Genes
- Rights
- License
- Abierto (Texto Completo)
Summary: | An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation. © 2016 Wallbank et al. |
---|