Room temperature multiferroicity in a transition metal dichalcogenide
The coexistence of multiple ferroic orders, i.e., multiferroicity, is a scarce property to be found in materials. Historically, this state has been found mainly in 3-dimensional complex oxides, but so far, this state has still been elusive for the most widely studied and characterized family of 2-di...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/42190
- Acceso en línea:
- https://doi.org/10.1038/s41699-023-00416-x
https://repository.urosario.edu.co/handle/10336/42190
- Palabra clave:
- Electronic devices
Ferroelectrics and multiferroics
- Rights
- License
- Attribution 4.0 International
Summary: | The coexistence of multiple ferroic orders, i.e., multiferroicity, is a scarce property to be found in materials. Historically, this state has been found mainly in 3-dimensional complex oxides, but so far, this state has still been elusive for the most widely studied and characterized family of 2-dimensional compounds, the transition metal dichalcogenides. In this study, we report the experimental realization of multiferroic states in this family of materials, at room temperature, in bulk single crystals of Te-doped WSe2. We observe the coexistence of ferromagnetism and ferroelectricity, evidenced in the presence of magnetization and piezoresponse force microscopy hysteresis loops. These findings open the possibility of widening the use and study of van der Waals-based multifunctional devices for nanoelectronics and spintronics applications. |
---|