Evolution of syncarpy and other morphological characters in African Annonaceae: A posterior mapping approach

The congenital fusion of carpels, or syncarpy, is considered a key innovation as it is found in more than 80% of angiosperms. Within the magnoliids however, syncarpy has rarely evolved. Two alternative evolutionary origins of syncarpy were suggested in order to explain the evolution of this feature:...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2008
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/27698
Acceso en línea:
https://doi.org/10.1016/j.ympev.2008.01.018
https://repository.urosario.edu.co/handle/10336/27698
Palabra clave:
Syncarpy
Magnoliids
Posterior mapping
Annonaceae
MonodoraIsolona
Morphological character evolution
Rights
License
Restringido (Acceso a grupos específicos)
id EDOCUR2_ebac2ec9a0e5f5b4a784cb58dc55bc24
oai_identifier_str oai:repository.urosario.edu.co:10336/27698
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 53112913-32c8-4cec-a4b0-4cd6f19ae23a359328600a0e19bc2-33e4-44d0-a9c5-6dcefc0fa644e8a0a287-b0cf-49ee-8ef3-1f4d56abf1e8512180e6-205c-4c59-99bf-16549b77b9e82020-08-19T14:43:24Z2020-08-19T14:43:24Z2008-04The congenital fusion of carpels, or syncarpy, is considered a key innovation as it is found in more than 80% of angiosperms. Within the magnoliids however, syncarpy has rarely evolved. Two alternative evolutionary origins of syncarpy were suggested in order to explain the evolution of this feature: multiplication of a single carpel vs. fusion of a moderate number of carpels. The magnoliid family Annonaceae provides an ideal situation to test these hypotheses as two African genera, Isolona and Monodora, are syncarpous in an otherwise apocarpous family with multicarpellate and unicarpellate genera. In addition to syncarpy, the evolution of six other morphological characters was studied. Well-supported phylogenetic relationships of African Annonaceae and in particular those of Isolona and Monodora were reconstructed. Six plastid regions were sequenced and analyzed using maximum parsimony and Bayesian inference methods. The Bayesian posterior mapping approach to study character evolution was used as it accounts for both mapping and phylogenetic uncertainty, and also allows multiple state changes along the branches. Our phylogenetic analyses recovered a fully resolved clade comprising twelve genera endemic to Africa, including Isolona and Monodora, which was nested within the so-called long-branch clade. This is the largest and most species-rich clade of African genera identified to date within Annonaceae. The two syncarpous genera were inferred with maximum support to be sister to a clade characterized by genera with multicarpellate apocarpous gynoecia, supporting the hypothesis that syncarpy arose by fusion of a moderate number of carpels. This hypothesis was also favoured when studying the floral anatomy of both genera. Annonaceae provide the only case of a clear evolution of syncarpy within an otherwise apocarpous magnoliid family. The results presented here offer a better understanding of the evolution of syncarpy in Annonaceae and within angiosperms in general.application/pdfhttps://doi.org/10.1016/j.ympev.2008.01.018ISSN: 1055-7903EISSN: 1095-9513https://repository.urosario.edu.co/handle/10336/27698engElsevier318No. 1302Molecular Phylogenetics and EvolutionVol. 47Molecular Phylogenetics and Evolution, ISSN: 1055-7903;EISSN: 1095-9513, Vol.47, No.1 (April, 2008); pp. 302-318https://www.sciencedirect.com/science/article/abs/pii/S1055790308000407Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecMolecular Phylogenetics and Evolutioninstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURSyncarpyMagnoliidsPosterior mappingAnnonaceaeMonodoraIsolonaMorphological character evolutionEvolution of syncarpy and other morphological characters in African Annonaceae: A posterior mapping approachEvolución del sincarpia y otros caracteres morfológicos en las Annonaceae africanas: un enfoque de mapeo posteriorarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Couvreur, T.L.P.Richardson, James-EdwardSosef, M.S.M.Erkens, R.H.J.Chatroua, L.W.10336/27698oai:repository.urosario.edu.co:10336/276982021-10-11 14:51:19.059https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Evolution of syncarpy and other morphological characters in African Annonaceae: A posterior mapping approach
dc.title.TranslatedTitle.spa.fl_str_mv Evolución del sincarpia y otros caracteres morfológicos en las Annonaceae africanas: un enfoque de mapeo posterior
title Evolution of syncarpy and other morphological characters in African Annonaceae: A posterior mapping approach
spellingShingle Evolution of syncarpy and other morphological characters in African Annonaceae: A posterior mapping approach
Syncarpy
Magnoliids
Posterior mapping
Annonaceae
MonodoraIsolona
Morphological character evolution
title_short Evolution of syncarpy and other morphological characters in African Annonaceae: A posterior mapping approach
title_full Evolution of syncarpy and other morphological characters in African Annonaceae: A posterior mapping approach
title_fullStr Evolution of syncarpy and other morphological characters in African Annonaceae: A posterior mapping approach
title_full_unstemmed Evolution of syncarpy and other morphological characters in African Annonaceae: A posterior mapping approach
title_sort Evolution of syncarpy and other morphological characters in African Annonaceae: A posterior mapping approach
dc.subject.keyword.spa.fl_str_mv Syncarpy
Magnoliids
Posterior mapping
Annonaceae
MonodoraIsolona
Morphological character evolution
topic Syncarpy
Magnoliids
Posterior mapping
Annonaceae
MonodoraIsolona
Morphological character evolution
description The congenital fusion of carpels, or syncarpy, is considered a key innovation as it is found in more than 80% of angiosperms. Within the magnoliids however, syncarpy has rarely evolved. Two alternative evolutionary origins of syncarpy were suggested in order to explain the evolution of this feature: multiplication of a single carpel vs. fusion of a moderate number of carpels. The magnoliid family Annonaceae provides an ideal situation to test these hypotheses as two African genera, Isolona and Monodora, are syncarpous in an otherwise apocarpous family with multicarpellate and unicarpellate genera. In addition to syncarpy, the evolution of six other morphological characters was studied. Well-supported phylogenetic relationships of African Annonaceae and in particular those of Isolona and Monodora were reconstructed. Six plastid regions were sequenced and analyzed using maximum parsimony and Bayesian inference methods. The Bayesian posterior mapping approach to study character evolution was used as it accounts for both mapping and phylogenetic uncertainty, and also allows multiple state changes along the branches. Our phylogenetic analyses recovered a fully resolved clade comprising twelve genera endemic to Africa, including Isolona and Monodora, which was nested within the so-called long-branch clade. This is the largest and most species-rich clade of African genera identified to date within Annonaceae. The two syncarpous genera were inferred with maximum support to be sister to a clade characterized by genera with multicarpellate apocarpous gynoecia, supporting the hypothesis that syncarpy arose by fusion of a moderate number of carpels. This hypothesis was also favoured when studying the floral anatomy of both genera. Annonaceae provide the only case of a clear evolution of syncarpy within an otherwise apocarpous magnoliid family. The results presented here offer a better understanding of the evolution of syncarpy in Annonaceae and within angiosperms in general.
publishDate 2008
dc.date.created.spa.fl_str_mv 2008-04
dc.date.accessioned.none.fl_str_mv 2020-08-19T14:43:24Z
dc.date.available.none.fl_str_mv 2020-08-19T14:43:24Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.ympev.2008.01.018
dc.identifier.issn.none.fl_str_mv ISSN: 1055-7903
EISSN: 1095-9513
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/27698
url https://doi.org/10.1016/j.ympev.2008.01.018
https://repository.urosario.edu.co/handle/10336/27698
identifier_str_mv ISSN: 1055-7903
EISSN: 1095-9513
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 318
dc.relation.citationIssue.none.fl_str_mv No. 1
dc.relation.citationStartPage.none.fl_str_mv 302
dc.relation.citationTitle.none.fl_str_mv Molecular Phylogenetics and Evolution
dc.relation.citationVolume.none.fl_str_mv Vol. 47
dc.relation.ispartof.spa.fl_str_mv Molecular Phylogenetics and Evolution, ISSN: 1055-7903;EISSN: 1095-9513, Vol.47, No.1 (April, 2008); pp. 302-318
dc.relation.uri.spa.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S1055790308000407
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.acceso.spa.fl_str_mv Restringido (Acceso a grupos específicos)
rights_invalid_str_mv Restringido (Acceso a grupos específicos)
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.source.spa.fl_str_mv Molecular Phylogenetics and Evolution
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1818106848927023104