Evaluación de métodos para el monitoreo del nivel de fatiga basado en variables cinemáticas y fisiológicas durante entrenamiento en banda sin fin
Las enfermedades cardiovasculares (ECV) son la principal causa de muerte en el mundo. Estudios disponibles apoyan el papel de la rehabilitación cardiaca (RC) integral en pacientes con enfermedades cardíacas, disminuyendo la tasa de mortalidad, morbilidad, discapacidad, mejorando la calidad de vida d...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- spa
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/21015
- Acceso en línea:
- https://doi.org/10.48713/10336_21015
https://repository.urosario.edu.co/handle/10336/21015
- Palabra clave:
- Banda sin fin
Centro de masa
Fatiga
Sensor inercial
Kinect
Lactato en sangre
Parámetros de marcha
Promoción de salud
Ginecología & otras especialidades médicas
Endless band
Center of mass
Fatigue
Inertial sensor
Kinect
Blood lactate
Running parameters
Tecnología medica
Enfermedades cardiovasculares - Terapéutica
Métodos de cuantificación de fatiga
Rehabilitación cardíaca - Análisis metodológico
- Rights
- License
- Atribución-NoComercial-CompartirIgual 2.5 Colombia
id |
EDOCUR2_ea8c5f0eca6465e678386ccdda862bf3 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/21015 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de métodos para el monitoreo del nivel de fatiga basado en variables cinemáticas y fisiológicas durante entrenamiento en banda sin fin |
dc.title.TranslatedTitle.eng.fl_str_mv |
Evaluation of methods for monitoring the level of fatigue based on kinematic and physiological variables during treadmill training |
title |
Evaluación de métodos para el monitoreo del nivel de fatiga basado en variables cinemáticas y fisiológicas durante entrenamiento en banda sin fin |
spellingShingle |
Evaluación de métodos para el monitoreo del nivel de fatiga basado en variables cinemáticas y fisiológicas durante entrenamiento en banda sin fin Banda sin fin Centro de masa Fatiga Sensor inercial Kinect Lactato en sangre Parámetros de marcha Promoción de salud Ginecología & otras especialidades médicas Endless band Center of mass Fatigue Inertial sensor Kinect Blood lactate Running parameters Tecnología medica Enfermedades cardiovasculares - Terapéutica Métodos de cuantificación de fatiga Rehabilitación cardíaca - Análisis metodológico |
title_short |
Evaluación de métodos para el monitoreo del nivel de fatiga basado en variables cinemáticas y fisiológicas durante entrenamiento en banda sin fin |
title_full |
Evaluación de métodos para el monitoreo del nivel de fatiga basado en variables cinemáticas y fisiológicas durante entrenamiento en banda sin fin |
title_fullStr |
Evaluación de métodos para el monitoreo del nivel de fatiga basado en variables cinemáticas y fisiológicas durante entrenamiento en banda sin fin |
title_full_unstemmed |
Evaluación de métodos para el monitoreo del nivel de fatiga basado en variables cinemáticas y fisiológicas durante entrenamiento en banda sin fin |
title_sort |
Evaluación de métodos para el monitoreo del nivel de fatiga basado en variables cinemáticas y fisiológicas durante entrenamiento en banda sin fin |
dc.contributor.advisor.none.fl_str_mv |
Múnera Ramirez, Marcela Cristina Cifuentes García, Carlos Andrés |
dc.subject.spa.fl_str_mv |
Banda sin fin Centro de masa Fatiga Sensor inercial Kinect Lactato en sangre Parámetros de marcha |
topic |
Banda sin fin Centro de masa Fatiga Sensor inercial Kinect Lactato en sangre Parámetros de marcha Promoción de salud Ginecología & otras especialidades médicas Endless band Center of mass Fatigue Inertial sensor Kinect Blood lactate Running parameters Tecnología medica Enfermedades cardiovasculares - Terapéutica Métodos de cuantificación de fatiga Rehabilitación cardíaca - Análisis metodológico |
dc.subject.ddc.spa.fl_str_mv |
Promoción de salud Ginecología & otras especialidades médicas |
dc.subject.keyword.spa.fl_str_mv |
Endless band Center of mass Fatigue Inertial sensor Kinect Blood lactate Running parameters |
dc.subject.lemb.spa.fl_str_mv |
Tecnología medica Enfermedades cardiovasculares - Terapéutica Métodos de cuantificación de fatiga Rehabilitación cardíaca - Análisis metodológico |
description |
Las enfermedades cardiovasculares (ECV) son la principal causa de muerte en el mundo. Estudios disponibles apoyan el papel de la rehabilitación cardiaca (RC) integral en pacientes con enfermedades cardíacas, disminuyendo la tasa de mortalidad, morbilidad, discapacidad, mejorando la calidad de vida de los pacientes, siendo definida como un programa guiado a la capacitación sobre la importancia del cuidado de la salud, incluyendo dietas, medicación y rutinas de ejercicio. Para los ejercicios empleados en rehabilitación cardiaca es necesario evitar un sobre entrenamiento en los pacientes, él cual es medido según el nivel de fatiga. La medición de la fatiga durante el ejercicio es un proceso altamente usado en rehabilitación física. Actualmente, la forma de cuantificar la fatiga se realiza mediante la escala de Borg (esfuerzo percibido por el paciente), la cual depende ampliamente del criterio del paciente. Por otro lado, un método más exacto es la medición del nivel de lactato en sangre, lo que implica una medida invasiva. El objetivo de este proyecto es implementar un nuevo método portable y de bajo costo para monitorear pacientes durante la terapia física evitando el sobreentrenamiento de los mismos. El proyecto se divide en 5 etapas: la primera se basa en la revisión bibliográfica para el desarrollo del estado del arte, el cual está enfocado en métodos de estimación de fatiga, en la segunda etapa se llevará a cabo el desarrollo del protocolo necesario para la puesta en marcha que es la tercera etapa. Para la cuarta etapa con la información recopilada de las pruebas es necesario un procesamiento de los datos a los cuales se le hará un análisis estadístico, siendo esta la última etapa. En este documento se presenta el desarrollo de nuevos métodos de monitorización de parámetros relacionados con la fatiga, como un apoyo en las sesiones de rehabilitación física, en este trabajo se realiza una evaluación preliminar de parámetros de marcha, como: velocidad de paso, ángulo de movimiento de cadera y rodilla, las cuales muestran una disminución progresiva a medida que medidas fisiológicas y subjetivas como el lactato sanguíneo y la escala de Borg incrementan, demostrando su relación con la fatiga provocada por un ejercicio físico que aumenta gradualmente de intensidad. Como resultado, el protocolo final mostró una alta funcionalidad, donde al monitorear los parámetros fisiológicos, estos presentaron un comportamiento promedio lineal creciente de la escala de Borg y lactato sanguíneo, además de tener una disminución en la actividad eléctrica muscular de los músculos más implicados en la marcha, especialmente del músculo tibial anterior y gastrocnemio. En cuanto a los parámetros cinemáticos, la posición del centro de masa mostró una mayor variación a medida que la intensidad del ejercicio aumenta, teniendo un p valor de 0,17 verificando la hipótesis nula que dicta que, a mayor fatiga, el movimiento del centro de masa aumenta. |
publishDate |
2019 |
dc.date.created.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-16T19:13:34Z |
dc.date.available.none.fl_str_mv |
2020-03-16T19:13:34Z |
dc.type.eng.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.document.spa.fl_str_mv |
Análisis de caso |
dc.type.spa.spa.fl_str_mv |
Trabajo de grado |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.48713/10336_21015 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/21015 |
url |
https://doi.org/10.48713/10336_21015 https://repository.urosario.edu.co/handle/10336/21015 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 2.5 Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/co/ |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 2.5 Colombia Abierto (Texto Completo) http://creativecommons.org/licenses/by-nc-sa/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.spa.fl_str_mv |
Escuela de Medicina y Ciencias de la Salud |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Biomédica |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.spa.fl_str_mv |
G. Manmathan, Primary prevention of cardiovascular disease: A review of contemporary guidance and literature. London Cardiovascular society, 2017. H. B, Fatigue Versus Activity-Dependent Fatigability in Patients With Central or Peripheral Motor Impairments. Neurorehabil Neural Repair, 2008. A. Brown, Aerobic Exercise: Health Benets, Types and Common Misconceptions. Nova Science Publishers, Inc, 2013. M. Nystoriak, Cardiovascular Effects and Benets of Exercise. Front Cardiovasc Med, 2018. S. Springer, Validity of the Kinect for Gait Assessment: A Focused Review. Sensors, 2016. M. Eltoukhy, Improved kinect-based spatiotemporal and kinematic treadmill gait assessment. Department of Kinesiology y Sport Sciences, 2017. T. Derrick, Impacts and kinematic adjustments during an exhaustive run. Sports Exerc, 2002. J. Lockhart, Classifying lower extremity muscle fatigue during walking using machine learning and inertial sensors. Annals of Biomedical Engineering, 2014. J.-j. Wan, Muscle fatigue: general understanding and treatment. Department of Pharmacology, School of Pharmacy, Second Military Medical University, 2017. T. Chi, exercise is more effective than brisk walking in reducing cardiovascular disease risk factors among adults with hypertension: A randomised controlled trial. International Journal of Nursing Studies, 2018. R. Brown, Rehabilitation of patients with cardiovascular diseases. World Health Organization, 1964. E. Wilkins, European Cardiovascular Disease Statistics. European Heart Network, 2017. S. Sidney, Recent Trends in Cardiovascular Mortality in the United States and Public Health Goals. JAMA Cardiol, 2016. G. De Backer, Prevention of cardiovascular disease: recent achievements and remaining challeng. European Society of Cardiology, 2017. H. Jeong, Cordless monitoring system for respiratory and heart rates in bed by using large-scale pressure sensor sheet. Smart Health, 2018. V. Magagnin, Cardiac Response to Robotic Assisted Locomotion in Normal Subjects: A Preliminary Study. Cardiology Unit, Galeazzi Ortophedic Hospital IRCCS, 2007. C. A. Cifuentes, Human-Robot Interaction Strategies for Walker-Assisted Locomotion. Springer Link, 2015. N. Williams, Perceived Exertion (Borg Rating of Perceived Exertion Scale. Centers for Disease Control y Prevention, 2017. C. M. Navas, Estudio descriptivo del programa de rehabilitación cardiaca de la Clínica Las Américas. Revista Colombiana de Cardiología, 2016. A. Da Rocha, The proinflammatory effects of chronic excessive exercise. Postgraduate Program in Rehabilitation y Functional Performance, 2019. K. Kroenke, Chronic fatigue in primary care. Prevalence, patient characteristics, and outcome. JAMA, 1988. F. Wolfe, The prevalence and meaning of fatigue in rheumatic disease. J Rheumatol, 1996. D. Bates, Prevalence of fatigue and chronic fatigue syndrome in a primary care practice. Arch Intern Med, 1993. J. Richard, Anaerobic Exercise and Oxidative Stress: A Review. Department of Sport y Exercise Sciences, University of Memphis, 2004. A. R, Assessment of subjective perceived exertion at the anaerobic threshold with the Borg CR-10 scale. J Sports Sci Med, 2011. S. Stackhouse, Maximum voluntary activation in nonfatigued and fatigued muscle of young and elderly individuals. Phys Ther, 2001. H. Bruce, Recovery after stroke. Cambridge University Press, 2005. A. Eldadah, Fatigue and Fatigability in Older Adults. Division of Geriatrics y Clinical Gerontology, National Institute on Aging, 2010. S. Ryerson, Altered Trunk Position Sense and Its Relation to Balance Functions in People Post-Stroke. Neurol, J, 2008. R. Álvarez, Evaluación siológica del lactato como marcador bioquímico utilizado para indicar la intensidad del ejercicio. Universidad Nacional de Colombia, 2014. N. Spurway, Aerobic exercise, anaerobic exercise and the lactate threshold. British Medical Bulletin. Oxford journals, 1992. J. I. Medbo, Relative importance of aerobic and anaerobic energy release during shortlasting exhausting bicycle exercise. Journal of Applied Physiology, 1989. G. F. Ranalli, Effect of Body Cooling on Subsequent Aerobic and Anaerobic Exercise Performance: A Systematic Review. Journal of Strength y Conditioning Research, 2010. E. Darren, Prescribing exercise as preventive therapy. CMAJ, 2006. B. Brian, Personality Characteristics Associated with Aerobic Excercise in Adult Males Nolan E. Journal of Personality Assessment, 2017. B. I, Long-term follow-up after cancer rehabilitation using high-intensity resistance training: persistent improvement of physical performance and quality of life. British Journal of Cancer, 2008. C. Pu, Function, and exercise. In: Frontera WR, Dawson DM, Slovik DM, Exercise in rehabilitation medicine. Champaign (IL): Human Kinetics, 1999. E. Darren, Prescribing exercise as preventive therapy. CMAJ, 2006. V. D. Rongen, A multidimensional ‘path analysis’ model of factors explaining fatigue in rheumatoid arthritis. Clin Exp Rheumatol, 2016. I. Demmelmaier, Associations between fatigue and physical capacity in people moderately affected by rheumatoid arthritis. Rheumatology International, 2018. K. Loppenthin, Physical activity and the association with fatigue and sleep in Danish patients with rheumatoid arthritis. Research Unit of Nursing y Health Science, Glostrup Hospital, University of Copenhagen, 2015. A. Guttmacher, Alzheimer’s disease and Parkinson’s disease. Bright Focus Fundation, 2017. M. Schenkman, Spinal flexibility and balance control among community-dwelling adults with and without Parkinson’s disease. Med Sci, 2000. S. Halliday, The initiation of gait in young, elderly, and Parkinson’s disease subjects. Texas Scottish Rite Hospital for Children, 1998. D. Greenberg, Clinical Dimensions of Fatigue. Prim Care Companion J Clin Psychiatry., 2002. M. Conny, Heart Rate Variability. Annals of Internal Medicine, 1993. J. Meng, Effects of fatigue on the physiological parameters of labor employees. Natural Hazards, 2014. M. Raez, Techniques of EMG signal analysis:detection, processing, classification and applications. Biol Proced Online, 2006. M. Cifreka, Surface EMG based muscle fatigue evaluation in biomechanics. Faculty of Electrical Engineering y Computing, University of Zagreb, 2009. A. Hatton, The effect of lower limb muscle fatigue on obstacle negotiation during walking in older adults. Science Direct, 2013. M. Badier, M-wave changes after high- and lowfrequency electrically induced fatigue in different muscles. Laboratoire de Physiopathologie Respiratoire, 1999. R. Edwards, Human muscle function and fatigue. ciba foundation symposium, 1981. Y. Kim, A method for gait rehabilitation training using EMG fatigue analysis. International Conference on ICT Convergence, 2013. E. Wojtys, The effects of muscle fatigue on neuromuscular function and anterior tibial translation in healthy knees. PubMed, 1996. M. Melnyk, Submaximalfatigue of the hamstrings impairs specific reflex components and knee stability. KneeSurg Sports Traumatol Arthrosc, 2007. I. Jacobs, Blood Lactate: Implications for Training and Sports Performance. PubMed, 1986. L. pro, https://www.praxisdienst.es. Available, [Accessed 20-Ago-2019]. G. S, Reproducibility of the blood lactate threshold, 4 mmol·l -1 marker, heart rate and ratings of perceived exertion during incremental treadmill exercise in humans. European Journal Of Applied Physiology, 2002. L. Hermansen, Production and Removal of Lactate during Exercise in Man. Acta Physiologica Scandinavica, 1972. G. Borg, Perceived exertion as an indicator of somatic stres. scandinavian journal of rehabilitation medicine, 1970. d. U. Saenz, Kinect-Based Virtual Game for the Elderly that Detects Incorrect Body Postures in Real Time. Sensors, 16(5), 704, 2016. P. Sparto, The Effect of Fatigue on Multijoint Kinematics, Coordination, and Postural Stability During a Repetitive Lifting Test. Biomedical Engineering Center, 1997. G. Borg, Sychophysical bases of perceived exertion. medicine, science in sports y exercise, 1982. B. Scale, https://fisiosaludable.com/conceptos/241-escala-de-Borg. Available, [Accessed 20-Ago-2019]. G. Roy, Kinect Camera Based Gait Data Recording and Analysis for Assistive Robotics- An Alternative to Goniometer Based Measurement Technique. Procedia Computer Science, 2018. Kinect, https://www.researchgate.net/figure/The-different-components-of-a-Kinectsensor f ig7288700684. Available, [Accessed 20-Ago-2019]. S. Winter, Validation of a single inertial sensor for measuring running kinematics overground during a prolonged rud. Department of Food, Nutrition, y Sports Science, University of Gothenburg, 2016. A. Nguyen, Development and clinical validation of inertial sensor-based gait-clustering methods in Parkinson’s disease. Journal of NeuroEngineering y Rehabilitation, 2019. A. González, Whole Body Center of Mass Estimation with Portable Sensors: Using the Statically Equivalent Serial Chain and a Kinect. Sensors, 2014. M. de la Herran, Gait Analysis Methods: An Overview of Wearable and Non-Wearable Systems, Highlighting Clinical Applications. Sensors, 2014. D. Gouwanda, Merging Trends of Body-Mounted Sensors in Sports and Human Gait Analysis. Kuala Lumpur International Conference on Biomedical Engineering, 2008. S. L. Di Stasi, Gait patterns differ between ACL-reconstructed athletes who pass returnto- sport criteria and those who fail. Sports Med, 2013. L. Wang, Analysis-based gait recognition for human identification. Sports Med, 2003. J. Han, Gandividual recognition using Gait Energy Image. IEEE, 2006. D. H. Sutherland, The evolution of clinical gait analysis part I: Kinesiological EMG. Gait Posture. Children’s Hospital San Diego, 2001. D. H. Sutherland, The evolution of clinical gait analysis. Part II kinematics. Gait Posture. Sports Med, 2002. M. Agudelo, Gait: description, methods, assessment tools and normality parameters reported in the literature. CES Movimiento y Salud., 2018. T. Varrecchia, Global lower limb muscle coactivation during walking at different speeds:Relationship between spatio-temporal, kinematic, kinetic, and energetic parameters. Department of Engineering, Roma, 2018. A. Yazdi, Micromachined inertial sensors. IEEE, 1998. Irlanda, IMU’s Shimmer. shimmer discovery in motion, 2008. Shimmer, http://www.shimmersensing.com/products/shimmer3-development-kitdownloadtab. Available, [Accessed 20-Ago-2019]. C. Strohrmann, Monitoring Kinematic Changes With Fatigue in Running Using Body- Worn Sensors. Transactions on Information Technology in Biomedicine, 2012. J. Hart, Jogging kinematics after lumbar paraspinal muscle fatigue. Journal Athl Training, 2009. F. Möhler, Influence of fatigue on running coordination: A UCM analysis with a geometric 2D model and a subject-specific anthropometric 3D model. BioMotion Center, Institute of Sports y Sports Science (IfSS), 2019. M. Giandolini, Fatigue associated with prolonged graded running. European Journal Of Applied Physiology, 2016. E. Hareendran, Proposing a standardized method for evaluating patient report of the intensity of dyspnea during exercise testing in COPD. International journal of chronic obstructive pulmonary disease, 2012. P. Cormie, An supervised exercise prevent treatment toxicity in patients with prostate cancerinitiating androgen-deprivation therapy: A randomised controlled trial. BJU, 2015. P. Cormie, Production and Removal of Lactate during Exercise in Man. BJU Int, 2015. D. Galvao, Multicentre year-long randomised controlled trial of exercise training targeting physical functioning in men with prostate cancer previously treated with androgen suppression and radiation from TROG 03.04 RADAR. Eur Urol, 2014. P. Truong, Prospective evaluation of a 12-week walking exercise program and its effect on fatigue in prostate cancer patients undergoing radical external beam radiotherapy. Clin Oncol, 2011. G. Jamtvedt, A pragmatic randomised trial of stretching before and after physical activity to prevent injury and soreness. British Journal of Sports Medicine, 2009. Calentamiento, http://www.gym19.com.ar/estiramientos.html. Available, [Accessed 30-Sep-2019]. C. Strohrmann, Monitoring kinematic changes with fatigue in running using body-worn sensors. Transactions on Information Technology in Biomedicine, 2012. M. Felix, Influence of fatigue on running coordination: A UCM analysis with a geometric 2D model and a subject-specific anthropometric 3D model. BioMotion Center, Institute of Sports y Sports Science, 2019. R. Aviram, Effects of a group circuit progressive resistance training program compared with a treadmill training program for adolescents with cerebral palsy. Developmental Neurorehabilitation, 2016. S. Kang, Effect of whole body vibration on lactate level recovery and heart rate recovery in rest after intense exercise. Technology y Health Care, 2017. J. Montes, Leg muscle function and fatigue during walking in spinal muscular atrophy. Department of Neurology, Columbia University, 2014. C. Camic, Application of the neuromuscular fatigue threshold treadmill test to muscles of the quadriceps and hamstrings. Journal of Sport y Health, 2017. A. Sehle, Objective assessment of motor fatigue in multiple sclerosis: the Fatigue index Kliniken Schmieder (FKS). Journal of Neurology, 2014. D. Black, Uncontrolled manifold analysis of segmental angle variability during walking: Preadolescents with and without Down syndrome. Division of Kinesiology, University of Michigan, 2007. P. Rowe, Analysis of gait within the uncontrolled manifoldhypothesis: Stabilisation of the centre of mass during gait. Journal of Biomechanics, 2015. X. Qu, Uncontrolled manifold analysis of gait variability: Effects of load carriage and fatigue. School of Mechanical y Aerospace Engineering, 2012. A. Ong, The efficacy of a video-based marker-less tracking system for gait analysis. Computer Methods in Biomechanics y Biomedical Engineering, 2017. |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/e53800c3-b79d-4038-bbd7-a0c9b2dca7ef/download https://repository.urosario.edu.co/bitstreams/77f70b62-9130-4c72-aa67-e7bf800e8fa7/download https://repository.urosario.edu.co/bitstreams/a553e59f-dd46-4707-8c2d-aace802eda72/download https://repository.urosario.edu.co/bitstreams/79e6330e-066c-4181-867b-aefc4960373a/download https://repository.urosario.edu.co/bitstreams/9ec35216-447a-45a6-9604-359aa2354a28/download https://repository.urosario.edu.co/bitstreams/76942e04-21a2-4c2f-84bc-f03fef12373b/download https://repository.urosario.edu.co/bitstreams/2a7ac3ac-caa6-484a-a441-87b28d3bf477/download https://repository.urosario.edu.co/bitstreams/8b059027-31cc-4ff3-9fb4-8b971f2ff16f/download |
bitstream.checksum.fl_str_mv |
3da1919af09891068fbede706ad59e4b 68b329da9893e34099c7d8ad5cb9c940 98be039dc0f278c66ea7ca999398a264 d2db6b37cec448eaf1777ca8adf81c5c 1487462a1490a8fc01f5999ce7b3b9cc 68d89209432a9a736d1240ae8f42e251 bb6e576c67ae3a71247a9313424f9dd6 fab9d9ed61d64f6ac005dee3306ae77e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167533374144512 |
spelling |
Múnera Ramirez, Marcela Cristina5696993b-4315-49f2-b8ca-139c129d4b75600Cifuentes García, Carlos Andrés5c7b0fe7-dce9-4d98-adef-f8d946344e19600Ochoa Salamanca, María AlejandraIngeniero BiomédicoFull time57580882-b913-44f7-b76d-d3bd318788506002020-03-16T19:13:34Z2020-03-16T19:13:34Z2019Las enfermedades cardiovasculares (ECV) son la principal causa de muerte en el mundo. Estudios disponibles apoyan el papel de la rehabilitación cardiaca (RC) integral en pacientes con enfermedades cardíacas, disminuyendo la tasa de mortalidad, morbilidad, discapacidad, mejorando la calidad de vida de los pacientes, siendo definida como un programa guiado a la capacitación sobre la importancia del cuidado de la salud, incluyendo dietas, medicación y rutinas de ejercicio. Para los ejercicios empleados en rehabilitación cardiaca es necesario evitar un sobre entrenamiento en los pacientes, él cual es medido según el nivel de fatiga. La medición de la fatiga durante el ejercicio es un proceso altamente usado en rehabilitación física. Actualmente, la forma de cuantificar la fatiga se realiza mediante la escala de Borg (esfuerzo percibido por el paciente), la cual depende ampliamente del criterio del paciente. Por otro lado, un método más exacto es la medición del nivel de lactato en sangre, lo que implica una medida invasiva. El objetivo de este proyecto es implementar un nuevo método portable y de bajo costo para monitorear pacientes durante la terapia física evitando el sobreentrenamiento de los mismos. El proyecto se divide en 5 etapas: la primera se basa en la revisión bibliográfica para el desarrollo del estado del arte, el cual está enfocado en métodos de estimación de fatiga, en la segunda etapa se llevará a cabo el desarrollo del protocolo necesario para la puesta en marcha que es la tercera etapa. Para la cuarta etapa con la información recopilada de las pruebas es necesario un procesamiento de los datos a los cuales se le hará un análisis estadístico, siendo esta la última etapa. En este documento se presenta el desarrollo de nuevos métodos de monitorización de parámetros relacionados con la fatiga, como un apoyo en las sesiones de rehabilitación física, en este trabajo se realiza una evaluación preliminar de parámetros de marcha, como: velocidad de paso, ángulo de movimiento de cadera y rodilla, las cuales muestran una disminución progresiva a medida que medidas fisiológicas y subjetivas como el lactato sanguíneo y la escala de Borg incrementan, demostrando su relación con la fatiga provocada por un ejercicio físico que aumenta gradualmente de intensidad. Como resultado, el protocolo final mostró una alta funcionalidad, donde al monitorear los parámetros fisiológicos, estos presentaron un comportamiento promedio lineal creciente de la escala de Borg y lactato sanguíneo, además de tener una disminución en la actividad eléctrica muscular de los músculos más implicados en la marcha, especialmente del músculo tibial anterior y gastrocnemio. En cuanto a los parámetros cinemáticos, la posición del centro de masa mostró una mayor variación a medida que la intensidad del ejercicio aumenta, teniendo un p valor de 0,17 verificando la hipótesis nula que dicta que, a mayor fatiga, el movimiento del centro de masa aumenta.Cardiovascular disease (CVD) is the leading cause of death in the world. Available studies support the role of comprehensive cardiac rehabilitation (CR) in patients with heart disease, reducing the mortality rate, morbidity, disability, improving the quality of life of patients, being defined as a program guided to training on the importance health care, including diet, medication, and exercise routines. For the exercises used in cardiac rehabilitation, it is necessary to avoid overtraining in patients, which is measured according to the level of fatigue. Measuring fatigue during exercise is a highly used process in physical rehabilitation. Currently, the way to quantify fatigue is performed using the Borg scale (effort perceived by the patient), which largely depends on the patient's criteria. On the other hand, a more accurate method is the measurement of the blood lactate level, which implies an invasive measurement. The objective of this project is to implement a new, low-cost and portable method to monitor patients during physical therapy, avoiding their overtraining. The project is divided into 5 stages: the first is based on the bibliographic review for the development of the state of the art, which is focused on methods of estimating fatigue, in the second stage the development of the protocol necessary for the start-up which is the third stage. For the fourth stage, with the information collected from the tests, it is necessary to process the data, which will be statistically analyzed, this being the last stage. This document presents the development of new methods of monitoring parameters related to fatigue, as a support in physical rehabilitation sessions, in this work a preliminary evaluation of walking parameters is made, such as: walking speed, angle of hip and knee movement, which show a progressive decrease as physiological and subjective measures such as blood lactate and the Borg scale increase, demonstrating its relationship with fatigue caused by physical exercise that gradually increases in intensity. As a result, the final protocol showed high functionality, where when monitoring the physiological parameters, they presented an increasing linear average behavior of the Borg scale and blood lactate, in addition to having a decrease in the muscular electrical activity of the muscles most involved in gait, especially of the anterior tibial muscle and gastrocnemius. Regarding the kinematic parameters, the position of the center of mass showed a greater variation as the intensity of the exercise increases, having a p value of 0.17, verifying the null hypothesis that, with greater fatigue, the movement of the center mass increases.application/pdfhttps://doi.org/10.48713/10336_21015 https://repository.urosario.edu.co/handle/10336/21015spaUniversidad del RosarioEscuela de Medicina y Ciencias de la SaludIngeniería BiomédicaAtribución-NoComercial-CompartirIgual 2.5 ColombiaAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2G. Manmathan, Primary prevention of cardiovascular disease: A review of contemporary guidance and literature. London Cardiovascular society, 2017.H. B, Fatigue Versus Activity-Dependent Fatigability in Patients With Central or Peripheral Motor Impairments. Neurorehabil Neural Repair, 2008.A. Brown, Aerobic Exercise: Health Benets, Types and Common Misconceptions. Nova Science Publishers, Inc, 2013.M. Nystoriak, Cardiovascular Effects and Benets of Exercise. Front Cardiovasc Med, 2018.S. Springer, Validity of the Kinect for Gait Assessment: A Focused Review. Sensors, 2016.M. Eltoukhy, Improved kinect-based spatiotemporal and kinematic treadmill gait assessment. Department of Kinesiology y Sport Sciences, 2017.T. Derrick, Impacts and kinematic adjustments during an exhaustive run. Sports Exerc, 2002.J. Lockhart, Classifying lower extremity muscle fatigue during walking using machine learning and inertial sensors. Annals of Biomedical Engineering, 2014.J.-j. Wan, Muscle fatigue: general understanding and treatment. Department of Pharmacology, School of Pharmacy, Second Military Medical University, 2017.T. Chi, exercise is more effective than brisk walking in reducing cardiovascular disease risk factors among adults with hypertension: A randomised controlled trial. International Journal of Nursing Studies, 2018.R. Brown, Rehabilitation of patients with cardiovascular diseases. World Health Organization, 1964.E. Wilkins, European Cardiovascular Disease Statistics. European Heart Network, 2017.S. Sidney, Recent Trends in Cardiovascular Mortality in the United States and Public Health Goals. JAMA Cardiol, 2016.G. De Backer, Prevention of cardiovascular disease: recent achievements and remaining challeng. European Society of Cardiology, 2017.H. Jeong, Cordless monitoring system for respiratory and heart rates in bed by using large-scale pressure sensor sheet. Smart Health, 2018.V. Magagnin, Cardiac Response to Robotic Assisted Locomotion in Normal Subjects: A Preliminary Study. Cardiology Unit, Galeazzi Ortophedic Hospital IRCCS, 2007.C. A. Cifuentes, Human-Robot Interaction Strategies for Walker-Assisted Locomotion. Springer Link, 2015.N. Williams, Perceived Exertion (Borg Rating of Perceived Exertion Scale. Centers for Disease Control y Prevention, 2017.C. M. Navas, Estudio descriptivo del programa de rehabilitación cardiaca de la Clínica Las Américas. Revista Colombiana de Cardiología, 2016.A. Da Rocha, The proinflammatory effects of chronic excessive exercise. Postgraduate Program in Rehabilitation y Functional Performance, 2019.K. Kroenke, Chronic fatigue in primary care. Prevalence, patient characteristics, and outcome. JAMA, 1988.F. Wolfe, The prevalence and meaning of fatigue in rheumatic disease. J Rheumatol, 1996.D. Bates, Prevalence of fatigue and chronic fatigue syndrome in a primary care practice. Arch Intern Med, 1993.J. Richard, Anaerobic Exercise and Oxidative Stress: A Review. Department of Sport y Exercise Sciences, University of Memphis, 2004.A. R, Assessment of subjective perceived exertion at the anaerobic threshold with the Borg CR-10 scale. J Sports Sci Med, 2011.S. Stackhouse, Maximum voluntary activation in nonfatigued and fatigued muscle of young and elderly individuals. Phys Ther, 2001.H. Bruce, Recovery after stroke. Cambridge University Press, 2005.A. Eldadah, Fatigue and Fatigability in Older Adults. Division of Geriatrics y Clinical Gerontology, National Institute on Aging, 2010.S. Ryerson, Altered Trunk Position Sense and Its Relation to Balance Functions in People Post-Stroke. Neurol, J, 2008.R. Álvarez, Evaluación siológica del lactato como marcador bioquímico utilizado para indicar la intensidad del ejercicio. Universidad Nacional de Colombia, 2014.N. Spurway, Aerobic exercise, anaerobic exercise and the lactate threshold. British Medical Bulletin. Oxford journals, 1992.J. I. Medbo, Relative importance of aerobic and anaerobic energy release during shortlasting exhausting bicycle exercise. Journal of Applied Physiology, 1989.G. F. Ranalli, Effect of Body Cooling on Subsequent Aerobic and Anaerobic Exercise Performance: A Systematic Review. Journal of Strength y Conditioning Research, 2010.E. Darren, Prescribing exercise as preventive therapy. CMAJ, 2006.B. Brian, Personality Characteristics Associated with Aerobic Excercise in Adult Males Nolan E. Journal of Personality Assessment, 2017.B. I, Long-term follow-up after cancer rehabilitation using high-intensity resistance training: persistent improvement of physical performance and quality of life. British Journal of Cancer, 2008.C. Pu, Function, and exercise. In: Frontera WR, Dawson DM, Slovik DM, Exercise in rehabilitation medicine. Champaign (IL): Human Kinetics, 1999.E. Darren, Prescribing exercise as preventive therapy. CMAJ, 2006.V. D. Rongen, A multidimensional ‘path analysis’ model of factors explaining fatigue in rheumatoid arthritis. Clin Exp Rheumatol, 2016.I. Demmelmaier, Associations between fatigue and physical capacity in people moderately affected by rheumatoid arthritis. Rheumatology International, 2018.K. Loppenthin, Physical activity and the association with fatigue and sleep in Danish patients with rheumatoid arthritis. Research Unit of Nursing y Health Science, Glostrup Hospital, University of Copenhagen, 2015.A. Guttmacher, Alzheimer’s disease and Parkinson’s disease. Bright Focus Fundation, 2017.M. Schenkman, Spinal flexibility and balance control among community-dwelling adults with and without Parkinson’s disease. Med Sci, 2000.S. Halliday, The initiation of gait in young, elderly, and Parkinson’s disease subjects. Texas Scottish Rite Hospital for Children, 1998.D. Greenberg, Clinical Dimensions of Fatigue. Prim Care Companion J Clin Psychiatry., 2002.M. Conny, Heart Rate Variability. Annals of Internal Medicine, 1993.J. Meng, Effects of fatigue on the physiological parameters of labor employees. Natural Hazards, 2014.M. Raez, Techniques of EMG signal analysis:detection, processing, classification and applications. Biol Proced Online, 2006.M. Cifreka, Surface EMG based muscle fatigue evaluation in biomechanics. Faculty of Electrical Engineering y Computing, University of Zagreb, 2009.A. Hatton, The effect of lower limb muscle fatigue on obstacle negotiation during walking in older adults. Science Direct, 2013.M. Badier, M-wave changes after high- and lowfrequency electrically induced fatigue in different muscles. Laboratoire de Physiopathologie Respiratoire, 1999.R. Edwards, Human muscle function and fatigue. ciba foundation symposium, 1981.Y. Kim, A method for gait rehabilitation training using EMG fatigue analysis. International Conference on ICT Convergence, 2013.E. Wojtys, The effects of muscle fatigue on neuromuscular function and anterior tibial translation in healthy knees. PubMed, 1996.M. Melnyk, Submaximalfatigue of the hamstrings impairs specific reflex components and knee stability. KneeSurg Sports Traumatol Arthrosc, 2007.I. Jacobs, Blood Lactate: Implications for Training and Sports Performance. PubMed, 1986.L. pro, https://www.praxisdienst.es. Available, [Accessed 20-Ago-2019].G. S, Reproducibility of the blood lactate threshold, 4 mmol·l -1 marker, heart rate and ratings of perceived exertion during incremental treadmill exercise in humans. European Journal Of Applied Physiology, 2002.L. Hermansen, Production and Removal of Lactate during Exercise in Man. Acta Physiologica Scandinavica, 1972.G. Borg, Perceived exertion as an indicator of somatic stres. scandinavian journal of rehabilitation medicine, 1970.d. U. Saenz, Kinect-Based Virtual Game for the Elderly that Detects Incorrect Body Postures in Real Time. Sensors, 16(5), 704, 2016.P. Sparto, The Effect of Fatigue on Multijoint Kinematics, Coordination, and Postural Stability During a Repetitive Lifting Test. Biomedical Engineering Center, 1997.G. Borg, Sychophysical bases of perceived exertion. medicine, science in sports y exercise, 1982.B. Scale, https://fisiosaludable.com/conceptos/241-escala-de-Borg. Available, [Accessed 20-Ago-2019].G. Roy, Kinect Camera Based Gait Data Recording and Analysis for Assistive Robotics- An Alternative to Goniometer Based Measurement Technique. Procedia Computer Science, 2018.Kinect, https://www.researchgate.net/figure/The-different-components-of-a-Kinectsensor f ig7288700684. Available, [Accessed 20-Ago-2019].S. Winter, Validation of a single inertial sensor for measuring running kinematics overground during a prolonged rud. Department of Food, Nutrition, y Sports Science, University of Gothenburg, 2016.A. Nguyen, Development and clinical validation of inertial sensor-based gait-clustering methods in Parkinson’s disease. Journal of NeuroEngineering y Rehabilitation, 2019.A. González, Whole Body Center of Mass Estimation with Portable Sensors: Using the Statically Equivalent Serial Chain and a Kinect. Sensors, 2014.M. de la Herran, Gait Analysis Methods: An Overview of Wearable and Non-Wearable Systems, Highlighting Clinical Applications. Sensors, 2014.D. Gouwanda, Merging Trends of Body-Mounted Sensors in Sports and Human Gait Analysis. Kuala Lumpur International Conference on Biomedical Engineering, 2008.S. L. Di Stasi, Gait patterns differ between ACL-reconstructed athletes who pass returnto- sport criteria and those who fail. Sports Med, 2013.L. Wang, Analysis-based gait recognition for human identification. Sports Med, 2003.J. Han, Gandividual recognition using Gait Energy Image. IEEE, 2006.D. H. Sutherland, The evolution of clinical gait analysis part I: Kinesiological EMG. Gait Posture. Children’s Hospital San Diego, 2001.D. H. Sutherland, The evolution of clinical gait analysis. Part II kinematics. Gait Posture. Sports Med, 2002.M. Agudelo, Gait: description, methods, assessment tools and normality parameters reported in the literature. CES Movimiento y Salud., 2018.T. Varrecchia, Global lower limb muscle coactivation during walking at different speeds:Relationship between spatio-temporal, kinematic, kinetic, and energetic parameters. Department of Engineering, Roma, 2018.A. Yazdi, Micromachined inertial sensors. IEEE, 1998.Irlanda, IMU’s Shimmer. shimmer discovery in motion, 2008.Shimmer, http://www.shimmersensing.com/products/shimmer3-development-kitdownloadtab. Available, [Accessed 20-Ago-2019].C. Strohrmann, Monitoring Kinematic Changes With Fatigue in Running Using Body- Worn Sensors. Transactions on Information Technology in Biomedicine, 2012.J. Hart, Jogging kinematics after lumbar paraspinal muscle fatigue. Journal Athl Training, 2009.F. Möhler, Influence of fatigue on running coordination: A UCM analysis with a geometric 2D model and a subject-specific anthropometric 3D model. BioMotion Center, Institute of Sports y Sports Science (IfSS), 2019.M. Giandolini, Fatigue associated with prolonged graded running. European Journal Of Applied Physiology, 2016.E. Hareendran, Proposing a standardized method for evaluating patient report of the intensity of dyspnea during exercise testing in COPD. International journal of chronic obstructive pulmonary disease, 2012.P. Cormie, An supervised exercise prevent treatment toxicity in patients with prostate cancerinitiating androgen-deprivation therapy: A randomised controlled trial. BJU, 2015.P. Cormie, Production and Removal of Lactate during Exercise in Man. BJU Int, 2015.D. Galvao, Multicentre year-long randomised controlled trial of exercise training targeting physical functioning in men with prostate cancer previously treated with androgen suppression and radiation from TROG 03.04 RADAR. Eur Urol, 2014.P. Truong, Prospective evaluation of a 12-week walking exercise program and its effect on fatigue in prostate cancer patients undergoing radical external beam radiotherapy. Clin Oncol, 2011.G. Jamtvedt, A pragmatic randomised trial of stretching before and after physical activity to prevent injury and soreness. British Journal of Sports Medicine, 2009.Calentamiento, http://www.gym19.com.ar/estiramientos.html. Available, [Accessed 30-Sep-2019].C. Strohrmann, Monitoring kinematic changes with fatigue in running using body-worn sensors. Transactions on Information Technology in Biomedicine, 2012.M. Felix, Influence of fatigue on running coordination: A UCM analysis with a geometric 2D model and a subject-specific anthropometric 3D model. BioMotion Center, Institute of Sports y Sports Science, 2019.R. Aviram, Effects of a group circuit progressive resistance training program compared with a treadmill training program for adolescents with cerebral palsy. Developmental Neurorehabilitation, 2016.S. Kang, Effect of whole body vibration on lactate level recovery and heart rate recovery in rest after intense exercise. Technology y Health Care, 2017.J. Montes, Leg muscle function and fatigue during walking in spinal muscular atrophy. Department of Neurology, Columbia University, 2014.C. Camic, Application of the neuromuscular fatigue threshold treadmill test to muscles of the quadriceps and hamstrings. Journal of Sport y Health, 2017.A. Sehle, Objective assessment of motor fatigue in multiple sclerosis: the Fatigue index Kliniken Schmieder (FKS). Journal of Neurology, 2014.D. Black, Uncontrolled manifold analysis of segmental angle variability during walking: Preadolescents with and without Down syndrome. Division of Kinesiology, University of Michigan, 2007.P. Rowe, Analysis of gait within the uncontrolled manifoldhypothesis: Stabilisation of the centre of mass during gait. Journal of Biomechanics, 2015.X. Qu, Uncontrolled manifold analysis of gait variability: Effects of load carriage and fatigue. School of Mechanical y Aerospace Engineering, 2012.A. Ong, The efficacy of a video-based marker-less tracking system for gait analysis. Computer Methods in Biomechanics y Biomedical Engineering, 2017.instname:Universidad del Rosarioinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURBanda sin finCentro de masaFatigaSensor inercialKinectLactato en sangreParámetros de marchaPromoción de salud613600Ginecología & otras especialidades médicas618600Endless bandCenter of massFatigueInertial sensorKinectBlood lactateRunning parametersTecnología medicaEnfermedades cardiovasculares - TerapéuticaMétodos de cuantificación de fatigaRehabilitación cardíaca - Análisis metodológicoEvaluación de métodos para el monitoreo del nivel de fatiga basado en variables cinemáticas y fisiológicas durante entrenamiento en banda sin finEvaluation of methods for monitoring the level of fatigue based on kinematic and physiological variables during treadmill trainingbachelorThesisAnálisis de casoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fEscuela de Medicina y Ciencias de la SaludTEXTTrabajo_de_grado__Maria_Alejandra_Ochoa_Salamanca.pdf.txtTrabajo_de_grado__Maria_Alejandra_Ochoa_Salamanca.pdf.txtExtracted texttext/plain153093https://repository.urosario.edu.co/bitstreams/e53800c3-b79d-4038-bbd7-a0c9b2dca7ef/download3da1919af09891068fbede706ad59e4bMD55Proyecto_Maria_Alejandra_Ochoa_Salamanca-Consentimiento.pdf.txtProyecto_Maria_Alejandra_Ochoa_Salamanca-Consentimiento.pdf.txtExtracted texttext/plain1https://repository.urosario.edu.co/bitstreams/77f70b62-9130-4c72-aa67-e7bf800e8fa7/download68b329da9893e34099c7d8ad5cb9c940MD57THUMBNAILTrabajo_de_grado__Maria_Alejandra_Ochoa_Salamanca.pdf.jpgTrabajo_de_grado__Maria_Alejandra_Ochoa_Salamanca.pdf.jpgGenerated Thumbnailimage/jpeg2620https://repository.urosario.edu.co/bitstreams/a553e59f-dd46-4707-8c2d-aace802eda72/download98be039dc0f278c66ea7ca999398a264MD56Proyecto_Maria_Alejandra_Ochoa_Salamanca-Consentimiento.pdf.jpgProyecto_Maria_Alejandra_Ochoa_Salamanca-Consentimiento.pdf.jpgGenerated Thumbnailimage/jpeg3912https://repository.urosario.edu.co/bitstreams/79e6330e-066c-4181-867b-aefc4960373a/downloadd2db6b37cec448eaf1777ca8adf81c5cMD58CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repository.urosario.edu.co/bitstreams/9ec35216-447a-45a6-9604-359aa2354a28/download1487462a1490a8fc01f5999ce7b3b9ccMD54ORIGINALTrabajo_de_grado__Maria_Alejandra_Ochoa_Salamanca.pdfTrabajo_de_grado__Maria_Alejandra_Ochoa_Salamanca.pdfapplication/pdf2813048https://repository.urosario.edu.co/bitstreams/76942e04-21a2-4c2f-84bc-f03fef12373b/download68d89209432a9a736d1240ae8f42e251MD51Proyecto_Maria_Alejandra_Ochoa_Salamanca-Consentimiento.pdfProyecto_Maria_Alejandra_Ochoa_Salamanca-Consentimiento.pdfapplication/pdf30210https://repository.urosario.edu.co/bitstreams/2a7ac3ac-caa6-484a-a441-87b28d3bf477/downloadbb6e576c67ae3a71247a9313424f9dd6MD52LICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/8b059027-31cc-4ff3-9fb4-8b971f2ff16f/downloadfab9d9ed61d64f6ac005dee3306ae77eMD5310336/21015oai:repository.urosario.edu.co:10336/210152020-05-13 20:33:19.451http://creativecommons.org/licenses/by-nc-sa/2.5/co/Atribución-NoComercial-CompartirIgual 2.5 Colombiahttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo= |