An alternative proof of the Aubin-Lions lemma

Using a generalized version of the Weyl-Riesz criterion for compactness of subsets of Lebesgue-Bochner spaces, we present in this short note an alternative proof of a result by J. Simon [4] that extends the classical result by J.P. Aubin and J.L. Lions on compact embeddings in Lebesgue-Bochner space...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/22733
Acceso en línea:
https://doi.org/10.1007/s00013-013-0552-x
https://repository.urosario.edu.co/handle/10336/22733
Palabra clave:
Aubin-Lions Lemma
Compactness Lebesgue-Bochner spaces
Non-reflexive Banach spaces
Rights
License
Abierto (Texto Completo)
id EDOCUR2_ea1bde40dae9801cf4e67aad13fe9340
oai_identifier_str oai:repository.urosario.edu.co:10336/22733
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 800853686002020-05-25T23:57:44Z2020-05-25T23:57:44Z2013Using a generalized version of the Weyl-Riesz criterion for compactness of subsets of Lebesgue-Bochner spaces, we present in this short note an alternative proof of a result by J. Simon [4] that extends the classical result by J.P. Aubin and J.L. Lions on compact embeddings in Lebesgue-Bochner spaces to the non-reflexive Banach space case. © 2013 Springer Basel.application/pdfhttps://doi.org/10.1007/s00013-013-0552-x0003889X14208938https://repository.urosario.edu.co/handle/10336/22733eng257No. 3253Archiv der MathematikVol. 101Archiv der Mathematik, ISSN:0003889X, 14208938, Vol.101, No.3 (2013); pp. 253-257https://www.scopus.com/inward/record.uri?eid=2-s2.0-84884292585&doi=10.1007%2fs00013-013-0552-x&partnerID=40&md5=4c46f4d4f5e7aa213c1f0b2d37a4145dAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURAubin-Lions LemmaCompactness Lebesgue-Bochner spacesNon-reflexive Banach spacesAn alternative proof of the Aubin-Lions lemmaarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Serrano Perdomo, Rafael Antonio10336/22733oai:repository.urosario.edu.co:10336/227332021-06-10 23:26:26.326https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv An alternative proof of the Aubin-Lions lemma
title An alternative proof of the Aubin-Lions lemma
spellingShingle An alternative proof of the Aubin-Lions lemma
Aubin-Lions Lemma
Compactness Lebesgue-Bochner spaces
Non-reflexive Banach spaces
title_short An alternative proof of the Aubin-Lions lemma
title_full An alternative proof of the Aubin-Lions lemma
title_fullStr An alternative proof of the Aubin-Lions lemma
title_full_unstemmed An alternative proof of the Aubin-Lions lemma
title_sort An alternative proof of the Aubin-Lions lemma
dc.subject.keyword.spa.fl_str_mv Aubin-Lions Lemma
Compactness Lebesgue-Bochner spaces
Non-reflexive Banach spaces
topic Aubin-Lions Lemma
Compactness Lebesgue-Bochner spaces
Non-reflexive Banach spaces
description Using a generalized version of the Weyl-Riesz criterion for compactness of subsets of Lebesgue-Bochner spaces, we present in this short note an alternative proof of a result by J. Simon [4] that extends the classical result by J.P. Aubin and J.L. Lions on compact embeddings in Lebesgue-Bochner spaces to the non-reflexive Banach space case. © 2013 Springer Basel.
publishDate 2013
dc.date.created.spa.fl_str_mv 2013
dc.date.accessioned.none.fl_str_mv 2020-05-25T23:57:44Z
dc.date.available.none.fl_str_mv 2020-05-25T23:57:44Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s00013-013-0552-x
dc.identifier.issn.none.fl_str_mv 0003889X
14208938
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/22733
url https://doi.org/10.1007/s00013-013-0552-x
https://repository.urosario.edu.co/handle/10336/22733
identifier_str_mv 0003889X
14208938
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 257
dc.relation.citationIssue.none.fl_str_mv No. 3
dc.relation.citationStartPage.none.fl_str_mv 253
dc.relation.citationTitle.none.fl_str_mv Archiv der Mathematik
dc.relation.citationVolume.none.fl_str_mv Vol. 101
dc.relation.ispartof.spa.fl_str_mv Archiv der Mathematik, ISSN:0003889X, 14208938, Vol.101, No.3 (2013); pp. 253-257
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84884292585&doi=10.1007%2fs00013-013-0552-x&partnerID=40&md5=4c46f4d4f5e7aa213c1f0b2d37a4145d
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167473402937344