Identificación de señales de selección natural en genes de Plasmodium vivax que codifican proteínas involucradas en el proceso de invasión para determinar su potencial uso en una vacuna antimalárica

Plasmodium vivax, es un endoparásito de origen Asiático que se dispersó alrededor del mundo y, actualmente, es predominante en las regiones tropicales y subtropicales del planeta que se encuentran entre los 15 y 16 °C. P. vivax, presenta una importancia biomédica dado que es el segundo agente respon...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
spa
OAI Identifier:
oai:repository.urosario.edu.co:10336/19876
Acceso en línea:
https://doi.org/10.48713/10336_19876
http://repository.urosario.edu.co/handle/10336/19876
Palabra clave:
Plasmodium vivax
Malaria
Vacuna
Diversidad genética
Antígenos conservados
Selección natural
Promisorios candidatos vacunales
Selección negativa
Incidencia & prevención de la enfermedad
Malaria
Plasmodium vivax
Malaria
Antimalarial vaccine
Genetic diversity
Vaccine candidates
Vatural selection
Conserved regions
Negatively selected regions
Medicina
Epidemiología
Vacunas
Rights
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id EDOCUR2_e7caaa4e159f2c401168ff11b15010c3
oai_identifier_str oai:repository.urosario.edu.co:10336/19876
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.spa.fl_str_mv Identificación de señales de selección natural en genes de Plasmodium vivax que codifican proteínas involucradas en el proceso de invasión para determinar su potencial uso en una vacuna antimalárica
dc.title.alternative.spa.fl_str_mv Selección natural en genes de Plasmodium vivax y su potencial uso en una vacuna antimalárica
title Identificación de señales de selección natural en genes de Plasmodium vivax que codifican proteínas involucradas en el proceso de invasión para determinar su potencial uso en una vacuna antimalárica
spellingShingle Identificación de señales de selección natural en genes de Plasmodium vivax que codifican proteínas involucradas en el proceso de invasión para determinar su potencial uso en una vacuna antimalárica
Plasmodium vivax
Malaria
Vacuna
Diversidad genética
Antígenos conservados
Selección natural
Promisorios candidatos vacunales
Selección negativa
Incidencia & prevención de la enfermedad
Malaria
Plasmodium vivax
Malaria
Antimalarial vaccine
Genetic diversity
Vaccine candidates
Vatural selection
Conserved regions
Negatively selected regions
Medicina
Epidemiología
Vacunas
title_short Identificación de señales de selección natural en genes de Plasmodium vivax que codifican proteínas involucradas en el proceso de invasión para determinar su potencial uso en una vacuna antimalárica
title_full Identificación de señales de selección natural en genes de Plasmodium vivax que codifican proteínas involucradas en el proceso de invasión para determinar su potencial uso en una vacuna antimalárica
title_fullStr Identificación de señales de selección natural en genes de Plasmodium vivax que codifican proteínas involucradas en el proceso de invasión para determinar su potencial uso en una vacuna antimalárica
title_full_unstemmed Identificación de señales de selección natural en genes de Plasmodium vivax que codifican proteínas involucradas en el proceso de invasión para determinar su potencial uso en una vacuna antimalárica
title_sort Identificación de señales de selección natural en genes de Plasmodium vivax que codifican proteínas involucradas en el proceso de invasión para determinar su potencial uso en una vacuna antimalárica
dc.contributor.advisor.none.fl_str_mv Patarroyo, Manuel A.
dc.subject.spa.fl_str_mv Plasmodium vivax
Malaria
Vacuna
Diversidad genética
Antígenos conservados
Selección natural
Promisorios candidatos vacunales
Selección negativa
topic Plasmodium vivax
Malaria
Vacuna
Diversidad genética
Antígenos conservados
Selección natural
Promisorios candidatos vacunales
Selección negativa
Incidencia & prevención de la enfermedad
Malaria
Plasmodium vivax
Malaria
Antimalarial vaccine
Genetic diversity
Vaccine candidates
Vatural selection
Conserved regions
Negatively selected regions
Medicina
Epidemiología
Vacunas
dc.subject.ddc.spa.fl_str_mv Incidencia & prevención de la enfermedad
dc.subject.decs.spa.fl_str_mv Malaria
dc.subject.keyword.spa.fl_str_mv Plasmodium vivax
Malaria
Antimalarial vaccine
Genetic diversity
Vaccine candidates
Vatural selection
Conserved regions
Negatively selected regions
dc.subject.lemb.spa.fl_str_mv Medicina
Epidemiología
Vacunas
description Plasmodium vivax, es un endoparásito de origen Asiático que se dispersó alrededor del mundo y, actualmente, es predominante en las regiones tropicales y subtropicales del planeta que se encuentran entre los 15 y 16 °C. P. vivax, presenta una importancia biomédica dado que es el segundo agente responsable de malaria en humanos. Aunque numerosos esfuerzos se han realizado para disminuir el impacto de esta enfermedad, las condiciones sociales y económicas de los lugares más afectados, sumado a los conflictos sociales y políticos en varias áreas endémicas, hacen del control y eliminación de este parásito una tarea nada fácil. Como si esto no fuera suficiente, la aparición de resistencia a los insecticidas por parte del vector trasmisor, así como de parásitos resistentes a los antimaláricos, podría provocar una recurrencia de esta enfermedad. Teniendo en cuenta lo anterior, nuevas estrategias que permitan disminuir la incidencia de malaria por P. vivax se hacen prioritarias. Una de las alternativas que podría ayudar al control de la malaria es el desarrollo de una vacuna contra los patógenos que la causan. Sin embargo, la elevada diversidad genética que P. vivax presenta, ha generado uno de los retos a afrontar para el diseño de una vacuna completamente efectiva. Actualmente, se han descrito varios antígenos potenciales candidatos a vacuna contra P. vivax. No obstante, la diversidad genética de un reducido número de estos antígenos ha sido evaluada, debido a los requerimientos de tiempo y recursos económicos. Adicionalmente, poco se sabe acerca del rol real de estos antígenos durante el proceso de invasión de este parasito a las células hospederas. Es por esto, que nuevos enfoques, que permitan en un menor tiempo y a bajo costo identificar las regiones de estos antígenos conservadas por selección natural (usualmente asociadas con regiones funcionales) se hacen necesarios. Estos nuevos enfoques podrían entonces servir como punto de partida para la identificación o priorización de nuevos y promisorios candidatos vacunales. Este trabajo presenta los resultados un enfoque alternativo que permite hacer un acercamiento a la diversidad genética de antígenos de P. vivax, determinando regiones bajo selección negativa, para ser consideradas durante el diseño de una vacuna completamente efectiva. Aunque este enfoque se utilizó para P. vivax, este podría también ser aplicado en otros organismos.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-06-18T20:54:59Z
dc.date.available.none.fl_str_mv 2019-06-18T20:54:59Z
dc.date.created.none.fl_str_mv 2019-01-31
dc.date.issued.none.fl_str_mv 2019
dc.type.eng.fl_str_mv doctoralThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.document.spa.fl_str_mv Tesis
dc.type.spa.spa.fl_str_mv Tesis de doctorado
dc.identifier.doi.none.fl_str_mv https://doi.org/10.48713/10336_19876
dc.identifier.uri.none.fl_str_mv http://repository.urosario.edu.co/handle/10336/19876
url https://doi.org/10.48713/10336_19876
http://repository.urosario.edu.co/handle/10336/19876
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
Abierto (Texto Completo)
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad del Rosario
dc.publisher.department.spa.fl_str_mv Facultad de Ciencias Naturales y Matemáticas
dc.publisher.program.spa.fl_str_mv Doctorado en Ciencias Biomédicas y Biológicas
institution Universidad del Rosario
dc.source.bibliographicCitation.spa.fl_str_mv de Meeus T, McCoy KD, Prugnolle F, Chevillon C, Durand P, Hurtrez-Bousses S, et al. Population genetics and molecular epidemiology or how to "debusquer la bete". Infect Genet Evol. 2007 Mar;7(2):308-32.
Hotez P, Herricks J. One Million Deaths by Parasites. USA. http://blogs.plos.org/speakingofmedicine/2015/01/16/one-million-deaths-parasites/: PLOS Medicine Pathogens Neglected Tropical Diseases; 2015 [cited 2015 July 13 2015].
Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015 Jan 10;385(9963):117-71
Escalante AA, Ayala FJ. Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proceedings of the National Academy of Sciences of the United States of America. 1994 Nov 22;91(24):11373-7
Rich SM, Ayala FJ. Progress in malaria research: the case for phylogenetics. Advances in parasitology. 2003;54:255-80
Schaer J, Perkins SL, Decher J, Leendertz FH, Fahr J, Weber N, et al. High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa. Proceedings of the National Academy of Sciences of the United States of America. 2013 Oct 22;110(43):17415-9
Cowman AF, Crabb BS. Invasion of red blood cells by malaria parasites. Cell. 2006 Feb 24;124(4):755-66
Galinski MR, Meyer EV, Barnwell JW. Plasmodium vivax: modern strategies to study a persistent parasite's life cycle. Advances in parasitology. 2013;81:1-26
Coatney GR, National Institute of Allergy and Infectious Diseases (U.S.). The primate malarias. Bethesda, Md.,: U.S. National Institute of Allergy and Infectious Diseases; for sale by the Supt. of Docs., U.S. Govt. Print. Off., Washington; 1971
Pain A, Bohme U, Berry AE, Mungall K, Finn RD, Jackson AP, et al. The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature. 2008 Oct 9;455(7214):799-803
Pacheco MA, Battistuzzi FU, Junge RE, Cornejo OE, Williams CV, Landau I, et al. Timing the origin of human malarias: the lemur puzzle. BMC Evol Biol. 2011;11:299
Hayakawa T, Culleton R, Otani H, Horii T, Tanabe K. Big bang in the evolution of extant malaria parasites. Mol Biol Evol. 2008 Oct;25(10):2233-9
Silva JC, Egan A, Arze C, Spouge JL, Harris DG. A new method for estimating species age supports the coexistence of malaria parasites and their Mammalian hosts. Mol Biol Evol. 2015 May;32(5):1354-64
Liu W, Li Y, Shaw KS, Learn GH, Plenderleith LJ, Malenke JA, et al. African origin of the malaria parasite Plasmodium vivax. Nat Commun. 2014;5:3346
Mu J, Joy DA, Duan J, Huang Y, Carlton J, Walker J, et al. Host switch leads to emergence of Plasmodium vivax malaria in humans. Mol Biol Evol. 2005 Aug;22(8):1686-93
WHO. World malaria report 2017: Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0 IGO; 2017 [cited 2018 05/04/2018]. Available from: 78 http://apps.who.int/iris/bitstream/handle/10665/259492/9789241565523-eng.pdf?sequence=1
Suh KN, Kain KC, Keystone JS. Malaria. CMAJ. 2004 May 25;170(11):1693-702
Maxmen A. Malaria surge feared. Nature. 2012 May 15;485(7398):293
Huijben S, Paaijmans KP. Putting evolution in elimination: Winning our ongoing battle with evolving malaria mosquitoes and parasites. Evol Appl. 2018 Apr;11(4):415-30
Price RN, von Seidlein L, Valecha N, Nosten F, Baird JK, White NJ. Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysis. Lancet Infect Dis. 2014 Oct;14(10):982-91
Barry AE, Arnott A. Strategies for designing and monitoring malaria vaccines targeting diverse antigens. Front Immunol. 2014;5:359
White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM. Malaria. Lancet. 2014 Feb 22;383(9918):723-35
Garrido-Cardenas JA, Mesa-Valle C, Manzano-Agugliaro F. Genetic approach towards a vaccine against malaria. Eur J Clin Microbiol Infect Dis. 2018 Jun 28
Patarroyo MA, Calderon D, Moreno-Perez DA. Vaccines against Plasmodium vivax: a research challenge. Expert Rev Vaccines. 2012 Oct;11(10):1249-60
Luo Z, Sullivan SA, Carlton JM. The biology of Plasmodium vivax explored through genomics. Ann N Y Acad Sci. 2015 Apr;1342:53-61
Arevalo-Pinzon G, Curtidor H, Abril J, Patarroyo MA. Annotation and characterization of the Plasmodium vivax rhoptry neck protein 4 (PvRON4). Malar J. 2013 Oct 5;12:356
Arevalo-Pinzon G, Curtidor H, Patino LC, Patarroyo MA. PvRON2, a new Plasmodium vivax rhoptry neck antigen. Malar J. 2011;10:60
Moreno-Perez DA, Saldarriaga A, Patarroyo MA. Characterizing PvARP, a novel Plasmodium vivax antigen. Malar J. 2013;12:165
Neafsey DE, Galinsky K, Jiang RH, Young L, Sykes SM, Saif S, et al. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum. Nat Genet. 2012 Sep;44(9):1046-50
Ellis RD, Sagara I, Doumbo O, Wu Y. Blood stage vaccines for Plasmodium falciparum: current status and the way forward. Hum Vaccin. 2010 Aug;6(8):627-34
Fluck C, Smith T, Beck HP, Irion A, Betuela I, Alpers MP, et al. Strain-specific humoral response to a polymorphic malaria vaccine. Infect Immun. 2004 Nov;72(11):6300-5
Genton B, Reed ZH. Asexual blood-stage malaria vaccine development: facing the challenges. Curr Opin Infect Dis. 2007 Oct;20(5):467-75
Ouattara A, Takala-Harrison S, Thera MA, Coulibaly D, Niangaly A, Saye R, et al. Molecular basis of allele-specific efficacy of a blood-stage malaria vaccine: vaccine development implications. J Infect Dis. 2013 Feb 1;207(3):511-9
Takala SL, Plowe CV. Genetic diversity and malaria vaccine design, testing and efficacy: preventing and overcoming 'vaccine resistant malaria'. Parasite Immunol. 2009 Sep;31(9):560-73
Richie TL, Saul A. Progress and challenges for malaria vaccines. Nature. 2002 Feb 7;415(6872):694-701
Urquiza M, Patarroyo MA, Mari V, Ocampo M, Suarez J, Lopez R, et al. Identification and polymorphism of Plasmodium vivax RBP-1 peptides which bind specifically to reticulocytes. Peptides. 2002 Dec;23(12):2265-77
Ocampo M, Vera R, Eduardo Rodriguez L, Curtidor H, Urquiza M, Suarez J, et al. Plasmodium vivax Duffy binding protein peptides specifically bind to reticulocytes. Peptides. 2002 Jan;23(1):13-22
Rodriguez LE, Urquiza M, Ocampo M, Curtidor H, Suarez J, Garcia J, et al. Plasmodium vivax MSP-1 peptides have high specific binding activity to human reticulocytes. Vaccine. 2002 Jan 31;20(9-10):1331-9
Kimura M. The neutral theory of molecular evolution. Cambridge Cambridgeshire ; New York: Cambridge University Press; 1983
Graur D, Zheng Y, Price N, Azevedo RB, Zufall RA, Elhaik E. On the immortality of television sets: "function" in the human genome according to the evolution-free gospel of ENCODE. Genome Biol Evol. 2013;5(3):578-90
Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature. 2008 Oct 9;455(7214):757-63
Bozdech Z, Mok S, Hu G, Imwong M, Jaidee A, Russell B, et al. The transcriptome of Plasmodium vivax reveals divergence and diversity of transcriptional regulation in malaria parasites. Proceedings of the National Academy of Sciences of the United States of America. 2008 Oct 21;105(42):16290-5
Chen JH, Jung JW, Wang Y, Ha KS, Lu F, Lim CS, et al. Immunoproteomics profiling of blood stage Plasmodium vivax infection by high-throughput screening assays. Journal of proteome research. 2011 Dec 3;9(12):6479-89
Moreno-Perez DA, Degano R, Ibarrola N, Muro A, Patarroyo MA. Determining the Plasmodium vivax VCG-1 strain blood stage proteome. Journal of proteomics. 2014 Oct 11
Tachibana S, Sullivan SA, Kawai S, Nakamura S, Kim HR, Goto N, et al. Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade. Nat Genet. 2012 Sep;44(9):1051-5
Good MF. Towards a blood-stage vaccine for malaria: are we following all the leads? Nature reviews. 2001 Nov;1(2):117-25
O'Donnell RA, de Koning-Ward TF, Burt RA, Bockarie M, Reeder JC, Cowman AF, et al. Antibodies against merozoite surface protein (MSP)-1(19) are a major component of the invasion-inhibitory response in individuals immune to malaria. The Journal of experimental medicine. 2001 Jun 18;193(12):1403-12
Rojas-Caraballo J, Mongui A, Giraldo MA, Delgado G, Granados D, Millan-Cortes D, et al. Immunogenicity and protection-inducing ability of recombinant Plasmodium vivax rhoptry-associated protein 2 in Aotus monkeys: a potential vaccine candidate. Vaccine. 2009 May 11;27(21):2870-6
Farooq F, Bergmann-Leitner ES. Immune Escape Mechanisms are Plasmodium's Secret Weapons Foiling the Success of Potent and Persistently Efficacious Malaria Vaccines. Clin Immunol. 2015 Sep 2
Angel DI, Mongui A, Ardila J, Vanegas M, Patarroyo MA. The Plasmodium vivax Pv41 surface protein: identification and characterization. Biochem Biophys Res Commun. 2008 Dec 26;377(4):1113-7
Mongui A, Angel DI, Gallego G, Reyes C, Martinez P, Guhl F, et al. Characterization and antigenicity of the promising vaccine candidate Plasmodium vivax 34kDa rhoptry antigen (Pv34). Vaccine. 2009 Dec 11;28(2):415-21
Mongui A, Angel DI, Moreno-Perez DA, Villarreal-Gonzalez S, Almonacid H, Vanegas M, et al. Identification and characterization of the Plasmodium vivax thrombospondin-related apical merozoite protein. Malar J. 2010;9:283
Mongui A, Perez-Leal O, Rojas-Caraballo J, Angel DI, Cortes J, Patarroyo MA. Identifying and characterising the Plasmodium falciparum RhopH3 Plasmodium vivax homologue. Biochem Biophys Res Commun. 2007 Jul 6;358(3):861-6
Mongui A, Perez-Leal O, Soto SC, Cortes J, Patarroyo MA. Cloning, expression, and characterisation of a Plasmodium vivax MSP7 family merozoite surface protein. Biochem Biophys Res Commun. 2006 Dec 22;351(3):639-44
Moreno-Perez DA, Mongui A, Soler LN, Sanchez-Ladino M, Patarroyo MA. Identifying and characterizing a member of the RhopH1/Clag family in Plasmodium vivax. Gene. 2011 Jul 15;481(1):17-23
Perez-Leal O, Mongui A, Cortes J, Yepes G, Leiton J, Patarroyo MA. The Plasmodium vivax rhoptry-associated protein 1. Biochem Biophys Res Commun. 2006 Mar 24;341(4):1053-8
Perez-Leal O, Sierra AY, Barrero CA, Moncada C, Martinez P, Cortes J, et al. Identifying and characterising the Plasmodium falciparum merozoite surface protein 10 Plasmodium vivax homologue. Biochem Biophys Res Commun. 2005 Jun 17;331(4):1178-84
Perez-Leal O, Sierra AY, Barrero CA, Moncada C, Martinez P, Cortes J, et al. Plasmodium vivax merozoite surface protein 8 cloning, expression, and characterisation. Biochem Biophys Res Commun. 2004 Nov 26;324(4):1393-9
Zambrano-Villa S, Rosales-Borjas D, Carrero JC, Ortiz-Ortiz L. How protozoan parasites evade the immune response. Trends Parasitol. 2002 Jun;18(6):272-8
Thera MA, Doumbo OK, Coulibaly D, Laurens MB, Ouattara A, Kone AK, et al. A field trial to assess a blood-stage malaria vaccine. N Engl J Med. 2011 Sep 15;365(11):1004-13
Figtree M, Pasay CJ, Slade R, Cheng Q, Cloonan N, Walker J, et al. Plasmodium vivax synonymous substitution frequencies, evolution and population structure deduced from diversity in AMA 1 and MSP 1 genes. Molecular and biochemical parasitology. 2000 Apr 30;108(1):53-66
Garzon-Ospina D, Romero-Murillo L, Patarroyo MA. Limited genetic polymorphism of the Plasmodium vivax low molecular weight rhoptry protein complex in the Colombian population. Infect Genet Evol. 2010 Mar;10(2):261-7
Garzon-Ospina D, Romero-Murillo L, Tobon LF, Patarroyo MA. Low genetic polymorphism of merozoite surface proteins 7 and 10 in Colombian Plasmodium vivax isolates. Infect Genet Evol. 2011 Mar;11(2):528-31
Gomez A, Suarez CF, Martinez P, Saravia C, Patarroyo MA. High polymorphism in Plasmodium vivax merozoite surface protein-5 (MSP5). Parasitology. 2006 Dec;133(Pt 6):661-72
Martinez P, Suarez CF, Cardenas PP, Patarroyo MA. Plasmodium vivax Duffy binding protein: a modular evolutionary proposal. Parasitology. 2004 Apr;128(Pt 4):353-66
Martinez P, Suarez CF, Gomez A, Cardenas PP, Guerrero JE, Patarroyo MA. High level of conservation in Plasmodium vivax merozoite surface protein 4 (PvMSP4). Infect Genet Evol. 2005 Oct;5(4):354-61
Mascorro CN, Zhao K, Khuntirat B, Sattabongkot J, Yan G, Escalante AA, et al. Molecular evolution and intragenic recombination of the merozoite surface protein MSP-3alpha from the malaria parasite Plasmodium vivax in Thailand. Parasitology. 2005 Jul;131(Pt 1):25-35
Pacheco MA, Elango AP, Rahman AA, Fisher D, Collins WE, Barnwell JW, et al. Evidence of purifying selection on merozoite surface protein 8 (MSP8) and 10 (MSP10) in Plasmodium spp. Infect Genet Evol. 2012 Jul;12(5):978-86
Putaporntip C, Jongwutiwes S, Ferreira MU, Kanbara H, Udomsangpetch R, Cui L. Limited global diversity of the Plasmodium vivax merozoite surface protein 4 gene. Infect Genet Evol. 2009 Sep;9(5):821-6
Putaporntip C, Jongwutiwes S, Seethamchai S, Kanbara H, Tanabe K. Intragenic recombination in the 3' portion of the merozoite surface protein 1 gene of Plasmodium vivax. Molecular and biochemical parasitology. 2000 Jul;109(2):111-9
Putaporntip C, Udomsangpetch R, Pattanawong U, Cui L, Jongwutiwes S. Genetic diversity of the Plasmodium vivax merozoite surface protein-5 locus from diverse geographic origins. Gene. 2010 May 15;456(1-2):24-35
Tetteh KK, Stewart LB, Ochola LI, Amambua-Ngwa A, Thomas AW, Marsh K, et al. Prospective identification of malaria parasite genes under balancing selection. PLoS One. 2009;4(5):e5568
Weedall GD, Conway DJ. Detecting signatures of balancing selection to identify targets of anti-parasite immunity. Trends Parasitol. 2010 Jul;26(7):363-9
Suzuki Y. Natural selection on the influenza virus genome. Mol Biol Evol. 2006 Oct;23(10):1902-11
Mazumder R, Hu ZZ, Vinayaka CR, Sagripanti JL, Frost SD, Kosakovsky Pond SL, et al. Computational analysis and identification of amino acid sites in dengue E proteins relevant to development of diagnostics and vaccines. Virus Genes. 2007 Oct;35(2):175-86
Suzuki Y. Negative selection on neutralization epitopes of poliovirus surface proteins: implications for prediction of candidate epitopes for immunization. Gene. 2004 Mar 17;328:127-33
Rich SM, Licht MC, Hudson RR, Ayala FJ. Malaria's Eve: evidence of a recent population bottleneck throughout the world populations of Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America. 1998 Apr 14;95(8):4425-30
Hughes AL, Verra F. Ancient polymorphism and the hypothesis of a recent bottleneck in the malaria parasite Plasmodium falciparum. Genetics. 1998 Sep;150(1):511-3
Griffing SM, Viana GM, Mixson-Hayden T, Sridaran S, Alam MT, de Oliveira AM, et al. Historical shifts in Brazilian P. falciparum population structure and drug resistance alleles. PLoS One. 2013;8(3):e58984
McCollum AM, Mueller K, Villegas L, Udhayakumar V, Escalante AA. Common origin and fixation of Plasmodium falciparum dhfr and dhps mutations associated with sulfadoxine-pyrimethamine resistance in a low-transmission area in South America. Antimicrob Agents Chemother. 2007 Jun;51(6):2085-91
Rodrigues PT, Valdivia HO, de Oliveira TC, Alves JMP, Duarte A, Cerutti-Junior C, et al. Human migration and the spread of malaria parasites to the New World. Sci Rep. 2018 Jan 31;8(1):1993
Restrepo-Montoya D, Becerra D, Carvajal-Patino JG, Mongui A, Nino LF, Patarroyo ME, et al. Identification of Plasmodium vivax proteins with potential role in invasion using sequence redundancy reduction and profile hidden Markov models. PLoS One. 2011;6(10):e25189
Arnott A, Barry AE, Reeder JC. Understanding the population genetics of Plasmodium vivax is essential for malaria control and elimination. Malar J. 2012;11:14
Cornejo OE, Fisher D, Escalante AA. Genome-Wide Patterns of Genetic Polymorphism and Signatures of Selection in Plasmodium vivax. Genome Biol Evol. 2014;7(1):106-19
Ochola LI, Tetteh KK, Stewart LB, Riitho V, Marsh K, Conway DJ. Allele frequency-based and polymorphism-versus-divergence indices of balancing selection in a new filtered set of polymorphic genes in Plasmodium falciparum. Mol Biol Evol. 2010 Oct;27(10):2344-51
Mongui A, Angel DI, Guzman C, Vanegas M, Patarroyo MA. Characterisation of the Plasmodium vivax Pv38 antigen. Biochem Biophys Res Commun. 2008 Nov 14;376(2):326-30
Moreno-Perez DA, Areiza-Rojas R, Florez-Buitrago X, Silva Y, Patarroyo ME, Patarroyo MA. The GPI-anchored 6-Cys protein Pv12 is present in detergent-resistant microdomains of Plasmodium vivax blood stage schizonts. Protist. 2013 Jan;164(1):37-48
Moreno-Perez DA, Montenegro M, Patarroyo ME, Patarroyo MA. Identification, characterization and antigenicity of the Plasmodium vivax rhoptry neck protein 1 (PvRON1). Malar J. 2011;10:314
Patarroyo MA, Perez-Leal O, Lopez Y, Cortes J, Rojas-Caraballo J, Gomez A, et al. Identification and characterisation of the Plasmodium vivax rhoptry-associated protein 2. Biochem Biophys Res Commun. 2005 Nov 25;337(3):853-9
Garzon-Ospina D, Lopez C, Forero-Rodriguez J, Patarroyo MA. Genetic diversity and selection in three Plasmodium vivax merozoite surface protein 7 (Pvmsp-7) genes in a Colombian population. PLoS One. 2012;7(9):e45962
Arisue N, Kawai S, Hirai M, Palacpac NM, Jia M, Kaneko A, et al. Clues to evolution of the SERA multigene family in 18 Plasmodium species. PLoS One. 2011;6(3):e17775
Garzon-Ospina D, Cadavid LF, Patarroyo MA. Differential expansion of the merozoite surface protein (msp)-7 gene family in Plasmodium species under a birth-and-death model of evolution. Mol Phylogenet Evol. 2010 May;55(2):399-408
Garzon-Ospina D, Forero-Rodriguez J, Patarroyo MA. Heterogeneous genetic diversity pattern in Plasmodium vivax genes encoding merozoite surface proteins (MSP) -7E, -7F and -7L. Malar J. 2014;13:495
Rice BL, Acosta MM, Pacheco MA, Carlton JM, Barnwell JW, Escalante AA. The origin and diversification of the merozoite surface protein 3 (msp3) multi-gene family in Plasmodium vivax and related parasites. Mol Phylogenet Evol. 2014 Sep;78:172-84
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-7
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011 Oct;28(10):2731-9
Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W609-12
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009 Jun 1;25(11):1451-2
Nielsen R. Molecular signatures of natural selection. Annu Rev Genet. 2005;39:197-218
McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652-4
Jukes THaCRC. Evolution of protein molecules. In H. N. Munro, ed., Mammalian Protein Metabolism. New York: Academic Press; 1969
Egea R, Casillas S, Barbadilla A. Standard and generalized McDonald-Kreitman test: a website to detect selection by comparing different classes of DNA sites. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W157-62
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013 Dec;30(12):2725-9
Zhang J, Rosenberg HF, Nei M. Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proceedings of the National Academy of Sciences of the United States of America. 1998 Mar 31;95(7):3708-13
Sawai H, Otani H, Arisue N, Palacpac N, de Oliveira Martins L, Pathirana S, et al. Lineage-specific positive selection at the merozoite surface protein 1 (msp1) locus of Plasmodium vivax and related simian malaria parasites. BMC Evol Biol. 2010;10:52
Tanabe K, Escalante A, Sakihama N, Honda M, Arisue N, Horii T, et al. Recent independent evolution of msp1 polymorphism in Plasmodium vivax and related simian malaria parasites. Molecular and biochemical parasitology. 2007 Nov;156(1):74-9
Parobek CM, Bailey JA, Hathaway NJ, Socheat D, Rogers WO, Juliano JJ. Differing patterns of selection and geospatial genetic diversity within two leading Plasmodium vivax candidate vaccine antigens. PLoS Negl Trop Dis. 2014 Apr;8(4):e2796
Sjostrand J, Tofigh A, Daubin V, Arvestad L, Sennblad B, Lagergren J. A Bayesian method for analyzing lateral gene transfer. Syst Biol. 2014 May;63(3):409-20
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014 May 1;30(9):1312-3
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012 May;61(3):539-42
Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005 May 1;21(9):2104-5
Miller MA, Pfeiffer, W., and Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov 2010, New Orleans, LA pp 1 - 8. 2010
Miller MA, Schwartz T, Pickett BE, He S, Klem EB, Scheuermann RH, et al. A RESTful API for Access to Phylogenetic Tools via the CIPRES Science Gateway. Evol Bioinform Online. 2015;11:43-8
Kosakovsky Pond SL, Murrell B, Fourment M, Frost SD, Delport W, Scheffler K. A random effects branch-site model for detecting episodic diversifying selection. Mol Biol Evol. 2011 Nov;28(11):3033-43
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012 Aug;9(8):772
Pond SL, Frost SD, Muse SV. HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005 Mar 1;21(5):676-9
Delport W, Poon AF, Frost SD, Kosakovsky Pond SL. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics. 2010 Oct 1;26(19):2455-7
Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 2012;8(7):e1002764
Kadekoppala M, Holder AA. Merozoite surface proteins of the malaria parasite: the MSP1 complex and the MSP7 family. Int J Parasitol. 2010 Aug 15;40(10):1155-61
Sjostrand J, Sennblad B, Arvestad L, Lagergren J. DLRS: gene tree evolution in light of a species tree. Bioinformatics. 2012 Nov 15;28(22):2994-5
Kauth CW, Woehlbier U, Kern M, Mekonnen Z, Lutz R, Mucke N, et al. Interactions between merozoite surface proteins 1, 6, and 7 of the malaria parasite Plasmodium falciparum. J Biol Chem. 2006 Oct 20;281(42):31517-27
Garcia Y, Puentes A, Curtidor H, Cifuentes G, Reyes C, Barreto J, et al. Identifying merozoite surface protein 4 and merozoite surface protein 7 Plasmodium falciparum protein family members specifically binding to human erythrocytes suggests a new malarial parasite-redundant survival mechanism. J Med Chem. 2007 Nov 15;50(23):5665-75
Pachebat JA, Ling IT, Grainger M, Trucco C, Howell S, Fernandez-Reyes D, et al. The 22 kDa component of the protein complex on the surface of Plasmodium falciparum merozoites is derived from a larger precursor, merozoite surface protein 7. Molecular and biochemical parasitology. 2001 Sep 28;117(1):83-9
Mello K, Daly TM, Morrisey J, Vaidya AB, Long CA, Bergman LW. A multigene family that interacts with the amino terminus of plasmodium MSP-1 identified using the yeast two-hybrid system. Eukaryot Cell. 2002 Dec;1(6):915-25
Muehlenbein MP, Pacheco MA, Taylor JE, Prall SP, Ambu L, Nathan S, et al. Accelerated diversification of nonhuman primate malarias in Southeast Asia: adaptive radiation or geographic speciation? Mol Biol Evol. 2015 Feb;32(2):422-39
Carvalho LJ, Daniel-Ribeiro CT, Goto H. Malaria vaccine: candidate antigens, mechanisms, constraints and prospects. Scand J Immunol. 2002 Oct;56(4):327-43
Jones TR, Hoffman SL. Malaria vaccine development. Clin Microbiol Rev. 1994 Jul;7(3):303-10
Escalante AA, Lal AA, Ayala FJ. Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum. Genetics. 1998 May;149(1):189-202
Chenet SM, Tapia LL, Escalante AA, Durand S, Lucas C, Bacon DJ. Genetic diversity and population structure of genes encoding vaccine candidate antigens of Plasmodium vivax. Malar J. 2012;11:68
Imwong M, Pukrittayakamee S, Gruner AC, Renia L, Letourneur F, Looareesuwan S, et al. Practical PCR genotyping protocols for Plasmodium vivax using Pvcs and Pvmsp1. Malar J. 2005 Apr 27;4:20
Bruce MC, Galinski MR, Barnwell JW, Snounou G, Day KP. Polymorphism at the merozoite surface protein-3alpha locus of Plasmodium vivax: global and local diversity. Am J Trop Med Hyg. 1999 Oct;61(4):518-25
Kosakovsky Pond SL, Frost SD. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol. 2005 May;22(5):1208-22
Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, et al. FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol. 2013 May;30(5):1196-205
Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD. Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol. 2006 Oct;23(10):1891-901
Bourgard C, Albrecht L, Kayano A, Sunnerhagen P, Costa FTM. Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics. Front Cell Infect Microbiol. 2018;8:34
Moreno-Perez DA, Ruiz JA, Patarroyo MA. Reticulocytes: Plasmodium vivax target cells. Biol Cell. 2013 Jun;105(6):251-60
Malleret B, Li A, Zhang R, Tan KS, Suwanarusk R, Claser C, et al. Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. Blood. 2015 Feb 19;125(8):1314-24
Patarroyo ME, Patarroyo MA. Emerging rules for subunit-based, multiantigenic, multistage chemically synthesized vaccines. Acc Chem Res. 2008 Mar;41(3):377-86
Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate molecular interactions of P. falciparum merozoite proteins involved in invasion of red blood cells and their implications for vaccine design. Chem Rev. 2008 Sep;108(9):3656-705
Moreno-Perez DA, Baquero LA, Chitiva-Ardila DM, Patarroyo MA. Characterising PvRBSA: an exclusive protein from Plasmodium species infecting reticulocytes. Parasit Vectors. 2017 May 18;10(1):243
Arevalo-Pinzon G, Bermudez M, Curtidor H, Patarroyo MA. The Plasmodium vivax rhoptry neck protein 5 is expressed in the apical pole of Plasmodium vivax VCG-1 strain schizonts and binds to human reticulocytes. Malar J. 2015 Mar 7;14:106
Arevalo-Pinzon G, Bermudez M, Hernandez D, Curtidor H, Patarroyo MA. Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep. 2017 Aug 30;7(1):9616
Moreno-Pérez DA. Determinación del proteoma de la cepa VCG1 de Plasmodium vivax y caracterización de moléculas candidatas para su inclusión en el desarrollo de una vacuna. Bogotá: Universidad del Rosario y Universidad de Salamanca. 2017
Escalante AA, Cornejo OE, Freeland DE, Poe AC, Durrego E, Collins WE, et al. A monkey's tale: the origin of Plasmodium vivax as a human malaria parasite. Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):1980-5
Baquero LA, Moreno-Perez DA, Garzon-Ospina D, Forero-Rodriguez J, Ortiz-Suarez HD, Patarroyo MA. PvGAMA reticulocyte binding activity: predicting conserved functional regions by natural selection analysis. Parasites & vectors. 2017 May 19;10(1):251
Rodrigues-da-Silva RN, Soares IF, Lopez-Camacho C, Martins da Silva JH, Perce-da-Silva DS, Teva A, et al. Plasmodium vivax Cell-Traversal Protein for Ookinetes and Sporozoites: Naturally Acquired Humoral Immune Response and B-Cell Epitope Mapping in Brazilian Amazon Inhabitants. Front Immunol. 2017;8:77
Cheng Y, Lu F, Wang B, Li J, Han JH, Ito D, et al. Plasmodium vivax GPI-anchored micronemal antigen (PvGAMA) binds human erythrocytes independent of Duffy antigen status. Sci Rep. 2016 Oct 19;6:35581
Bermudez M, Arevalo-Pinzon G, Rubio L, Chaloin O, Muller S, Curtidor H, et al. Receptor-ligand and parasite protein-protein interactions in Plasmodium vivax: Analysing rhoptry neck proteins 2 and 4. Cell Microbiol. 2018 Jul;20(7):e12835
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/fd86a85c-0ffc-4ae2-bceb-c5dda6d1b8ac/download
https://repository.urosario.edu.co/bitstreams/26034019-c92d-4905-9d1e-5a62d4c478fa/download
https://repository.urosario.edu.co/bitstreams/3d87910d-cf4c-4af6-bd0e-bdf6486a54f1/download
https://repository.urosario.edu.co/bitstreams/91d496bc-56fb-4476-973a-043546385923/download
https://repository.urosario.edu.co/bitstreams/f993728a-2e93-4f51-b3f4-f48cb70e567f/download
bitstream.checksum.fl_str_mv 9f5eb859bd5c30bc88515135ce7ba417
14d086da34f8d51401ef5ed6182e6dc6
95c9d018450f93ffc6b863812326dc9c
71198ed409360e41924a8a89cd2d7803
cde1a1d09b10a4c813a5ae23850bf955
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1808390969315295232
spelling Patarroyo, Manuel A.79653065600Garzón-Ospina, Diego EdisonDoctor en Ciencias Biomédicas y BiológicasFull time7cfc6d0c-bf47-46fe-b46e-613c85cc8ed26002019-06-18T20:54:59Z2019-06-18T20:54:59Z2019-01-312019Plasmodium vivax, es un endoparásito de origen Asiático que se dispersó alrededor del mundo y, actualmente, es predominante en las regiones tropicales y subtropicales del planeta que se encuentran entre los 15 y 16 °C. P. vivax, presenta una importancia biomédica dado que es el segundo agente responsable de malaria en humanos. Aunque numerosos esfuerzos se han realizado para disminuir el impacto de esta enfermedad, las condiciones sociales y económicas de los lugares más afectados, sumado a los conflictos sociales y políticos en varias áreas endémicas, hacen del control y eliminación de este parásito una tarea nada fácil. Como si esto no fuera suficiente, la aparición de resistencia a los insecticidas por parte del vector trasmisor, así como de parásitos resistentes a los antimaláricos, podría provocar una recurrencia de esta enfermedad. Teniendo en cuenta lo anterior, nuevas estrategias que permitan disminuir la incidencia de malaria por P. vivax se hacen prioritarias. Una de las alternativas que podría ayudar al control de la malaria es el desarrollo de una vacuna contra los patógenos que la causan. Sin embargo, la elevada diversidad genética que P. vivax presenta, ha generado uno de los retos a afrontar para el diseño de una vacuna completamente efectiva. Actualmente, se han descrito varios antígenos potenciales candidatos a vacuna contra P. vivax. No obstante, la diversidad genética de un reducido número de estos antígenos ha sido evaluada, debido a los requerimientos de tiempo y recursos económicos. Adicionalmente, poco se sabe acerca del rol real de estos antígenos durante el proceso de invasión de este parasito a las células hospederas. Es por esto, que nuevos enfoques, que permitan en un menor tiempo y a bajo costo identificar las regiones de estos antígenos conservadas por selección natural (usualmente asociadas con regiones funcionales) se hacen necesarios. Estos nuevos enfoques podrían entonces servir como punto de partida para la identificación o priorización de nuevos y promisorios candidatos vacunales. Este trabajo presenta los resultados un enfoque alternativo que permite hacer un acercamiento a la diversidad genética de antígenos de P. vivax, determinando regiones bajo selección negativa, para ser consideradas durante el diseño de una vacuna completamente efectiva. Aunque este enfoque se utilizó para P. vivax, este podría también ser aplicado en otros organismos.Plasmodium vivax, an endoparasite that arose in Asia and spread around the world, has biomedical importance given that it is the second most important human-malaria parasite. Although efforts have been made to reduce the impact of this disease, the social and economic conditions of the most affected places, together with social and political conflicts in several endemic areas, make the parasite control and elimination a laborious task. The emergence of insecticide resistance by the transmitting vector as well as antimalarialresistant parasites worsen the problem. Therefore, new alternatives to allow reducing the incidence of the disease have become a priority. An antimalarial vaccine development against the causal pathogens has been proposed as a cost-effective intervention which would help in controlling malaria. However, the high P. vivax genetic diversity remains as one of the challenges to overcome for the design of afully effective vaccine. Currently, several potential P. vivax vaccine candidates have been described. Nevertheless, the genetic diversity of a small number of them has been assessed, due to the high amount of time and economic resources required. Additionally, there is a modest knowledge about the real role of these antigens during the invasion process of target cells since maintaining an in vitro culture of this parasite species is particularly difficult. Therefore, new approaches that allow identifying conserved regions by natural selection which are frequently associated with functional importance, might be used as a starting point for the identification or prioritization of new potential vaccine candidates. This work presents a new approach to assess the genetic diversity of potential candidate antigens, determining negatively selected regions that can then be considered for designing a fully effective vaccine. This approach is not limited to P. vivax and could be useful in other microorganisms. application/pdfhttps://doi.org/10.48713/10336_19876 http://repository.urosario.edu.co/handle/10336/19876spaUniversidad del RosarioFacultad de Ciencias Naturales y MatemáticasDoctorado en Ciencias Biomédicas y BiológicasAtribución-NoComercial-SinDerivadas 2.5 ColombiaAbierto (Texto Completo)PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe.http://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2de Meeus T, McCoy KD, Prugnolle F, Chevillon C, Durand P, Hurtrez-Bousses S, et al. Population genetics and molecular epidemiology or how to "debusquer la bete". Infect Genet Evol. 2007 Mar;7(2):308-32.Hotez P, Herricks J. One Million Deaths by Parasites. USA. http://blogs.plos.org/speakingofmedicine/2015/01/16/one-million-deaths-parasites/: PLOS Medicine Pathogens Neglected Tropical Diseases; 2015 [cited 2015 July 13 2015].Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015 Jan 10;385(9963):117-71Escalante AA, Ayala FJ. Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proceedings of the National Academy of Sciences of the United States of America. 1994 Nov 22;91(24):11373-7Rich SM, Ayala FJ. Progress in malaria research: the case for phylogenetics. Advances in parasitology. 2003;54:255-80Schaer J, Perkins SL, Decher J, Leendertz FH, Fahr J, Weber N, et al. High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa. Proceedings of the National Academy of Sciences of the United States of America. 2013 Oct 22;110(43):17415-9Cowman AF, Crabb BS. Invasion of red blood cells by malaria parasites. Cell. 2006 Feb 24;124(4):755-66Galinski MR, Meyer EV, Barnwell JW. Plasmodium vivax: modern strategies to study a persistent parasite's life cycle. Advances in parasitology. 2013;81:1-26Coatney GR, National Institute of Allergy and Infectious Diseases (U.S.). The primate malarias. Bethesda, Md.,: U.S. National Institute of Allergy and Infectious Diseases; for sale by the Supt. of Docs., U.S. Govt. Print. Off., Washington; 1971Pain A, Bohme U, Berry AE, Mungall K, Finn RD, Jackson AP, et al. The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature. 2008 Oct 9;455(7214):799-803Pacheco MA, Battistuzzi FU, Junge RE, Cornejo OE, Williams CV, Landau I, et al. Timing the origin of human malarias: the lemur puzzle. BMC Evol Biol. 2011;11:299Hayakawa T, Culleton R, Otani H, Horii T, Tanabe K. Big bang in the evolution of extant malaria parasites. Mol Biol Evol. 2008 Oct;25(10):2233-9Silva JC, Egan A, Arze C, Spouge JL, Harris DG. A new method for estimating species age supports the coexistence of malaria parasites and their Mammalian hosts. Mol Biol Evol. 2015 May;32(5):1354-64Liu W, Li Y, Shaw KS, Learn GH, Plenderleith LJ, Malenke JA, et al. African origin of the malaria parasite Plasmodium vivax. Nat Commun. 2014;5:3346Mu J, Joy DA, Duan J, Huang Y, Carlton J, Walker J, et al. Host switch leads to emergence of Plasmodium vivax malaria in humans. Mol Biol Evol. 2005 Aug;22(8):1686-93WHO. World malaria report 2017: Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0 IGO; 2017 [cited 2018 05/04/2018]. Available from: 78 http://apps.who.int/iris/bitstream/handle/10665/259492/9789241565523-eng.pdf?sequence=1Suh KN, Kain KC, Keystone JS. Malaria. CMAJ. 2004 May 25;170(11):1693-702Maxmen A. Malaria surge feared. Nature. 2012 May 15;485(7398):293Huijben S, Paaijmans KP. Putting evolution in elimination: Winning our ongoing battle with evolving malaria mosquitoes and parasites. Evol Appl. 2018 Apr;11(4):415-30Price RN, von Seidlein L, Valecha N, Nosten F, Baird JK, White NJ. Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysis. Lancet Infect Dis. 2014 Oct;14(10):982-91Barry AE, Arnott A. Strategies for designing and monitoring malaria vaccines targeting diverse antigens. Front Immunol. 2014;5:359White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM. Malaria. Lancet. 2014 Feb 22;383(9918):723-35Garrido-Cardenas JA, Mesa-Valle C, Manzano-Agugliaro F. Genetic approach towards a vaccine against malaria. Eur J Clin Microbiol Infect Dis. 2018 Jun 28Patarroyo MA, Calderon D, Moreno-Perez DA. Vaccines against Plasmodium vivax: a research challenge. Expert Rev Vaccines. 2012 Oct;11(10):1249-60Luo Z, Sullivan SA, Carlton JM. The biology of Plasmodium vivax explored through genomics. Ann N Y Acad Sci. 2015 Apr;1342:53-61Arevalo-Pinzon G, Curtidor H, Abril J, Patarroyo MA. Annotation and characterization of the Plasmodium vivax rhoptry neck protein 4 (PvRON4). Malar J. 2013 Oct 5;12:356Arevalo-Pinzon G, Curtidor H, Patino LC, Patarroyo MA. PvRON2, a new Plasmodium vivax rhoptry neck antigen. Malar J. 2011;10:60Moreno-Perez DA, Saldarriaga A, Patarroyo MA. Characterizing PvARP, a novel Plasmodium vivax antigen. Malar J. 2013;12:165Neafsey DE, Galinsky K, Jiang RH, Young L, Sykes SM, Saif S, et al. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum. Nat Genet. 2012 Sep;44(9):1046-50Ellis RD, Sagara I, Doumbo O, Wu Y. Blood stage vaccines for Plasmodium falciparum: current status and the way forward. Hum Vaccin. 2010 Aug;6(8):627-34Fluck C, Smith T, Beck HP, Irion A, Betuela I, Alpers MP, et al. Strain-specific humoral response to a polymorphic malaria vaccine. Infect Immun. 2004 Nov;72(11):6300-5Genton B, Reed ZH. Asexual blood-stage malaria vaccine development: facing the challenges. Curr Opin Infect Dis. 2007 Oct;20(5):467-75Ouattara A, Takala-Harrison S, Thera MA, Coulibaly D, Niangaly A, Saye R, et al. Molecular basis of allele-specific efficacy of a blood-stage malaria vaccine: vaccine development implications. J Infect Dis. 2013 Feb 1;207(3):511-9Takala SL, Plowe CV. Genetic diversity and malaria vaccine design, testing and efficacy: preventing and overcoming 'vaccine resistant malaria'. Parasite Immunol. 2009 Sep;31(9):560-73Richie TL, Saul A. Progress and challenges for malaria vaccines. Nature. 2002 Feb 7;415(6872):694-701Urquiza M, Patarroyo MA, Mari V, Ocampo M, Suarez J, Lopez R, et al. Identification and polymorphism of Plasmodium vivax RBP-1 peptides which bind specifically to reticulocytes. Peptides. 2002 Dec;23(12):2265-77Ocampo M, Vera R, Eduardo Rodriguez L, Curtidor H, Urquiza M, Suarez J, et al. Plasmodium vivax Duffy binding protein peptides specifically bind to reticulocytes. Peptides. 2002 Jan;23(1):13-22Rodriguez LE, Urquiza M, Ocampo M, Curtidor H, Suarez J, Garcia J, et al. Plasmodium vivax MSP-1 peptides have high specific binding activity to human reticulocytes. Vaccine. 2002 Jan 31;20(9-10):1331-9Kimura M. The neutral theory of molecular evolution. Cambridge Cambridgeshire ; New York: Cambridge University Press; 1983Graur D, Zheng Y, Price N, Azevedo RB, Zufall RA, Elhaik E. On the immortality of television sets: "function" in the human genome according to the evolution-free gospel of ENCODE. Genome Biol Evol. 2013;5(3):578-90Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature. 2008 Oct 9;455(7214):757-63Bozdech Z, Mok S, Hu G, Imwong M, Jaidee A, Russell B, et al. The transcriptome of Plasmodium vivax reveals divergence and diversity of transcriptional regulation in malaria parasites. Proceedings of the National Academy of Sciences of the United States of America. 2008 Oct 21;105(42):16290-5Chen JH, Jung JW, Wang Y, Ha KS, Lu F, Lim CS, et al. Immunoproteomics profiling of blood stage Plasmodium vivax infection by high-throughput screening assays. Journal of proteome research. 2011 Dec 3;9(12):6479-89Moreno-Perez DA, Degano R, Ibarrola N, Muro A, Patarroyo MA. Determining the Plasmodium vivax VCG-1 strain blood stage proteome. Journal of proteomics. 2014 Oct 11Tachibana S, Sullivan SA, Kawai S, Nakamura S, Kim HR, Goto N, et al. Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade. Nat Genet. 2012 Sep;44(9):1051-5Good MF. Towards a blood-stage vaccine for malaria: are we following all the leads? Nature reviews. 2001 Nov;1(2):117-25O'Donnell RA, de Koning-Ward TF, Burt RA, Bockarie M, Reeder JC, Cowman AF, et al. Antibodies against merozoite surface protein (MSP)-1(19) are a major component of the invasion-inhibitory response in individuals immune to malaria. The Journal of experimental medicine. 2001 Jun 18;193(12):1403-12Rojas-Caraballo J, Mongui A, Giraldo MA, Delgado G, Granados D, Millan-Cortes D, et al. Immunogenicity and protection-inducing ability of recombinant Plasmodium vivax rhoptry-associated protein 2 in Aotus monkeys: a potential vaccine candidate. Vaccine. 2009 May 11;27(21):2870-6Farooq F, Bergmann-Leitner ES. Immune Escape Mechanisms are Plasmodium's Secret Weapons Foiling the Success of Potent and Persistently Efficacious Malaria Vaccines. Clin Immunol. 2015 Sep 2Angel DI, Mongui A, Ardila J, Vanegas M, Patarroyo MA. The Plasmodium vivax Pv41 surface protein: identification and characterization. Biochem Biophys Res Commun. 2008 Dec 26;377(4):1113-7Mongui A, Angel DI, Gallego G, Reyes C, Martinez P, Guhl F, et al. Characterization and antigenicity of the promising vaccine candidate Plasmodium vivax 34kDa rhoptry antigen (Pv34). Vaccine. 2009 Dec 11;28(2):415-21Mongui A, Angel DI, Moreno-Perez DA, Villarreal-Gonzalez S, Almonacid H, Vanegas M, et al. Identification and characterization of the Plasmodium vivax thrombospondin-related apical merozoite protein. Malar J. 2010;9:283Mongui A, Perez-Leal O, Rojas-Caraballo J, Angel DI, Cortes J, Patarroyo MA. Identifying and characterising the Plasmodium falciparum RhopH3 Plasmodium vivax homologue. Biochem Biophys Res Commun. 2007 Jul 6;358(3):861-6Mongui A, Perez-Leal O, Soto SC, Cortes J, Patarroyo MA. Cloning, expression, and characterisation of a Plasmodium vivax MSP7 family merozoite surface protein. Biochem Biophys Res Commun. 2006 Dec 22;351(3):639-44Moreno-Perez DA, Mongui A, Soler LN, Sanchez-Ladino M, Patarroyo MA. Identifying and characterizing a member of the RhopH1/Clag family in Plasmodium vivax. Gene. 2011 Jul 15;481(1):17-23Perez-Leal O, Mongui A, Cortes J, Yepes G, Leiton J, Patarroyo MA. The Plasmodium vivax rhoptry-associated protein 1. Biochem Biophys Res Commun. 2006 Mar 24;341(4):1053-8Perez-Leal O, Sierra AY, Barrero CA, Moncada C, Martinez P, Cortes J, et al. Identifying and characterising the Plasmodium falciparum merozoite surface protein 10 Plasmodium vivax homologue. Biochem Biophys Res Commun. 2005 Jun 17;331(4):1178-84Perez-Leal O, Sierra AY, Barrero CA, Moncada C, Martinez P, Cortes J, et al. Plasmodium vivax merozoite surface protein 8 cloning, expression, and characterisation. Biochem Biophys Res Commun. 2004 Nov 26;324(4):1393-9Zambrano-Villa S, Rosales-Borjas D, Carrero JC, Ortiz-Ortiz L. How protozoan parasites evade the immune response. Trends Parasitol. 2002 Jun;18(6):272-8Thera MA, Doumbo OK, Coulibaly D, Laurens MB, Ouattara A, Kone AK, et al. A field trial to assess a blood-stage malaria vaccine. N Engl J Med. 2011 Sep 15;365(11):1004-13Figtree M, Pasay CJ, Slade R, Cheng Q, Cloonan N, Walker J, et al. Plasmodium vivax synonymous substitution frequencies, evolution and population structure deduced from diversity in AMA 1 and MSP 1 genes. Molecular and biochemical parasitology. 2000 Apr 30;108(1):53-66Garzon-Ospina D, Romero-Murillo L, Patarroyo MA. Limited genetic polymorphism of the Plasmodium vivax low molecular weight rhoptry protein complex in the Colombian population. Infect Genet Evol. 2010 Mar;10(2):261-7Garzon-Ospina D, Romero-Murillo L, Tobon LF, Patarroyo MA. Low genetic polymorphism of merozoite surface proteins 7 and 10 in Colombian Plasmodium vivax isolates. Infect Genet Evol. 2011 Mar;11(2):528-31Gomez A, Suarez CF, Martinez P, Saravia C, Patarroyo MA. High polymorphism in Plasmodium vivax merozoite surface protein-5 (MSP5). Parasitology. 2006 Dec;133(Pt 6):661-72Martinez P, Suarez CF, Cardenas PP, Patarroyo MA. Plasmodium vivax Duffy binding protein: a modular evolutionary proposal. Parasitology. 2004 Apr;128(Pt 4):353-66Martinez P, Suarez CF, Gomez A, Cardenas PP, Guerrero JE, Patarroyo MA. High level of conservation in Plasmodium vivax merozoite surface protein 4 (PvMSP4). Infect Genet Evol. 2005 Oct;5(4):354-61Mascorro CN, Zhao K, Khuntirat B, Sattabongkot J, Yan G, Escalante AA, et al. Molecular evolution and intragenic recombination of the merozoite surface protein MSP-3alpha from the malaria parasite Plasmodium vivax in Thailand. Parasitology. 2005 Jul;131(Pt 1):25-35Pacheco MA, Elango AP, Rahman AA, Fisher D, Collins WE, Barnwell JW, et al. Evidence of purifying selection on merozoite surface protein 8 (MSP8) and 10 (MSP10) in Plasmodium spp. Infect Genet Evol. 2012 Jul;12(5):978-86Putaporntip C, Jongwutiwes S, Ferreira MU, Kanbara H, Udomsangpetch R, Cui L. Limited global diversity of the Plasmodium vivax merozoite surface protein 4 gene. Infect Genet Evol. 2009 Sep;9(5):821-6Putaporntip C, Jongwutiwes S, Seethamchai S, Kanbara H, Tanabe K. Intragenic recombination in the 3' portion of the merozoite surface protein 1 gene of Plasmodium vivax. Molecular and biochemical parasitology. 2000 Jul;109(2):111-9Putaporntip C, Udomsangpetch R, Pattanawong U, Cui L, Jongwutiwes S. Genetic diversity of the Plasmodium vivax merozoite surface protein-5 locus from diverse geographic origins. Gene. 2010 May 15;456(1-2):24-35Tetteh KK, Stewart LB, Ochola LI, Amambua-Ngwa A, Thomas AW, Marsh K, et al. Prospective identification of malaria parasite genes under balancing selection. PLoS One. 2009;4(5):e5568Weedall GD, Conway DJ. Detecting signatures of balancing selection to identify targets of anti-parasite immunity. Trends Parasitol. 2010 Jul;26(7):363-9Suzuki Y. Natural selection on the influenza virus genome. Mol Biol Evol. 2006 Oct;23(10):1902-11Mazumder R, Hu ZZ, Vinayaka CR, Sagripanti JL, Frost SD, Kosakovsky Pond SL, et al. Computational analysis and identification of amino acid sites in dengue E proteins relevant to development of diagnostics and vaccines. Virus Genes. 2007 Oct;35(2):175-86Suzuki Y. Negative selection on neutralization epitopes of poliovirus surface proteins: implications for prediction of candidate epitopes for immunization. Gene. 2004 Mar 17;328:127-33Rich SM, Licht MC, Hudson RR, Ayala FJ. Malaria's Eve: evidence of a recent population bottleneck throughout the world populations of Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America. 1998 Apr 14;95(8):4425-30Hughes AL, Verra F. Ancient polymorphism and the hypothesis of a recent bottleneck in the malaria parasite Plasmodium falciparum. Genetics. 1998 Sep;150(1):511-3Griffing SM, Viana GM, Mixson-Hayden T, Sridaran S, Alam MT, de Oliveira AM, et al. Historical shifts in Brazilian P. falciparum population structure and drug resistance alleles. PLoS One. 2013;8(3):e58984McCollum AM, Mueller K, Villegas L, Udhayakumar V, Escalante AA. Common origin and fixation of Plasmodium falciparum dhfr and dhps mutations associated with sulfadoxine-pyrimethamine resistance in a low-transmission area in South America. Antimicrob Agents Chemother. 2007 Jun;51(6):2085-91Rodrigues PT, Valdivia HO, de Oliveira TC, Alves JMP, Duarte A, Cerutti-Junior C, et al. Human migration and the spread of malaria parasites to the New World. Sci Rep. 2018 Jan 31;8(1):1993Restrepo-Montoya D, Becerra D, Carvajal-Patino JG, Mongui A, Nino LF, Patarroyo ME, et al. Identification of Plasmodium vivax proteins with potential role in invasion using sequence redundancy reduction and profile hidden Markov models. PLoS One. 2011;6(10):e25189Arnott A, Barry AE, Reeder JC. Understanding the population genetics of Plasmodium vivax is essential for malaria control and elimination. Malar J. 2012;11:14Cornejo OE, Fisher D, Escalante AA. Genome-Wide Patterns of Genetic Polymorphism and Signatures of Selection in Plasmodium vivax. Genome Biol Evol. 2014;7(1):106-19Ochola LI, Tetteh KK, Stewart LB, Riitho V, Marsh K, Conway DJ. Allele frequency-based and polymorphism-versus-divergence indices of balancing selection in a new filtered set of polymorphic genes in Plasmodium falciparum. Mol Biol Evol. 2010 Oct;27(10):2344-51Mongui A, Angel DI, Guzman C, Vanegas M, Patarroyo MA. Characterisation of the Plasmodium vivax Pv38 antigen. Biochem Biophys Res Commun. 2008 Nov 14;376(2):326-30Moreno-Perez DA, Areiza-Rojas R, Florez-Buitrago X, Silva Y, Patarroyo ME, Patarroyo MA. The GPI-anchored 6-Cys protein Pv12 is present in detergent-resistant microdomains of Plasmodium vivax blood stage schizonts. Protist. 2013 Jan;164(1):37-48Moreno-Perez DA, Montenegro M, Patarroyo ME, Patarroyo MA. Identification, characterization and antigenicity of the Plasmodium vivax rhoptry neck protein 1 (PvRON1). Malar J. 2011;10:314Patarroyo MA, Perez-Leal O, Lopez Y, Cortes J, Rojas-Caraballo J, Gomez A, et al. Identification and characterisation of the Plasmodium vivax rhoptry-associated protein 2. Biochem Biophys Res Commun. 2005 Nov 25;337(3):853-9Garzon-Ospina D, Lopez C, Forero-Rodriguez J, Patarroyo MA. Genetic diversity and selection in three Plasmodium vivax merozoite surface protein 7 (Pvmsp-7) genes in a Colombian population. PLoS One. 2012;7(9):e45962Arisue N, Kawai S, Hirai M, Palacpac NM, Jia M, Kaneko A, et al. Clues to evolution of the SERA multigene family in 18 Plasmodium species. PLoS One. 2011;6(3):e17775Garzon-Ospina D, Cadavid LF, Patarroyo MA. Differential expansion of the merozoite surface protein (msp)-7 gene family in Plasmodium species under a birth-and-death model of evolution. Mol Phylogenet Evol. 2010 May;55(2):399-408Garzon-Ospina D, Forero-Rodriguez J, Patarroyo MA. Heterogeneous genetic diversity pattern in Plasmodium vivax genes encoding merozoite surface proteins (MSP) -7E, -7F and -7L. Malar J. 2014;13:495Rice BL, Acosta MM, Pacheco MA, Carlton JM, Barnwell JW, Escalante AA. The origin and diversification of the merozoite surface protein 3 (msp3) multi-gene family in Plasmodium vivax and related parasites. Mol Phylogenet Evol. 2014 Sep;78:172-84Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-7Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011 Oct;28(10):2731-9Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W609-12Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009 Jun 1;25(11):1451-2Nielsen R. Molecular signatures of natural selection. Annu Rev Genet. 2005;39:197-218McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991 Jun 20;351(6328):652-4Jukes THaCRC. Evolution of protein molecules. In H. N. Munro, ed., Mammalian Protein Metabolism. New York: Academic Press; 1969Egea R, Casillas S, Barbadilla A. Standard and generalized McDonald-Kreitman test: a website to detect selection by comparing different classes of DNA sites. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W157-62Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013 Dec;30(12):2725-9Zhang J, Rosenberg HF, Nei M. Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proceedings of the National Academy of Sciences of the United States of America. 1998 Mar 31;95(7):3708-13Sawai H, Otani H, Arisue N, Palacpac N, de Oliveira Martins L, Pathirana S, et al. Lineage-specific positive selection at the merozoite surface protein 1 (msp1) locus of Plasmodium vivax and related simian malaria parasites. BMC Evol Biol. 2010;10:52Tanabe K, Escalante A, Sakihama N, Honda M, Arisue N, Horii T, et al. Recent independent evolution of msp1 polymorphism in Plasmodium vivax and related simian malaria parasites. Molecular and biochemical parasitology. 2007 Nov;156(1):74-9Parobek CM, Bailey JA, Hathaway NJ, Socheat D, Rogers WO, Juliano JJ. Differing patterns of selection and geospatial genetic diversity within two leading Plasmodium vivax candidate vaccine antigens. PLoS Negl Trop Dis. 2014 Apr;8(4):e2796Sjostrand J, Tofigh A, Daubin V, Arvestad L, Sennblad B, Lagergren J. A Bayesian method for analyzing lateral gene transfer. Syst Biol. 2014 May;63(3):409-20Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014 May 1;30(9):1312-3Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012 May;61(3):539-42Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005 May 1;21(9):2104-5Miller MA, Pfeiffer, W., and Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov 2010, New Orleans, LA pp 1 - 8. 2010Miller MA, Schwartz T, Pickett BE, He S, Klem EB, Scheuermann RH, et al. A RESTful API for Access to Phylogenetic Tools via the CIPRES Science Gateway. Evol Bioinform Online. 2015;11:43-8Kosakovsky Pond SL, Murrell B, Fourment M, Frost SD, Delport W, Scheffler K. A random effects branch-site model for detecting episodic diversifying selection. Mol Biol Evol. 2011 Nov;28(11):3033-43Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012 Aug;9(8):772Pond SL, Frost SD, Muse SV. HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005 Mar 1;21(5):676-9Delport W, Poon AF, Frost SD, Kosakovsky Pond SL. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics. 2010 Oct 1;26(19):2455-7Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Kosakovsky Pond SL. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 2012;8(7):e1002764Kadekoppala M, Holder AA. Merozoite surface proteins of the malaria parasite: the MSP1 complex and the MSP7 family. Int J Parasitol. 2010 Aug 15;40(10):1155-61Sjostrand J, Sennblad B, Arvestad L, Lagergren J. DLRS: gene tree evolution in light of a species tree. Bioinformatics. 2012 Nov 15;28(22):2994-5Kauth CW, Woehlbier U, Kern M, Mekonnen Z, Lutz R, Mucke N, et al. Interactions between merozoite surface proteins 1, 6, and 7 of the malaria parasite Plasmodium falciparum. J Biol Chem. 2006 Oct 20;281(42):31517-27Garcia Y, Puentes A, Curtidor H, Cifuentes G, Reyes C, Barreto J, et al. Identifying merozoite surface protein 4 and merozoite surface protein 7 Plasmodium falciparum protein family members specifically binding to human erythrocytes suggests a new malarial parasite-redundant survival mechanism. J Med Chem. 2007 Nov 15;50(23):5665-75Pachebat JA, Ling IT, Grainger M, Trucco C, Howell S, Fernandez-Reyes D, et al. The 22 kDa component of the protein complex on the surface of Plasmodium falciparum merozoites is derived from a larger precursor, merozoite surface protein 7. Molecular and biochemical parasitology. 2001 Sep 28;117(1):83-9Mello K, Daly TM, Morrisey J, Vaidya AB, Long CA, Bergman LW. A multigene family that interacts with the amino terminus of plasmodium MSP-1 identified using the yeast two-hybrid system. Eukaryot Cell. 2002 Dec;1(6):915-25Muehlenbein MP, Pacheco MA, Taylor JE, Prall SP, Ambu L, Nathan S, et al. Accelerated diversification of nonhuman primate malarias in Southeast Asia: adaptive radiation or geographic speciation? Mol Biol Evol. 2015 Feb;32(2):422-39Carvalho LJ, Daniel-Ribeiro CT, Goto H. Malaria vaccine: candidate antigens, mechanisms, constraints and prospects. Scand J Immunol. 2002 Oct;56(4):327-43Jones TR, Hoffman SL. Malaria vaccine development. Clin Microbiol Rev. 1994 Jul;7(3):303-10Escalante AA, Lal AA, Ayala FJ. Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum. Genetics. 1998 May;149(1):189-202Chenet SM, Tapia LL, Escalante AA, Durand S, Lucas C, Bacon DJ. Genetic diversity and population structure of genes encoding vaccine candidate antigens of Plasmodium vivax. Malar J. 2012;11:68Imwong M, Pukrittayakamee S, Gruner AC, Renia L, Letourneur F, Looareesuwan S, et al. Practical PCR genotyping protocols for Plasmodium vivax using Pvcs and Pvmsp1. Malar J. 2005 Apr 27;4:20Bruce MC, Galinski MR, Barnwell JW, Snounou G, Day KP. Polymorphism at the merozoite surface protein-3alpha locus of Plasmodium vivax: global and local diversity. Am J Trop Med Hyg. 1999 Oct;61(4):518-25Kosakovsky Pond SL, Frost SD. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol. 2005 May;22(5):1208-22Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, et al. FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol. 2013 May;30(5):1196-205Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD. Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol. 2006 Oct;23(10):1891-901Bourgard C, Albrecht L, Kayano A, Sunnerhagen P, Costa FTM. Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics. Front Cell Infect Microbiol. 2018;8:34Moreno-Perez DA, Ruiz JA, Patarroyo MA. Reticulocytes: Plasmodium vivax target cells. Biol Cell. 2013 Jun;105(6):251-60Malleret B, Li A, Zhang R, Tan KS, Suwanarusk R, Claser C, et al. Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. Blood. 2015 Feb 19;125(8):1314-24Patarroyo ME, Patarroyo MA. Emerging rules for subunit-based, multiantigenic, multistage chemically synthesized vaccines. Acc Chem Res. 2008 Mar;41(3):377-86Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate molecular interactions of P. falciparum merozoite proteins involved in invasion of red blood cells and their implications for vaccine design. Chem Rev. 2008 Sep;108(9):3656-705Moreno-Perez DA, Baquero LA, Chitiva-Ardila DM, Patarroyo MA. Characterising PvRBSA: an exclusive protein from Plasmodium species infecting reticulocytes. Parasit Vectors. 2017 May 18;10(1):243Arevalo-Pinzon G, Bermudez M, Curtidor H, Patarroyo MA. The Plasmodium vivax rhoptry neck protein 5 is expressed in the apical pole of Plasmodium vivax VCG-1 strain schizonts and binds to human reticulocytes. Malar J. 2015 Mar 7;14:106Arevalo-Pinzon G, Bermudez M, Hernandez D, Curtidor H, Patarroyo MA. Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep. 2017 Aug 30;7(1):9616Moreno-Pérez DA. Determinación del proteoma de la cepa VCG1 de Plasmodium vivax y caracterización de moléculas candidatas para su inclusión en el desarrollo de una vacuna. Bogotá: Universidad del Rosario y Universidad de Salamanca. 2017Escalante AA, Cornejo OE, Freeland DE, Poe AC, Durrego E, Collins WE, et al. A monkey's tale: the origin of Plasmodium vivax as a human malaria parasite. Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):1980-5Baquero LA, Moreno-Perez DA, Garzon-Ospina D, Forero-Rodriguez J, Ortiz-Suarez HD, Patarroyo MA. PvGAMA reticulocyte binding activity: predicting conserved functional regions by natural selection analysis. Parasites & vectors. 2017 May 19;10(1):251Rodrigues-da-Silva RN, Soares IF, Lopez-Camacho C, Martins da Silva JH, Perce-da-Silva DS, Teva A, et al. Plasmodium vivax Cell-Traversal Protein for Ookinetes and Sporozoites: Naturally Acquired Humoral Immune Response and B-Cell Epitope Mapping in Brazilian Amazon Inhabitants. Front Immunol. 2017;8:77Cheng Y, Lu F, Wang B, Li J, Han JH, Ito D, et al. Plasmodium vivax GPI-anchored micronemal antigen (PvGAMA) binds human erythrocytes independent of Duffy antigen status. Sci Rep. 2016 Oct 19;6:35581Bermudez M, Arevalo-Pinzon G, Rubio L, Chaloin O, Muller S, Curtidor H, et al. Receptor-ligand and parasite protein-protein interactions in Plasmodium vivax: Analysing rhoptry neck proteins 2 and 4. Cell Microbiol. 2018 Jul;20(7):e12835instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURPlasmodium vivaxMalariaVacunaDiversidad genéticaAntígenos conservadosSelección naturalPromisorios candidatos vacunalesSelección negativaIncidencia & prevención de la enfermedad614600MalariaPlasmodium vivaxMalariaAntimalarial vaccineGenetic diversityVaccine candidatesVatural selectionConserved regionsNegatively selected regionsMedicinaEpidemiologíaVacunasIdentificación de señales de selección natural en genes de Plasmodium vivax que codifican proteínas involucradas en el proceso de invasión para determinar su potencial uso en una vacuna antimaláricaSelección natural en genes de Plasmodium vivax y su potencial uso en una vacuna antimaláricadoctoralThesisTesisTesis de doctoradohttp://purl.org/coar/resource_type/c_db06Escuela de Medicina y Ciencias de la SaludCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8810https://repository.urosario.edu.co/bitstreams/fd86a85c-0ffc-4ae2-bceb-c5dda6d1b8ac/download9f5eb859bd5c30bc88515135ce7ba417MD53ORIGINALGarzonOspina-DiegoEdison-2019.pdfGarzonOspina-DiegoEdison-2019.pdfapplication/pdf16075734https://repository.urosario.edu.co/bitstreams/26034019-c92d-4905-9d1e-5a62d4c478fa/download14d086da34f8d51401ef5ed6182e6dc6MD51LICENSElicense.txtlicense.txttext/plain2302https://repository.urosario.edu.co/bitstreams/3d87910d-cf4c-4af6-bd0e-bdf6486a54f1/download95c9d018450f93ffc6b863812326dc9cMD52TEXTGarzonOspina-DiegoEdison-2019.pdf.txtGarzonOspina-DiegoEdison-2019.pdf.txtExtracted texttext/plain742396https://repository.urosario.edu.co/bitstreams/91d496bc-56fb-4476-973a-043546385923/download71198ed409360e41924a8a89cd2d7803MD54THUMBNAILGarzonOspina-DiegoEdison-2019.pdf.jpgGarzonOspina-DiegoEdison-2019.pdf.jpgGenerated Thumbnailimage/jpeg2566https://repository.urosario.edu.co/bitstreams/f993728a-2e93-4f51-b3f4-f48cb70e567f/downloadcde1a1d09b10a4c813a5ae23850bf955MD5510336/19876oai:repository.urosario.edu.co:10336/198762019-09-19 07:37:01.939823http://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiahttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIApEZSBjb25mb3JtaWRhZCBjb24gbGEgZXhwZWRpY2nDs24gZGUgbGEgbGV5IGVzdGF0dXRhcmlhIDE1ODEgZGUgZG9zIG1pbCBkb2NlICgyMDEyKSBwb3IgbGEg4oCcY3VhbCBzZSBkaWN0YW4gZGlzcG9zaWNpb25lcyBnZW5lcmFsZXMgcGFyYSBsYSBwcm90ZWNjacOzbiBkZSBkYXRvcyBwZXJzb25hbGVz4oCdIHkgZWwgRGVjcmV0byByZWdsYW1lbnRhcmlvIG7Dum1lcm8gMTM3NyBkZSBkb3MgbWlsIHRyZWNlICgyMDEzKSBwb3IgZWwg4oCcY3VhbCBzZSByZWdsYW1lbnRhIHBhcmNpYWxtZW50ZSBsYSBsZXkgMTU4MSBkZSBkb3MgbWlsIGRvY2UgKDIwMTIp4oCdLCBhdXRvcml6byBhbCBDUkFJIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBSb3NhcmlvLCBhIGVtcGxlYXIgeSB0cmF0YXIgcGFyYSBmaW5lcyBlc3RhZMOtc3RpY29zIHkgZGUgcmVnaXN0cm8gbGEgc2lndWllbnRlIGluZm9ybWFjacOzbiwgcGFyYSBlZmVjdG9zIGRlIGFjY2VzbyBhbCBzZXJ2aWNpbyBkZSBjYXJ0YSBkZSBjb25zdWx0YSBvIHByw6lzdGFtbyBpbnRlcmJpYmxpb3RlY2FyaW8uClVzdGVkIHRpZW5lIGRlcmVjaG8gYSBjb25vY2VyLCBhY3R1YWxpemFyIHkgY29ycmVnaXIgc3VzIGRhdG9zIHBlcnNvbmFsZXMsIHRhbWJpw6luIHBvZHLDoSBzb2xpY2l0YXIgbGEgc3VwcmVzacOzbiBvIHJldm9jYXIgbGEgYXV0b3JpemFjacOzbiBvdG9yZ2FkYSBwYXJhIHN1IHRyYXRhbWllbnRvLiBFbiBjYXNvIGRlIHVuIHJlY2xhbW8gbyBjb25zdWx0YSByZWxhdGl2YSBhIHN1cyBkYXRvcyBwZXJzb25hbGVzLCBwdWVkZSByZWFsaXphcmxhIGluZ3Jlc2FuZG8gbGEgcGV0aWNpw7NuIGVuIGxhIG9wY2nDs24g4oCcc29saWNpdHVkZXPigJ0gZGUgbGEgcMOhZ2luYSB3ZWIgZGUgbGEgVW5pdmVyc2lkYWQsIHJlbWl0aWVuZG8gbGEgc29saWNpdHVkIGFsIGNvcnJlbyBlbGVjdHLDs25pY28gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIG8gZGVqYW5kbyBzdSBwZXRpY2nDs24gZW4gZWwgYnV6w7NuIGbDrXNpY28gdWJpY2FkbyBlbiBlbCBFZGlmaWNpbyBTYW50YWbDqSBDYXJyZXJhIDYgTsKwIDEyIEMgLSAxMyBCb2dvdMOhIEQuQy4gZW4gZWwgaG9yYXJpbyBkZSBhdGVuY2nDs24gZGUgbHVuZXMgYSB2aWVybmVzIDc6MDAgYS4gbS4gYSA3OjAwIHAubS4geSBsb3Mgc8OhYmFkb3MgZGUgODowMCBhLiBtLiBhIDE6MDAgcC4gbS4KU2kgZGVzZWEgbWF5b3IgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIHRyYXRhbWllbnRvIGRlIHN1cyBkYXRvcyBwZXJzb25hbGVzLCBjb25zdWx0ZSBudWVzdHJhIFBvbMOtdGljYSBkZSBUcmF0YW1pZW50byBkZSBEYXRvcyBwZXJzb25hbGVzIGVuIHd3dy51cm9zYXJpby5lZHUuY28uCg==