Deciphering the RNA landscape by RNAome sequencing

Current RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression of small and large RNAs from rRNA-depleted total RNA in a single sequence...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/23257
Acceso en línea:
https://doi.org/10.1080/15476286.2015.1017202
https://repository.urosario.edu.co/handle/10336/23257
Palabra clave:
Cisplatin
Long untranslated rna
Messenger rna
Microrna
Polyadenylated rna
Ribosome rna
Rna
Small nucleolar rna
Rna
Transcriptome
Algorithm
Animal cell
Apoptosis
Article
Controlled study
Dna library
Embryo
Embryonic stem cell
Enhancer region
Gene expression
Gene repression
Genetic code
Genetic transcription
Microarray analysis
Mouse
Nonhuman
Quantitative analysis
Rna analysis
Rna isolation
Rna sequence
Rna synthesis
Animal
High throughput sequencing
Human
Metabolism
Procedures
Sequence analysis
Animals
High-throughput nucleotide sequencing
Humans
Mice
Rna
Transcriptome
Non-coding rna
Rna abundance
Rna expression
Rnaome
Strand-specific rna-sequencing
Whole transcriptome
rna
Sequence analysis
Rights
License
Abierto (Texto Completo)
id EDOCUR2_e607d6b68d1d583156c26e66e0c430b0
oai_identifier_str oai:repository.urosario.edu.co:10336/23257
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 52a1d2c2-ac97-4ad3-a361-f38b5b2d5843-182baae69-8552-4cea-ae8c-fc3b82b6277f-1823c8fbd-b56c-4fcb-942c-83e9b656db62-17d4c370e-4516-4d20-93ee-54b6953dfbc5-11cfe38f4-8b47-40ba-bcfb-a2ed73135ae2-14ba2c882-ba28-4c21-ad9e-5b272d5bf110-1f9ff4d2c-9909-4812-8b75-2983162cf2ca-1761115c7-e6e3-4547-9b69-8bf2e05bc206-15abc40eb-1232-40b1-ba0a-56225eff7138-176c93f8b-239f-45ab-a540-9135fa9947a9-12020-05-26T00:00:41Z2020-05-26T00:00:41Z2015Current RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression of small and large RNAs from rRNA-depleted total RNA in a single sequence run. Since current analysis pipelines cannot reliably analyze small and large RNAs simultaneously, we developed TRAP, Total Rna Analysis Pipeline, a robust interface that is also compatible with existing RNA sequencing protocols. RNAome sequencing quantitatively preserved all RNA classes, allowing cross-class comparisons that facilitates the identification of relationships between different RNA classes. We demonstrate the strength of RNAome sequencing in mouse embryonic stem cells treated with cisplatin. MicroRNA and mRNA expression in RNAome sequencing significantly correlated between replicates and was in concordance with both existing RNA sequencing methods and gene expression arrays generated from the same samples. Moreover, RNAome sequencing also detected additional RNA classes such as enhancer RNAs, anti-sense RNAs, novel RNA species and numerous differentially expressed RNAs undetectable by other methods. At the level of complete RNA classes, RNAome sequencing also identified a specific global repression of the microRNA and microRNA isoform classes after cisplatin treatment whereas all other classes such as mRNAs were unchanged. These characteristics of RNAome sequencing will significantly improve expression analysis as well as studies on RNA biology not covered by existing methods. © Kasper WJ Derks, Branislav Misovic, Mirjam CGN van den Hout, Christel EM Kockx, Cesar Payan Gomez, Rutger WW Brouwer, Harry Vrieling, Jan HJ Hoeijmakers, Wilfred FJ van IJcken, and Joris Pothof.application/pdfhttps://doi.org/10.1080/15476286.2015.10172021555858415476286https://repository.urosario.edu.co/handle/10336/23257engTaylor and Francis Inc.42No. 130RNA BiologyVol. 12RNA Biology, ISSN:15558584, 15476286, Vol.12, No.1 (2015); pp. 30-42https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928229123&doi=10.1080%2f15476286.2015.1017202&partnerID=40&md5=bbcb72448f90253529d286cd520f1bdcAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURCisplatinLong untranslated rnaMessenger rnaMicrornaPolyadenylated rnaRibosome rnaRnaSmall nucleolar rnaRnaTranscriptomeAlgorithmAnimal cellApoptosisArticleControlled studyDna libraryEmbryoEmbryonic stem cellEnhancer regionGene expressionGene repressionGenetic codeGenetic transcriptionMicroarray analysisMouseNonhumanQuantitative analysisRna analysisRna isolationRna sequenceRna synthesisAnimalHigh throughput sequencingHumanMetabolismProceduresSequence analysisAnimalsHigh-throughput nucleotide sequencingHumansMiceRnaTranscriptomeNon-coding rnaRna abundanceRna expressionRnaomeStrand-specific rna-sequencingWhole transcriptomernaSequence analysisDeciphering the RNA landscape by RNAome sequencingarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Derks, Kasper WJMisovic, Branislavvan den Hout, Mirjam CGNKockx, Christel EMGomez, Cesar PayanBrouwer, Rutger WWVrieling, HarryHoeijmakers, Jan HJvan IJcken, Wilfred FJPothof, Joris10336/23257oai:repository.urosario.edu.co:10336/232572022-05-02 07:37:14.513616https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Deciphering the RNA landscape by RNAome sequencing
title Deciphering the RNA landscape by RNAome sequencing
spellingShingle Deciphering the RNA landscape by RNAome sequencing
Cisplatin
Long untranslated rna
Messenger rna
Microrna
Polyadenylated rna
Ribosome rna
Rna
Small nucleolar rna
Rna
Transcriptome
Algorithm
Animal cell
Apoptosis
Article
Controlled study
Dna library
Embryo
Embryonic stem cell
Enhancer region
Gene expression
Gene repression
Genetic code
Genetic transcription
Microarray analysis
Mouse
Nonhuman
Quantitative analysis
Rna analysis
Rna isolation
Rna sequence
Rna synthesis
Animal
High throughput sequencing
Human
Metabolism
Procedures
Sequence analysis
Animals
High-throughput nucleotide sequencing
Humans
Mice
Rna
Transcriptome
Non-coding rna
Rna abundance
Rna expression
Rnaome
Strand-specific rna-sequencing
Whole transcriptome
rna
Sequence analysis
title_short Deciphering the RNA landscape by RNAome sequencing
title_full Deciphering the RNA landscape by RNAome sequencing
title_fullStr Deciphering the RNA landscape by RNAome sequencing
title_full_unstemmed Deciphering the RNA landscape by RNAome sequencing
title_sort Deciphering the RNA landscape by RNAome sequencing
dc.subject.keyword.spa.fl_str_mv Cisplatin
Long untranslated rna
Messenger rna
Microrna
Polyadenylated rna
Ribosome rna
Rna
Small nucleolar rna
Rna
Transcriptome
Algorithm
Animal cell
Apoptosis
Article
Controlled study
Dna library
Embryo
Embryonic stem cell
Enhancer region
Gene expression
Gene repression
Genetic code
Genetic transcription
Microarray analysis
Mouse
Nonhuman
Quantitative analysis
Rna analysis
Rna isolation
Rna sequence
Rna synthesis
Animal
High throughput sequencing
Human
Metabolism
Procedures
Sequence analysis
Animals
High-throughput nucleotide sequencing
Humans
Mice
Rna
Transcriptome
Non-coding rna
Rna abundance
Rna expression
Rnaome
Strand-specific rna-sequencing
Whole transcriptome
topic Cisplatin
Long untranslated rna
Messenger rna
Microrna
Polyadenylated rna
Ribosome rna
Rna
Small nucleolar rna
Rna
Transcriptome
Algorithm
Animal cell
Apoptosis
Article
Controlled study
Dna library
Embryo
Embryonic stem cell
Enhancer region
Gene expression
Gene repression
Genetic code
Genetic transcription
Microarray analysis
Mouse
Nonhuman
Quantitative analysis
Rna analysis
Rna isolation
Rna sequence
Rna synthesis
Animal
High throughput sequencing
Human
Metabolism
Procedures
Sequence analysis
Animals
High-throughput nucleotide sequencing
Humans
Mice
Rna
Transcriptome
Non-coding rna
Rna abundance
Rna expression
Rnaome
Strand-specific rna-sequencing
Whole transcriptome
rna
Sequence analysis
dc.subject.keyword.eng.fl_str_mv rna
Sequence analysis
description Current RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression of small and large RNAs from rRNA-depleted total RNA in a single sequence run. Since current analysis pipelines cannot reliably analyze small and large RNAs simultaneously, we developed TRAP, Total Rna Analysis Pipeline, a robust interface that is also compatible with existing RNA sequencing protocols. RNAome sequencing quantitatively preserved all RNA classes, allowing cross-class comparisons that facilitates the identification of relationships between different RNA classes. We demonstrate the strength of RNAome sequencing in mouse embryonic stem cells treated with cisplatin. MicroRNA and mRNA expression in RNAome sequencing significantly correlated between replicates and was in concordance with both existing RNA sequencing methods and gene expression arrays generated from the same samples. Moreover, RNAome sequencing also detected additional RNA classes such as enhancer RNAs, anti-sense RNAs, novel RNA species and numerous differentially expressed RNAs undetectable by other methods. At the level of complete RNA classes, RNAome sequencing also identified a specific global repression of the microRNA and microRNA isoform classes after cisplatin treatment whereas all other classes such as mRNAs were unchanged. These characteristics of RNAome sequencing will significantly improve expression analysis as well as studies on RNA biology not covered by existing methods. © Kasper WJ Derks, Branislav Misovic, Mirjam CGN van den Hout, Christel EM Kockx, Cesar Payan Gomez, Rutger WW Brouwer, Harry Vrieling, Jan HJ Hoeijmakers, Wilfred FJ van IJcken, and Joris Pothof.
publishDate 2015
dc.date.created.spa.fl_str_mv 2015
dc.date.accessioned.none.fl_str_mv 2020-05-26T00:00:41Z
dc.date.available.none.fl_str_mv 2020-05-26T00:00:41Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1080/15476286.2015.1017202
dc.identifier.issn.none.fl_str_mv 15558584
15476286
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/23257
url https://doi.org/10.1080/15476286.2015.1017202
https://repository.urosario.edu.co/handle/10336/23257
identifier_str_mv 15558584
15476286
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 42
dc.relation.citationIssue.none.fl_str_mv No. 1
dc.relation.citationStartPage.none.fl_str_mv 30
dc.relation.citationTitle.none.fl_str_mv RNA Biology
dc.relation.citationVolume.none.fl_str_mv Vol. 12
dc.relation.ispartof.spa.fl_str_mv RNA Biology, ISSN:15558584, 15476286, Vol.12, No.1 (2015); pp. 30-42
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928229123&doi=10.1080%2f15476286.2015.1017202&partnerID=40&md5=bbcb72448f90253529d286cd520f1bdc
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Taylor and Francis Inc.
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167672650203136