Deciphering the RNA landscape by RNAome sequencing
Current RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression of small and large RNAs from rRNA-depleted total RNA in a single sequence...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/23257
- Acceso en línea:
- https://doi.org/10.1080/15476286.2015.1017202
https://repository.urosario.edu.co/handle/10336/23257
- Palabra clave:
- Cisplatin
Long untranslated rna
Messenger rna
Microrna
Polyadenylated rna
Ribosome rna
Rna
Small nucleolar rna
Rna
Transcriptome
Algorithm
Animal cell
Apoptosis
Article
Controlled study
Dna library
Embryo
Embryonic stem cell
Enhancer region
Gene expression
Gene repression
Genetic code
Genetic transcription
Microarray analysis
Mouse
Nonhuman
Quantitative analysis
Rna analysis
Rna isolation
Rna sequence
Rna synthesis
Animal
High throughput sequencing
Human
Metabolism
Procedures
Sequence analysis
Animals
High-throughput nucleotide sequencing
Humans
Mice
Rna
Transcriptome
Non-coding rna
Rna abundance
Rna expression
Rnaome
Strand-specific rna-sequencing
Whole transcriptome
rna
Sequence analysis
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_e607d6b68d1d583156c26e66e0c430b0 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/23257 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
52a1d2c2-ac97-4ad3-a361-f38b5b2d5843-182baae69-8552-4cea-ae8c-fc3b82b6277f-1823c8fbd-b56c-4fcb-942c-83e9b656db62-17d4c370e-4516-4d20-93ee-54b6953dfbc5-11cfe38f4-8b47-40ba-bcfb-a2ed73135ae2-14ba2c882-ba28-4c21-ad9e-5b272d5bf110-1f9ff4d2c-9909-4812-8b75-2983162cf2ca-1761115c7-e6e3-4547-9b69-8bf2e05bc206-15abc40eb-1232-40b1-ba0a-56225eff7138-176c93f8b-239f-45ab-a540-9135fa9947a9-12020-05-26T00:00:41Z2020-05-26T00:00:41Z2015Current RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression of small and large RNAs from rRNA-depleted total RNA in a single sequence run. Since current analysis pipelines cannot reliably analyze small and large RNAs simultaneously, we developed TRAP, Total Rna Analysis Pipeline, a robust interface that is also compatible with existing RNA sequencing protocols. RNAome sequencing quantitatively preserved all RNA classes, allowing cross-class comparisons that facilitates the identification of relationships between different RNA classes. We demonstrate the strength of RNAome sequencing in mouse embryonic stem cells treated with cisplatin. MicroRNA and mRNA expression in RNAome sequencing significantly correlated between replicates and was in concordance with both existing RNA sequencing methods and gene expression arrays generated from the same samples. Moreover, RNAome sequencing also detected additional RNA classes such as enhancer RNAs, anti-sense RNAs, novel RNA species and numerous differentially expressed RNAs undetectable by other methods. At the level of complete RNA classes, RNAome sequencing also identified a specific global repression of the microRNA and microRNA isoform classes after cisplatin treatment whereas all other classes such as mRNAs were unchanged. These characteristics of RNAome sequencing will significantly improve expression analysis as well as studies on RNA biology not covered by existing methods. © Kasper WJ Derks, Branislav Misovic, Mirjam CGN van den Hout, Christel EM Kockx, Cesar Payan Gomez, Rutger WW Brouwer, Harry Vrieling, Jan HJ Hoeijmakers, Wilfred FJ van IJcken, and Joris Pothof.application/pdfhttps://doi.org/10.1080/15476286.2015.10172021555858415476286https://repository.urosario.edu.co/handle/10336/23257engTaylor and Francis Inc.42No. 130RNA BiologyVol. 12RNA Biology, ISSN:15558584, 15476286, Vol.12, No.1 (2015); pp. 30-42https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928229123&doi=10.1080%2f15476286.2015.1017202&partnerID=40&md5=bbcb72448f90253529d286cd520f1bdcAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURCisplatinLong untranslated rnaMessenger rnaMicrornaPolyadenylated rnaRibosome rnaRnaSmall nucleolar rnaRnaTranscriptomeAlgorithmAnimal cellApoptosisArticleControlled studyDna libraryEmbryoEmbryonic stem cellEnhancer regionGene expressionGene repressionGenetic codeGenetic transcriptionMicroarray analysisMouseNonhumanQuantitative analysisRna analysisRna isolationRna sequenceRna synthesisAnimalHigh throughput sequencingHumanMetabolismProceduresSequence analysisAnimalsHigh-throughput nucleotide sequencingHumansMiceRnaTranscriptomeNon-coding rnaRna abundanceRna expressionRnaomeStrand-specific rna-sequencingWhole transcriptomernaSequence analysisDeciphering the RNA landscape by RNAome sequencingarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Derks, Kasper WJMisovic, Branislavvan den Hout, Mirjam CGNKockx, Christel EMGomez, Cesar PayanBrouwer, Rutger WWVrieling, HarryHoeijmakers, Jan HJvan IJcken, Wilfred FJPothof, Joris10336/23257oai:repository.urosario.edu.co:10336/232572022-05-02 07:37:14.513616https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Deciphering the RNA landscape by RNAome sequencing |
title |
Deciphering the RNA landscape by RNAome sequencing |
spellingShingle |
Deciphering the RNA landscape by RNAome sequencing Cisplatin Long untranslated rna Messenger rna Microrna Polyadenylated rna Ribosome rna Rna Small nucleolar rna Rna Transcriptome Algorithm Animal cell Apoptosis Article Controlled study Dna library Embryo Embryonic stem cell Enhancer region Gene expression Gene repression Genetic code Genetic transcription Microarray analysis Mouse Nonhuman Quantitative analysis Rna analysis Rna isolation Rna sequence Rna synthesis Animal High throughput sequencing Human Metabolism Procedures Sequence analysis Animals High-throughput nucleotide sequencing Humans Mice Rna Transcriptome Non-coding rna Rna abundance Rna expression Rnaome Strand-specific rna-sequencing Whole transcriptome rna Sequence analysis |
title_short |
Deciphering the RNA landscape by RNAome sequencing |
title_full |
Deciphering the RNA landscape by RNAome sequencing |
title_fullStr |
Deciphering the RNA landscape by RNAome sequencing |
title_full_unstemmed |
Deciphering the RNA landscape by RNAome sequencing |
title_sort |
Deciphering the RNA landscape by RNAome sequencing |
dc.subject.keyword.spa.fl_str_mv |
Cisplatin Long untranslated rna Messenger rna Microrna Polyadenylated rna Ribosome rna Rna Small nucleolar rna Rna Transcriptome Algorithm Animal cell Apoptosis Article Controlled study Dna library Embryo Embryonic stem cell Enhancer region Gene expression Gene repression Genetic code Genetic transcription Microarray analysis Mouse Nonhuman Quantitative analysis Rna analysis Rna isolation Rna sequence Rna synthesis Animal High throughput sequencing Human Metabolism Procedures Sequence analysis Animals High-throughput nucleotide sequencing Humans Mice Rna Transcriptome Non-coding rna Rna abundance Rna expression Rnaome Strand-specific rna-sequencing Whole transcriptome |
topic |
Cisplatin Long untranslated rna Messenger rna Microrna Polyadenylated rna Ribosome rna Rna Small nucleolar rna Rna Transcriptome Algorithm Animal cell Apoptosis Article Controlled study Dna library Embryo Embryonic stem cell Enhancer region Gene expression Gene repression Genetic code Genetic transcription Microarray analysis Mouse Nonhuman Quantitative analysis Rna analysis Rna isolation Rna sequence Rna synthesis Animal High throughput sequencing Human Metabolism Procedures Sequence analysis Animals High-throughput nucleotide sequencing Humans Mice Rna Transcriptome Non-coding rna Rna abundance Rna expression Rnaome Strand-specific rna-sequencing Whole transcriptome rna Sequence analysis |
dc.subject.keyword.eng.fl_str_mv |
rna Sequence analysis |
description |
Current RNA expression profiling methods rely on enrichment steps for specific RNA classes, thereby not detecting all RNA species in an unperturbed manner. We report strand-specific RNAome sequencing that determines expression of small and large RNAs from rRNA-depleted total RNA in a single sequence run. Since current analysis pipelines cannot reliably analyze small and large RNAs simultaneously, we developed TRAP, Total Rna Analysis Pipeline, a robust interface that is also compatible with existing RNA sequencing protocols. RNAome sequencing quantitatively preserved all RNA classes, allowing cross-class comparisons that facilitates the identification of relationships between different RNA classes. We demonstrate the strength of RNAome sequencing in mouse embryonic stem cells treated with cisplatin. MicroRNA and mRNA expression in RNAome sequencing significantly correlated between replicates and was in concordance with both existing RNA sequencing methods and gene expression arrays generated from the same samples. Moreover, RNAome sequencing also detected additional RNA classes such as enhancer RNAs, anti-sense RNAs, novel RNA species and numerous differentially expressed RNAs undetectable by other methods. At the level of complete RNA classes, RNAome sequencing also identified a specific global repression of the microRNA and microRNA isoform classes after cisplatin treatment whereas all other classes such as mRNAs were unchanged. These characteristics of RNAome sequencing will significantly improve expression analysis as well as studies on RNA biology not covered by existing methods. © Kasper WJ Derks, Branislav Misovic, Mirjam CGN van den Hout, Christel EM Kockx, Cesar Payan Gomez, Rutger WW Brouwer, Harry Vrieling, Jan HJ Hoeijmakers, Wilfred FJ van IJcken, and Joris Pothof. |
publishDate |
2015 |
dc.date.created.spa.fl_str_mv |
2015 |
dc.date.accessioned.none.fl_str_mv |
2020-05-26T00:00:41Z |
dc.date.available.none.fl_str_mv |
2020-05-26T00:00:41Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1080/15476286.2015.1017202 |
dc.identifier.issn.none.fl_str_mv |
15558584 15476286 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/23257 |
url |
https://doi.org/10.1080/15476286.2015.1017202 https://repository.urosario.edu.co/handle/10336/23257 |
identifier_str_mv |
15558584 15476286 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
42 |
dc.relation.citationIssue.none.fl_str_mv |
No. 1 |
dc.relation.citationStartPage.none.fl_str_mv |
30 |
dc.relation.citationTitle.none.fl_str_mv |
RNA Biology |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 12 |
dc.relation.ispartof.spa.fl_str_mv |
RNA Biology, ISSN:15558584, 15476286, Vol.12, No.1 (2015); pp. 30-42 |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84928229123&doi=10.1080%2f15476286.2015.1017202&partnerID=40&md5=bbcb72448f90253529d286cd520f1bdc |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Taylor and Francis Inc. |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167672650203136 |