Weighted performance metrics for automatic neonatal seizure detection using multi-scored EEG data
In neonatal intensive care units, there is a need for around the clock monitoring of electroencephalogram (EEG), especially for recognizing seizures. An automated seizure detector with an acceptable performance can partly fill this need. In order to develop a detector, an extensive dataset labeled b...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/27213
- Acceso en línea:
- https://doi.org/10.1109/JBHI.2017.2750769
https://repository.urosario.edu.co/handle/10336/27213
- Palabra clave:
- Automated neonatal seizure detection
Multi-scored EEG database
Performance measurement metrics
- Rights
- License
- Restringido (Acceso a grupos específicos)
id |
EDOCUR2_e363b77df799448c7e0b96920b7d6b14 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/27213 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
2fb59c8c-9e95-42ee-ae72-ca81ded6c838-12277ac00-5020-401c-8934-8b770f0c158f-100e98a12-b91d-41fa-bda9-a90a09246209-1f60e027f-e1b4-4950-90e1-a87b38199290-1141395126002020-08-19T14:41:22Z2020-08-19T14:41:22Z2017-09-11In neonatal intensive care units, there is a need for around the clock monitoring of electroencephalogram (EEG), especially for recognizing seizures. An automated seizure detector with an acceptable performance can partly fill this need. In order to develop a detector, an extensive dataset labeled by experts is needed. However, accurately defining neonatal seizures on EEG is a challenge, especially when seizure discharges do not meet exact definitions of repetitiveness or evolution in amplitude and frequency. When several readers score seizures independently, disagreement can be high. Commonly used metrics such as good detection rate (GDR) and false alarm rate (FAR) derived from data scored by multiple raters have their limitations. Therefore, new metrics are needed to measure the performance with respect to the different labels. In this paper, instead of defining the labels by consensus or majority voting, popular metrics including GDR, FAR, positive predictive value, sensitivity, specificity, and selectivity are modified such that they can take different scores into account. To this end, 353 hours of EEG data containing seizures from 81 neonates were visually scored by a clinical neurophysiologist, and then processed by an automated seizure detector. The scored seizures were mixed with false detections of an automated seizure detector and were relabeled by three independent EEG readers. Then, all labels were used in the proposed performance metrics and the result was compared with the majority voting technique and showed higher accuracy and robustness for the proposed metrics. Results were confirmed using a bootstrapping test.application/pdfhttps://doi.org/10.1109/JBHI.2017.2750769ISSN: 2168-2194EISSN: 2168-2208https://repository.urosario.edu.co/handle/10336/27213engIEEE1123No. 41114IEEE Journal of Biomedical and Health InformaticsVol. 22IEEE Journal of Biomedical and Health Informatics, ISSN: 2168-2194;EISSN: 2168-2208, Vol.22, No.4 (July 2018); pp. 1114 - 1123https://ieeexplore.ieee.org/document/8030998Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecIEEE Journal of Biomedical and Health Informaticsinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURAutomated neonatal seizure detectionMulti-scored EEG databasePerformance measurement metricsWeighted performance metrics for automatic neonatal seizure detection using multi-scored EEG dataMétricas de rendimiento ponderadas para la detección automática de convulsiones neonatales utilizando datos de EEG de múltiples puntuacionesarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Hossein Ansari, AmirJoseph Cherian, PerumpillichiraJansen, KatrienDereymaeker, AnneleenCaicedo Dorado, Alexander10336/27213oai:repository.urosario.edu.co:10336/272132021-06-03 00:50:07.929https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Weighted performance metrics for automatic neonatal seizure detection using multi-scored EEG data |
dc.title.TranslatedTitle.spa.fl_str_mv |
Métricas de rendimiento ponderadas para la detección automática de convulsiones neonatales utilizando datos de EEG de múltiples puntuaciones |
title |
Weighted performance metrics for automatic neonatal seizure detection using multi-scored EEG data |
spellingShingle |
Weighted performance metrics for automatic neonatal seizure detection using multi-scored EEG data Automated neonatal seizure detection Multi-scored EEG database Performance measurement metrics |
title_short |
Weighted performance metrics for automatic neonatal seizure detection using multi-scored EEG data |
title_full |
Weighted performance metrics for automatic neonatal seizure detection using multi-scored EEG data |
title_fullStr |
Weighted performance metrics for automatic neonatal seizure detection using multi-scored EEG data |
title_full_unstemmed |
Weighted performance metrics for automatic neonatal seizure detection using multi-scored EEG data |
title_sort |
Weighted performance metrics for automatic neonatal seizure detection using multi-scored EEG data |
dc.subject.keyword.spa.fl_str_mv |
Automated neonatal seizure detection Multi-scored EEG database Performance measurement metrics |
topic |
Automated neonatal seizure detection Multi-scored EEG database Performance measurement metrics |
description |
In neonatal intensive care units, there is a need for around the clock monitoring of electroencephalogram (EEG), especially for recognizing seizures. An automated seizure detector with an acceptable performance can partly fill this need. In order to develop a detector, an extensive dataset labeled by experts is needed. However, accurately defining neonatal seizures on EEG is a challenge, especially when seizure discharges do not meet exact definitions of repetitiveness or evolution in amplitude and frequency. When several readers score seizures independently, disagreement can be high. Commonly used metrics such as good detection rate (GDR) and false alarm rate (FAR) derived from data scored by multiple raters have their limitations. Therefore, new metrics are needed to measure the performance with respect to the different labels. In this paper, instead of defining the labels by consensus or majority voting, popular metrics including GDR, FAR, positive predictive value, sensitivity, specificity, and selectivity are modified such that they can take different scores into account. To this end, 353 hours of EEG data containing seizures from 81 neonates were visually scored by a clinical neurophysiologist, and then processed by an automated seizure detector. The scored seizures were mixed with false detections of an automated seizure detector and were relabeled by three independent EEG readers. Then, all labels were used in the proposed performance metrics and the result was compared with the majority voting technique and showed higher accuracy and robustness for the proposed metrics. Results were confirmed using a bootstrapping test. |
publishDate |
2017 |
dc.date.created.spa.fl_str_mv |
2017-09-11 |
dc.date.accessioned.none.fl_str_mv |
2020-08-19T14:41:22Z |
dc.date.available.none.fl_str_mv |
2020-08-19T14:41:22Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/JBHI.2017.2750769 |
dc.identifier.issn.none.fl_str_mv |
ISSN: 2168-2194 EISSN: 2168-2208 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/27213 |
url |
https://doi.org/10.1109/JBHI.2017.2750769 https://repository.urosario.edu.co/handle/10336/27213 |
identifier_str_mv |
ISSN: 2168-2194 EISSN: 2168-2208 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
1123 |
dc.relation.citationIssue.none.fl_str_mv |
No. 4 |
dc.relation.citationStartPage.none.fl_str_mv |
1114 |
dc.relation.citationTitle.none.fl_str_mv |
IEEE Journal of Biomedical and Health Informatics |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 22 |
dc.relation.ispartof.spa.fl_str_mv |
IEEE Journal of Biomedical and Health Informatics, ISSN: 2168-2194;EISSN: 2168-2208, Vol.22, No.4 (July 2018); pp. 1114 - 1123 |
dc.relation.uri.spa.fl_str_mv |
https://ieeexplore.ieee.org/document/8030998 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.acceso.spa.fl_str_mv |
Restringido (Acceso a grupos específicos) |
rights_invalid_str_mv |
Restringido (Acceso a grupos específicos) http://purl.org/coar/access_right/c_16ec |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IEEE |
dc.source.spa.fl_str_mv |
IEEE Journal of Biomedical and Health Informatics |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167491561127936 |