Weighted performance metrics for automatic neonatal seizure detection using multi-scored EEG data

In neonatal intensive care units, there is a need for around the clock monitoring of electroencephalogram (EEG), especially for recognizing seizures. An automated seizure detector with an acceptable performance can partly fill this need. In order to develop a detector, an extensive dataset labeled b...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/27213
Acceso en línea:
https://doi.org/10.1109/JBHI.2017.2750769
https://repository.urosario.edu.co/handle/10336/27213
Palabra clave:
Automated neonatal seizure detection
Multi-scored EEG database
Performance measurement metrics
Rights
License
Restringido (Acceso a grupos específicos)
id EDOCUR2_e363b77df799448c7e0b96920b7d6b14
oai_identifier_str oai:repository.urosario.edu.co:10336/27213
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 2fb59c8c-9e95-42ee-ae72-ca81ded6c838-12277ac00-5020-401c-8934-8b770f0c158f-100e98a12-b91d-41fa-bda9-a90a09246209-1f60e027f-e1b4-4950-90e1-a87b38199290-1141395126002020-08-19T14:41:22Z2020-08-19T14:41:22Z2017-09-11In neonatal intensive care units, there is a need for around the clock monitoring of electroencephalogram (EEG), especially for recognizing seizures. An automated seizure detector with an acceptable performance can partly fill this need. In order to develop a detector, an extensive dataset labeled by experts is needed. However, accurately defining neonatal seizures on EEG is a challenge, especially when seizure discharges do not meet exact definitions of repetitiveness or evolution in amplitude and frequency. When several readers score seizures independently, disagreement can be high. Commonly used metrics such as good detection rate (GDR) and false alarm rate (FAR) derived from data scored by multiple raters have their limitations. Therefore, new metrics are needed to measure the performance with respect to the different labels. In this paper, instead of defining the labels by consensus or majority voting, popular metrics including GDR, FAR, positive predictive value, sensitivity, specificity, and selectivity are modified such that they can take different scores into account. To this end, 353 hours of EEG data containing seizures from 81 neonates were visually scored by a clinical neurophysiologist, and then processed by an automated seizure detector. The scored seizures were mixed with false detections of an automated seizure detector and were relabeled by three independent EEG readers. Then, all labels were used in the proposed performance metrics and the result was compared with the majority voting technique and showed higher accuracy and robustness for the proposed metrics. Results were confirmed using a bootstrapping test.application/pdfhttps://doi.org/10.1109/JBHI.2017.2750769ISSN: 2168-2194EISSN: 2168-2208https://repository.urosario.edu.co/handle/10336/27213engIEEE1123No. 41114IEEE Journal of Biomedical and Health InformaticsVol. 22IEEE Journal of Biomedical and Health Informatics, ISSN: 2168-2194;EISSN: 2168-2208, Vol.22, No.4 (July 2018); pp. 1114 - 1123https://ieeexplore.ieee.org/document/8030998Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecIEEE Journal of Biomedical and Health Informaticsinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURAutomated neonatal seizure detectionMulti-scored EEG databasePerformance measurement metricsWeighted performance metrics for automatic neonatal seizure detection using multi-scored EEG dataMétricas de rendimiento ponderadas para la detección automática de convulsiones neonatales utilizando datos de EEG de múltiples puntuacionesarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Hossein Ansari, AmirJoseph Cherian, PerumpillichiraJansen, KatrienDereymaeker, AnneleenCaicedo Dorado, Alexander10336/27213oai:repository.urosario.edu.co:10336/272132021-06-03 00:50:07.929https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Weighted performance metrics for automatic neonatal seizure detection using multi-scored EEG data
dc.title.TranslatedTitle.spa.fl_str_mv Métricas de rendimiento ponderadas para la detección automática de convulsiones neonatales utilizando datos de EEG de múltiples puntuaciones
title Weighted performance metrics for automatic neonatal seizure detection using multi-scored EEG data
spellingShingle Weighted performance metrics for automatic neonatal seizure detection using multi-scored EEG data
Automated neonatal seizure detection
Multi-scored EEG database
Performance measurement metrics
title_short Weighted performance metrics for automatic neonatal seizure detection using multi-scored EEG data
title_full Weighted performance metrics for automatic neonatal seizure detection using multi-scored EEG data
title_fullStr Weighted performance metrics for automatic neonatal seizure detection using multi-scored EEG data
title_full_unstemmed Weighted performance metrics for automatic neonatal seizure detection using multi-scored EEG data
title_sort Weighted performance metrics for automatic neonatal seizure detection using multi-scored EEG data
dc.subject.keyword.spa.fl_str_mv Automated neonatal seizure detection
Multi-scored EEG database
Performance measurement metrics
topic Automated neonatal seizure detection
Multi-scored EEG database
Performance measurement metrics
description In neonatal intensive care units, there is a need for around the clock monitoring of electroencephalogram (EEG), especially for recognizing seizures. An automated seizure detector with an acceptable performance can partly fill this need. In order to develop a detector, an extensive dataset labeled by experts is needed. However, accurately defining neonatal seizures on EEG is a challenge, especially when seizure discharges do not meet exact definitions of repetitiveness or evolution in amplitude and frequency. When several readers score seizures independently, disagreement can be high. Commonly used metrics such as good detection rate (GDR) and false alarm rate (FAR) derived from data scored by multiple raters have their limitations. Therefore, new metrics are needed to measure the performance with respect to the different labels. In this paper, instead of defining the labels by consensus or majority voting, popular metrics including GDR, FAR, positive predictive value, sensitivity, specificity, and selectivity are modified such that they can take different scores into account. To this end, 353 hours of EEG data containing seizures from 81 neonates were visually scored by a clinical neurophysiologist, and then processed by an automated seizure detector. The scored seizures were mixed with false detections of an automated seizure detector and were relabeled by three independent EEG readers. Then, all labels were used in the proposed performance metrics and the result was compared with the majority voting technique and showed higher accuracy and robustness for the proposed metrics. Results were confirmed using a bootstrapping test.
publishDate 2017
dc.date.created.spa.fl_str_mv 2017-09-11
dc.date.accessioned.none.fl_str_mv 2020-08-19T14:41:22Z
dc.date.available.none.fl_str_mv 2020-08-19T14:41:22Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/JBHI.2017.2750769
dc.identifier.issn.none.fl_str_mv ISSN: 2168-2194
EISSN: 2168-2208
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/27213
url https://doi.org/10.1109/JBHI.2017.2750769
https://repository.urosario.edu.co/handle/10336/27213
identifier_str_mv ISSN: 2168-2194
EISSN: 2168-2208
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 1123
dc.relation.citationIssue.none.fl_str_mv No. 4
dc.relation.citationStartPage.none.fl_str_mv 1114
dc.relation.citationTitle.none.fl_str_mv IEEE Journal of Biomedical and Health Informatics
dc.relation.citationVolume.none.fl_str_mv Vol. 22
dc.relation.ispartof.spa.fl_str_mv IEEE Journal of Biomedical and Health Informatics, ISSN: 2168-2194;EISSN: 2168-2208, Vol.22, No.4 (July 2018); pp. 1114 - 1123
dc.relation.uri.spa.fl_str_mv https://ieeexplore.ieee.org/document/8030998
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.acceso.spa.fl_str_mv Restringido (Acceso a grupos específicos)
rights_invalid_str_mv Restringido (Acceso a grupos específicos)
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IEEE
dc.source.spa.fl_str_mv IEEE Journal of Biomedical and Health Informatics
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167491561127936