Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees

Managing forests for multiple ecosystem services such as timber, carbon, and biodiversity requires information on ecosystem structure and management characteristics. National forest inventory data are increasingly being used to quantify ecosystem services, but they mostly provide timber management a...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/26775
Acceso en línea:
https://doi.org/10.3390/f4010122
https://repository.urosario.edu.co/handle/10336/26775
Palabra clave:
Herbaceous richness
Understory richness
Pine flatwoods
Regression tree
Forest inventory
Richness model
Rights
License
Abierto (Texto Completo)
id EDOCUR2_e16dd4e09e5fc8c757381a8ccf5e1aff
oai_identifier_str oai:repository.urosario.edu.co:10336/26775
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 1b3de4c6-5d3e-4db5-9d85-3d3ff11679c5-1ae0673e8-8461-4c2a-8622-1c10e6d2b9e3-1368d04f3-0ee7-4522-b98a-584e22667c6f-1ee4aaa0f-e8ca-47e9-9c3d-883d58b20e3c-12020-08-19T14:40:13Z2020-08-19T14:40:13Z2013-03-01Managing forests for multiple ecosystem services such as timber, carbon, and biodiversity requires information on ecosystem structure and management characteristics. National forest inventory data are increasingly being used to quantify ecosystem services, but they mostly provide timber management and overstory data, while data on understory shrub and herbaceous diversity are limited. We obtained species richness and stand management data from relevant literature to develop a regression tree model that can be used to predict understory species richness from forest inventory data. Our model explained 57% of the variation in herbaceous species richness in the coastal plain pine forests of the southeastern USA. Results were verified using field data, and important predictors of herbaceous richness included stand age, forest type, time since fire, and time since herbicide-fertilizer application. This approach can make use of available forest inventories to rapidly and cost-effectively estimate understory species richness for subtropical pine forestsapplication/pdfhttps://doi.org/10.3390/f4010122ISSN: 1999-4907https://repository.urosario.edu.co/handle/10336/26775engMDPI journals136No. 1122ForestsVol. 4Forests, ISSN:1999-4907, Vol.4, No.1 (February, 2013); pp. 122-136https://www.mdpi.com/1999-4907/4/1/122Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Forestsinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURHerbaceous richnessUnderstory richnessPine flatwoodsRegression treeForest inventoryRichness modelPredicting Understory Species Richness from Stand and Management Characteristics Using Regression TreesPredicción de la riqueza de especies del sotobosque a partir de las características de manejo y del rodal mediante árboles de regresiónarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Timilsina, N.Cropper, W.P., Jr.Escobedo, F.J.Lima, J.M.T.ORIGINALforests-04-00122.pdfapplication/pdf619750https://repository.urosario.edu.co/bitstreams/84d7af9d-d9e2-4fdd-96b9-cd20b43f0687/downloada55be1279f670a5aed341440f06b1226MD51TEXTforests-04-00122.pdf.txtforests-04-00122.pdf.txtExtracted texttext/plain43272https://repository.urosario.edu.co/bitstreams/ca7b9877-f4f7-4d12-85e5-c0b8afed05f2/download174c0ce1540865603a6b5c181690319fMD52THUMBNAILforests-04-00122.pdf.jpgforests-04-00122.pdf.jpgGenerated Thumbnailimage/jpeg4902https://repository.urosario.edu.co/bitstreams/5dcaef3e-dd37-4109-9c60-ff0dc947ed3f/download98f7be4e2c9b5d6dd4cde0a0a662aa14MD5310336/26775oai:repository.urosario.edu.co:10336/267752021-06-03 00:49:59.362https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees
dc.title.TranslatedTitle.spa.fl_str_mv Predicción de la riqueza de especies del sotobosque a partir de las características de manejo y del rodal mediante árboles de regresión
title Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees
spellingShingle Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees
Herbaceous richness
Understory richness
Pine flatwoods
Regression tree
Forest inventory
Richness model
title_short Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees
title_full Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees
title_fullStr Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees
title_full_unstemmed Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees
title_sort Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees
dc.subject.keyword.spa.fl_str_mv Herbaceous richness
Understory richness
Pine flatwoods
Regression tree
Forest inventory
Richness model
topic Herbaceous richness
Understory richness
Pine flatwoods
Regression tree
Forest inventory
Richness model
description Managing forests for multiple ecosystem services such as timber, carbon, and biodiversity requires information on ecosystem structure and management characteristics. National forest inventory data are increasingly being used to quantify ecosystem services, but they mostly provide timber management and overstory data, while data on understory shrub and herbaceous diversity are limited. We obtained species richness and stand management data from relevant literature to develop a regression tree model that can be used to predict understory species richness from forest inventory data. Our model explained 57% of the variation in herbaceous species richness in the coastal plain pine forests of the southeastern USA. Results were verified using field data, and important predictors of herbaceous richness included stand age, forest type, time since fire, and time since herbicide-fertilizer application. This approach can make use of available forest inventories to rapidly and cost-effectively estimate understory species richness for subtropical pine forests
publishDate 2013
dc.date.created.spa.fl_str_mv 2013-03-01
dc.date.accessioned.none.fl_str_mv 2020-08-19T14:40:13Z
dc.date.available.none.fl_str_mv 2020-08-19T14:40:13Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/f4010122
dc.identifier.issn.none.fl_str_mv ISSN: 1999-4907
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/26775
url https://doi.org/10.3390/f4010122
https://repository.urosario.edu.co/handle/10336/26775
identifier_str_mv ISSN: 1999-4907
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 136
dc.relation.citationIssue.none.fl_str_mv No. 1
dc.relation.citationStartPage.none.fl_str_mv 122
dc.relation.citationTitle.none.fl_str_mv Forests
dc.relation.citationVolume.none.fl_str_mv Vol. 4
dc.relation.ispartof.spa.fl_str_mv Forests, ISSN:1999-4907, Vol.4, No.1 (February, 2013); pp. 122-136
dc.relation.uri.spa.fl_str_mv https://www.mdpi.com/1999-4907/4/1/122
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI journals
dc.source.spa.fl_str_mv Forests
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/84d7af9d-d9e2-4fdd-96b9-cd20b43f0687/download
https://repository.urosario.edu.co/bitstreams/ca7b9877-f4f7-4d12-85e5-c0b8afed05f2/download
https://repository.urosario.edu.co/bitstreams/5dcaef3e-dd37-4109-9c60-ff0dc947ed3f/download
bitstream.checksum.fl_str_mv a55be1279f670a5aed341440f06b1226
174c0ce1540865603a6b5c181690319f
98f7be4e2c9b5d6dd4cde0a0a662aa14
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167700033765376