Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees
Managing forests for multiple ecosystem services such as timber, carbon, and biodiversity requires information on ecosystem structure and management characteristics. National forest inventory data are increasingly being used to quantify ecosystem services, but they mostly provide timber management a...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/26775
- Acceso en línea:
- https://doi.org/10.3390/f4010122
https://repository.urosario.edu.co/handle/10336/26775
- Palabra clave:
- Herbaceous richness
Understory richness
Pine flatwoods
Regression tree
Forest inventory
Richness model
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_e16dd4e09e5fc8c757381a8ccf5e1aff |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/26775 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
1b3de4c6-5d3e-4db5-9d85-3d3ff11679c5-1ae0673e8-8461-4c2a-8622-1c10e6d2b9e3-1368d04f3-0ee7-4522-b98a-584e22667c6f-1ee4aaa0f-e8ca-47e9-9c3d-883d58b20e3c-12020-08-19T14:40:13Z2020-08-19T14:40:13Z2013-03-01Managing forests for multiple ecosystem services such as timber, carbon, and biodiversity requires information on ecosystem structure and management characteristics. National forest inventory data are increasingly being used to quantify ecosystem services, but they mostly provide timber management and overstory data, while data on understory shrub and herbaceous diversity are limited. We obtained species richness and stand management data from relevant literature to develop a regression tree model that can be used to predict understory species richness from forest inventory data. Our model explained 57% of the variation in herbaceous species richness in the coastal plain pine forests of the southeastern USA. Results were verified using field data, and important predictors of herbaceous richness included stand age, forest type, time since fire, and time since herbicide-fertilizer application. This approach can make use of available forest inventories to rapidly and cost-effectively estimate understory species richness for subtropical pine forestsapplication/pdfhttps://doi.org/10.3390/f4010122ISSN: 1999-4907https://repository.urosario.edu.co/handle/10336/26775engMDPI journals136No. 1122ForestsVol. 4Forests, ISSN:1999-4907, Vol.4, No.1 (February, 2013); pp. 122-136https://www.mdpi.com/1999-4907/4/1/122Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Forestsinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURHerbaceous richnessUnderstory richnessPine flatwoodsRegression treeForest inventoryRichness modelPredicting Understory Species Richness from Stand and Management Characteristics Using Regression TreesPredicción de la riqueza de especies del sotobosque a partir de las características de manejo y del rodal mediante árboles de regresiónarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Timilsina, N.Cropper, W.P., Jr.Escobedo, F.J.Lima, J.M.T.ORIGINALforests-04-00122.pdfapplication/pdf619750https://repository.urosario.edu.co/bitstreams/84d7af9d-d9e2-4fdd-96b9-cd20b43f0687/downloada55be1279f670a5aed341440f06b1226MD51TEXTforests-04-00122.pdf.txtforests-04-00122.pdf.txtExtracted texttext/plain43272https://repository.urosario.edu.co/bitstreams/ca7b9877-f4f7-4d12-85e5-c0b8afed05f2/download174c0ce1540865603a6b5c181690319fMD52THUMBNAILforests-04-00122.pdf.jpgforests-04-00122.pdf.jpgGenerated Thumbnailimage/jpeg4902https://repository.urosario.edu.co/bitstreams/5dcaef3e-dd37-4109-9c60-ff0dc947ed3f/download98f7be4e2c9b5d6dd4cde0a0a662aa14MD5310336/26775oai:repository.urosario.edu.co:10336/267752021-06-03 00:49:59.362https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees |
dc.title.TranslatedTitle.spa.fl_str_mv |
Predicción de la riqueza de especies del sotobosque a partir de las características de manejo y del rodal mediante árboles de regresión |
title |
Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees |
spellingShingle |
Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees Herbaceous richness Understory richness Pine flatwoods Regression tree Forest inventory Richness model |
title_short |
Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees |
title_full |
Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees |
title_fullStr |
Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees |
title_full_unstemmed |
Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees |
title_sort |
Predicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees |
dc.subject.keyword.spa.fl_str_mv |
Herbaceous richness Understory richness Pine flatwoods Regression tree Forest inventory Richness model |
topic |
Herbaceous richness Understory richness Pine flatwoods Regression tree Forest inventory Richness model |
description |
Managing forests for multiple ecosystem services such as timber, carbon, and biodiversity requires information on ecosystem structure and management characteristics. National forest inventory data are increasingly being used to quantify ecosystem services, but they mostly provide timber management and overstory data, while data on understory shrub and herbaceous diversity are limited. We obtained species richness and stand management data from relevant literature to develop a regression tree model that can be used to predict understory species richness from forest inventory data. Our model explained 57% of the variation in herbaceous species richness in the coastal plain pine forests of the southeastern USA. Results were verified using field data, and important predictors of herbaceous richness included stand age, forest type, time since fire, and time since herbicide-fertilizer application. This approach can make use of available forest inventories to rapidly and cost-effectively estimate understory species richness for subtropical pine forests |
publishDate |
2013 |
dc.date.created.spa.fl_str_mv |
2013-03-01 |
dc.date.accessioned.none.fl_str_mv |
2020-08-19T14:40:13Z |
dc.date.available.none.fl_str_mv |
2020-08-19T14:40:13Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/f4010122 |
dc.identifier.issn.none.fl_str_mv |
ISSN: 1999-4907 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/26775 |
url |
https://doi.org/10.3390/f4010122 https://repository.urosario.edu.co/handle/10336/26775 |
identifier_str_mv |
ISSN: 1999-4907 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
136 |
dc.relation.citationIssue.none.fl_str_mv |
No. 1 |
dc.relation.citationStartPage.none.fl_str_mv |
122 |
dc.relation.citationTitle.none.fl_str_mv |
Forests |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 4 |
dc.relation.ispartof.spa.fl_str_mv |
Forests, ISSN:1999-4907, Vol.4, No.1 (February, 2013); pp. 122-136 |
dc.relation.uri.spa.fl_str_mv |
https://www.mdpi.com/1999-4907/4/1/122 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
MDPI journals |
dc.source.spa.fl_str_mv |
Forests |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/84d7af9d-d9e2-4fdd-96b9-cd20b43f0687/download https://repository.urosario.edu.co/bitstreams/ca7b9877-f4f7-4d12-85e5-c0b8afed05f2/download https://repository.urosario.edu.co/bitstreams/5dcaef3e-dd37-4109-9c60-ff0dc947ed3f/download |
bitstream.checksum.fl_str_mv |
a55be1279f670a5aed341440f06b1226 174c0ce1540865603a6b5c181690319f 98f7be4e2c9b5d6dd4cde0a0a662aa14 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167700033765376 |