Efficiency measurement of research groups using Data Envelopment Analysis and Bayesian networks
Applications of non-parametric frontier production methods such as Data Envelopment Analysis (DEA) have gained popularity and recognition in scientometrics. DEA seems to be a useful method to assess the efficiency of research units in different fields and disciplines. However, DEA results give only...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2010
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/24660
- Acceso en línea:
- https://doi.org/10.1007/s11192-009-0122-y
https://repository.urosario.edu.co/handle/10336/24660
- Palabra clave:
- Bayesian Networks
Data Envelopment Analysis
Efficiency measurement
Research groups
Scientific production
- Rights
- License
- Bloqueado (Texto referencial)
id |
EDOCUR2_e0843a189b376f54b2321cf080a564c8 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/24660 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
2178a5fc-d352-4202-a3eb-3b14ad640a2b-10ef66f1a-f6f1-4a62-a4b2-c829f253ad92-13d600392-bb24-466b-be49-98de0828c714-123275a7e-bb03-40d4-bc07-0a69c56d6f2a-105bcf2a3-0059-4daf-9eb1-0f6056b065cb-1970b4868-3ace-402c-b751-4a08fcf264fb-12020-06-11T13:20:58Z2020-06-11T13:20:58Z2010Applications of non-parametric frontier production methods such as Data Envelopment Analysis (DEA) have gained popularity and recognition in scientometrics. DEA seems to be a useful method to assess the efficiency of research units in different fields and disciplines. However, DEA results give only a synthetic measurement that does not expose the multiple relationships between scientific production variables by discipline. Although some papers mention the need for studies by discipline, they do not show how to take those differences into account in the analysis. Some studies tend to homogenize the behaviour of different practice communities. In this paper we propose a framework to make inferences about DEA efficiencies, recognizing the underlying relationships between production variables and efficiency by discipline, using Bayesian Network (BN) analysis. Two different DEA extensions are applied to calculate the efficiency of research groups: one called CCRO and the other Cross Efficiency (CE). A BN model is proposed as a method to analyze the results obtained from DEA. BNs allow us to recognize peculiarities of each discipline in terms of scientific production and the efficiency frontier. Besides, BNs provide the possibility for a manager to propose what-if scenarios based on the relations found. © 2009 AkadÉmiai KiadÓ, Budapest, Hungary.application/pdfhttps://doi.org/10.1007/s11192-009-0122-y1588-28610138-9130https://repository.urosario.edu.co/handle/10336/24660engKluwer Academic Publishers721No. 3711ScientometricsVol. 83Scientometrics, ISSN:1588-2861, 0138-9130, Vol.83, No.3 (2010); pp. 711-721https://link.springer.com/article/10.1007%2Fs11192-009-0122-yBloqueado (Texto referencial)http://purl.org/coar/access_right/c_14cbinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURBayesian NetworksData Envelopment AnalysisEfficiency measurementResearch groupsScientific productionEfficiency measurement of research groups using Data Envelopment Analysis and Bayesian networksarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Ruiz, Cristhian FabiánBonilla, RicardoChavarro, DiegoOrozco, Luis AntonioZarama, RobertoPolanco, Xavier10336/24660oai:repository.urosario.edu.co:10336/246602021-06-03 00:50:32.477https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Efficiency measurement of research groups using Data Envelopment Analysis and Bayesian networks |
title |
Efficiency measurement of research groups using Data Envelopment Analysis and Bayesian networks |
spellingShingle |
Efficiency measurement of research groups using Data Envelopment Analysis and Bayesian networks Bayesian Networks Data Envelopment Analysis Efficiency measurement Research groups Scientific production |
title_short |
Efficiency measurement of research groups using Data Envelopment Analysis and Bayesian networks |
title_full |
Efficiency measurement of research groups using Data Envelopment Analysis and Bayesian networks |
title_fullStr |
Efficiency measurement of research groups using Data Envelopment Analysis and Bayesian networks |
title_full_unstemmed |
Efficiency measurement of research groups using Data Envelopment Analysis and Bayesian networks |
title_sort |
Efficiency measurement of research groups using Data Envelopment Analysis and Bayesian networks |
dc.subject.keyword.spa.fl_str_mv |
Bayesian Networks Data Envelopment Analysis Efficiency measurement Research groups Scientific production |
topic |
Bayesian Networks Data Envelopment Analysis Efficiency measurement Research groups Scientific production |
description |
Applications of non-parametric frontier production methods such as Data Envelopment Analysis (DEA) have gained popularity and recognition in scientometrics. DEA seems to be a useful method to assess the efficiency of research units in different fields and disciplines. However, DEA results give only a synthetic measurement that does not expose the multiple relationships between scientific production variables by discipline. Although some papers mention the need for studies by discipline, they do not show how to take those differences into account in the analysis. Some studies tend to homogenize the behaviour of different practice communities. In this paper we propose a framework to make inferences about DEA efficiencies, recognizing the underlying relationships between production variables and efficiency by discipline, using Bayesian Network (BN) analysis. Two different DEA extensions are applied to calculate the efficiency of research groups: one called CCRO and the other Cross Efficiency (CE). A BN model is proposed as a method to analyze the results obtained from DEA. BNs allow us to recognize peculiarities of each discipline in terms of scientific production and the efficiency frontier. Besides, BNs provide the possibility for a manager to propose what-if scenarios based on the relations found. © 2009 AkadÉmiai KiadÓ, Budapest, Hungary. |
publishDate |
2010 |
dc.date.created.spa.fl_str_mv |
2010 |
dc.date.accessioned.none.fl_str_mv |
2020-06-11T13:20:58Z |
dc.date.available.none.fl_str_mv |
2020-06-11T13:20:58Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/s11192-009-0122-y |
dc.identifier.issn.none.fl_str_mv |
1588-2861 0138-9130 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/24660 |
url |
https://doi.org/10.1007/s11192-009-0122-y https://repository.urosario.edu.co/handle/10336/24660 |
identifier_str_mv |
1588-2861 0138-9130 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
721 |
dc.relation.citationIssue.none.fl_str_mv |
No. 3 |
dc.relation.citationStartPage.none.fl_str_mv |
711 |
dc.relation.citationTitle.none.fl_str_mv |
Scientometrics |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 83 |
dc.relation.ispartof.spa.fl_str_mv |
Scientometrics, ISSN:1588-2861, 0138-9130, Vol.83, No.3 (2010); pp. 711-721 |
dc.relation.uri.spa.fl_str_mv |
https://link.springer.com/article/10.1007%2Fs11192-009-0122-y |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.acceso.spa.fl_str_mv |
Bloqueado (Texto referencial) |
rights_invalid_str_mv |
Bloqueado (Texto referencial) http://purl.org/coar/access_right/c_14cb |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Kluwer Academic Publishers |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167741552132096 |