Exploring the phylogeographic patterns and genetic diversity of urban cockroaches (Dictyoptera:Blattodea) of Bogota, Colombia.
Las cucarachas son uno de los insectos más exitosos del planeta debido a sus adaptaciones morfológicas y fisiológicas que les permiten tener una amplia distribución en el mundo. Algunas especies tiene la habilidad de habitar viviendas humanas y propagar enfermedades y microorganismos, razón por la c...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/20847
- Acceso en línea:
- https://doi.org/10.48713/10336_20847
https://repository.urosario.edu.co/handle/10336/20847
- Palabra clave:
- Cucarachas
Blattodea
Peste
Diversidad genética
Áreas urbanas
Neotrópico
Invertebrados
Cockroach
Blattodea
Pest
Genetic diversity
Urban areas
Neotropics
Cucarachas
Dictyoptera: Blattodea
Genética de insectos
Blattodea-Taxonomía
- Rights
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
EDOCUR2_de6bc3c9ce87292d0d31b7fde5593d31 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/20847 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Exploring the phylogeographic patterns and genetic diversity of urban cockroaches (Dictyoptera:Blattodea) of Bogota, Colombia. |
dc.title.TranslatedTitle.spa.fl_str_mv |
Explorando los patrones filogeográficos y la diversidad genética de las cucarachas urbanas. (Dictyoptera: Blattodea) de Bogotá, Colombia |
title |
Exploring the phylogeographic patterns and genetic diversity of urban cockroaches (Dictyoptera:Blattodea) of Bogota, Colombia. |
spellingShingle |
Exploring the phylogeographic patterns and genetic diversity of urban cockroaches (Dictyoptera:Blattodea) of Bogota, Colombia. Cucarachas Blattodea Peste Diversidad genética Áreas urbanas Neotrópico Invertebrados Cockroach Blattodea Pest Genetic diversity Urban areas Neotropics Cucarachas Dictyoptera: Blattodea Genética de insectos Blattodea-Taxonomía |
title_short |
Exploring the phylogeographic patterns and genetic diversity of urban cockroaches (Dictyoptera:Blattodea) of Bogota, Colombia. |
title_full |
Exploring the phylogeographic patterns and genetic diversity of urban cockroaches (Dictyoptera:Blattodea) of Bogota, Colombia. |
title_fullStr |
Exploring the phylogeographic patterns and genetic diversity of urban cockroaches (Dictyoptera:Blattodea) of Bogota, Colombia. |
title_full_unstemmed |
Exploring the phylogeographic patterns and genetic diversity of urban cockroaches (Dictyoptera:Blattodea) of Bogota, Colombia. |
title_sort |
Exploring the phylogeographic patterns and genetic diversity of urban cockroaches (Dictyoptera:Blattodea) of Bogota, Colombia. |
dc.contributor.advisor.none.fl_str_mv |
Sanchez-Herrera, Melissa |
dc.subject.spa.fl_str_mv |
Cucarachas Blattodea Peste Diversidad genética Áreas urbanas Neotrópico |
topic |
Cucarachas Blattodea Peste Diversidad genética Áreas urbanas Neotrópico Invertebrados Cockroach Blattodea Pest Genetic diversity Urban areas Neotropics Cucarachas Dictyoptera: Blattodea Genética de insectos Blattodea-Taxonomía |
dc.subject.ddc.spa.fl_str_mv |
Invertebrados |
dc.subject.keyword.spa.fl_str_mv |
Cockroach Blattodea Pest Genetic diversity Urban areas Neotropics |
dc.subject.lemb.spa.fl_str_mv |
Cucarachas Dictyoptera: Blattodea Genética de insectos Blattodea-Taxonomía |
description |
Las cucarachas son uno de los insectos más exitosos del planeta debido a sus adaptaciones morfológicas y fisiológicas que les permiten tener una amplia distribución en el mundo. Algunas especies tiene la habilidad de habitar viviendas humanas y propagar enfermedades y microorganismos, razón por la cual son consideradas pestes domiciliarias. Aquí queremos identificar las especies de cucarachas urbanas habitando en tres localidades de Bogotá D.C, establecer sus relaciones filogenéticas con otras poblaciones de la misma especie a través del mundo y explorar la diversidad y estructuración genética entre las localidades evaluadas. Para lograr estos objetivos usamos dos amplicones de ADNmt: el fragmento ribosomal 16S (~400pb) y el gen Barcode COI (~600pb). Colectamos un total de 44 individuos en las localidades de Bosa, Kennedy y Chapinero. Molecularmente se identificó 1 individuo de Periplaneta americana, 1 de Periplaneta brunnea y 42 individuos de Blattella germanica. Las reconstrucciones filogenéticas no mostraron un patrón geográfico claro de parentesco para las tres especies, consistente con la dispersión mediada por humanos. Para la especie más común, Blattella germanica, se estableció la diversidad genética y la diferenciación poblacional en las tres localidades estudiadas. Nuestros resultados sugieren una alta diversidad genética para el gen COI, sin embargo esta no está explicada por una proximidad geográfica entre las poblaciones. Finalmente, la estructuración genética (FST) entre las poblaciones indica un flujo genético existente entre las localidades, sugiriendo que estas no representan una barrera y que el transporte mediado por humanos puede ayudar en el intercambio genético para estas poblaciones. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-02-11T20:33:00Z |
dc.date.available.none.fl_str_mv |
2020-02-11T20:33:00Z |
dc.date.created.none.fl_str_mv |
2020-01-24 |
dc.type.eng.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.document.spa.fl_str_mv |
Trabajo de grado |
dc.type.spa.spa.fl_str_mv |
Trabajo de grado |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.48713/10336_20847 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/20847 |
url |
https://doi.org/10.48713/10336_20847 https://repository.urosario.edu.co/handle/10336/20847 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia Abierto (Texto Completo) http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.spa.fl_str_mv |
Facultad de Ciencias Naturales y Matemáticas |
dc.publisher.program.spa.fl_str_mv |
Biología |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.spa.fl_str_mv |
Alberti, M., & Marzluff, J. M. (2004). Ecological resilience in urban ecosystems: Linking urban patterns to human and ecological functions. Urban Ecosystems, 7(3), 241–265. doi: https://doi.org/10.1023/B:UECO.0000044038.90173.c6 Bell, W. J., Roth, L. M., & Nalepa, C. A. (2007). Cockroaches: Ecology, Behavior and natural history (1st ed.). Baltimore: The Johns Hopkins University Press. Boyer, S., & Rivault, C. (2004). Interspecific competition among urban cockroach species. Entomologia Experimentalis et Applicata, 113(1), 15–23. https://doi.org/10.1111/j.0013-8703.2004.00200.x Brandon-Mong, G. J., Gan, H. M., Sing, K. W., Lee, P. S., Lim, P. E., & Wilson, J. J. (2015). DNA metabarcoding of insects and allies: An evaluation of primers and pipelines. Bulletin of Entomological Research, 105(6), 717–727. https://doi.org/10.1017/S0007485315000681 Bujang, N. S., & Lee, C. Y. (2010). Interspecific competition between the smooth cockroach symploce pallens and the German cockroach Blattella germanica (Dictyoptera: Blattellidae) under different food and water regimes. Tropical Biomedicine, 27(1), 103–114. Cochran, D. G. (1999). Cockroaches: Their Biology, Distribution, and Control. World Health Organization/CDS/CPC/WHOPES/99.3. Geneva, Switzerland. DANE. (2018). Censo Nacional de Población y Vivienda 2018. Retrieved from https://www.dane.gov.co/files/censo2018/informacion-tecnica/cnpv-2018-presentacion-3ra-entrega.pdf Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340 Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x Gutiérrez, P., Pinilla, M. A., Cárdenas, J. C., Oliveros, W. A., Jaramillo, G. I., & Pavas, N. C. (2017). Blattella germánica (Blattodea: Blattellidae) como potencial vector mecánico de infecciones asociadas a la atención en salud (IAAS) en un centro hospitalario de Villavicencio (Meta-Colombia). Nova, 14(25), 19. https://doi.org/10.22490/24629448.1723 Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Le, S. V. (2007). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular biology and evolution. Molecular Biology and Evolution, 35(2), msx281. https://doi.org/10.5281/zenodo.854445 Huelsenbeck, J. P.., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754–755. Retrieved from https://academic.oup.com/bioinformatics/article/17/8/754/235132 Jaramillo-Ramirez, G. I., Cárdenas-Henao, H., González-Obando, R., & Rosero-Galindo, C. Y. (2011). Genetic variability of Five Periplaneta americana L. (Dyctioptera: Blattidae) populations in southwestern Colombia using the AFLP molecular marker technique. Neotropical Entomology, 39(3), 371–378. https://doi.org/10.1590/s1519-566x2010000300010 Jeffery, J., Sulaiman, S., Oothuman, P., Vellayan, S., Zainol-Ariffin, P., Paramaswaran, S., … Abdul-Aziz, N. M. (2012). Domiciliary cockroaches found in restaurants in five zones of Kuala Lumpur Federal Territory, peninsular Malaysia. Tropical Biomedicine, 29(1), 180–186. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587–589. https://doi.org/10.1038/nmeth.4285 Kang, J. H., Noh, E. S., Park, J. Y., An, C. M., Choi, J. H., & Kim, J. K. (2015). Rapid origin determination of the Northern Mauxia shrimp (Acetes chinensis) based on allele specific polymerase chain reaction of partial mitochondrial 16S rRNA gene. Asian-Australasian Journal of Animal Sciences, 28(4), 568–572. https://doi.org/10.5713/ajas.14.0613 Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059–3066. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12136088%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC135756 Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., ... & Thierer, T. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647-1649. Larsson, A. (2014). AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics, 30(22), 3276–3278. https://doi.org/10.1093/bioinformatics/btu531 Leigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110–1116. https://doi.org/10.1111/2041-210X.12410 Maddison, W. P., & Maddison, D. R. (2018). Mesquite: a modular system for evolutionary analysis. Mesquite Project Team. Retrieved from http://www.mesquiteproject.org Miles, L. S., Rivkin, L. R., Johnson, M. T. J., Munshi‐South, J., & Verrelli, B. C. (2019). Gene flow and genetic drift in urban environments. Molecular Ecology, 28(18), 4138–4151. https://doi.org/10.1111/mec.15221 Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300 Resh, H. V., & Cardé, T. R. (2003). Encyclopedia of insects. Hong Kong: Academic Press. Roth, L. M. (1982). The American Cockroach. (W. J. Bell & K. G. Adiyodi, Eds.), The American Cockroach. Chapman and Hall. https://doi.org/10.1007/978-94-009-5827-2 Roth, L. M. (1985). A taxonomic revision of the genus Blattella Caudell (Dictyoptera, Blattaria, Blattidae). Entomologica Scandinavica. Sanchez Herrera, M., Beatty, C., Nunes, R., Realpe, E., Salazar, C., & Ware, J. L. (2018). A molecular systematic analysis of the Neotropical banner winged damselflies (Polythoridae: Odonata). Systematic Entomology, 43(1), 56–67. https://doi.org/10.1111/syen.12249 Schal, C. (1990). Integrated Suppression of Synanthropic Cockroaches. Annual Review of Entomology, 35(1), 521–551. https://doi.org/10.1146/annurev.ento.35.1.521 Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction Primers. Annals of the Entomological Society of America, 87(6), 651–701. https://doi.org/10.1093/aesa/87.6.651 Slatkin, M. (1985). Gene flow in natural populations. Annual Review of Ecology and Systematics. Vol. 16, 393–430. Sriwichai, P., Nacapunchai, D., Pasuralertsakul, S., Rongsriyam, Y., & Thavara, U. (2002). Survey of indoor cockroaches in some dwellings in Bangkok. The Southeast Asian Journal of Tropical Medicine and Public Health, 33 Suppl 3(Suppl 3), 36–40. Tsai, C.-W., & Lee, H.-J. (2001). Analysis of Specific Adaptation to a Domicile Habitat: A Comparative Study of Two Closely Related Cockroach Species. Journal of Medical Entomology, 38(2), 245–252. https://doi.org/10.1603/0022-2585-38.2.245 Vahhabi, A., Shemshad, K., Mohammadi, P., Sayyadi, M., Shemshad, M., & Rafinejad, J. (2011). Microbiological study of domestic cockroaches in human dwelling localities. African Journal of Microbiology Research, 5(31), 5790–5792. https://doi.org/10.5897/ajmr11.1075 Vargo, E. L., Crissman, J. R., Booth, W., Santangelo, R. G., Mukha, D. V., & Schal, C. (2014). Hierarchical genetic analysis of German cockroach (Blattella germanica) populations from within buildings to across continents. PLoS ONE, 9(7). https://doi.org/10.1371/journal.pone.0102321 Von Beeren, C., Stoeckle, M. Y., Xia, J., Burke, G., & Kronauer, D. J. C. (2015). Interbreeding among deeply divergent mitochondrial lineages in the American cockroach (Periplaneta americana). Scientific Reports, 5, 1–7. https://doi.org/10.1038/srep08297 |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/14126abc-105e-452e-9728-a158fb122941/download https://repository.urosario.edu.co/bitstreams/5a79b176-9853-48c8-a5c5-61cc277f69a0/download https://repository.urosario.edu.co/bitstreams/bdb3e0ca-61f1-4b3c-858b-e39e4e167b81/download https://repository.urosario.edu.co/bitstreams/f5a92360-2d19-42cb-ad43-246d3ae279b5/download https://repository.urosario.edu.co/bitstreams/bf6beffe-efe6-40f3-b97d-71695d53523d/download |
bitstream.checksum.fl_str_mv |
6a25bc98155895932f1adbf318523023 fab9d9ed61d64f6ac005dee3306ae77e 217700a34da79ed616c2feb68d4c5e06 066bc9867683c38ee6d5310beb5d7bf1 28ec5f9d82fc96dfe3df8ac9a6a41cff |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1831928128963870720 |
spelling |
Sanchez-Herrera, Melissa35199256600De Martino Fonseca, Frasella PaolaBiólogoFull timed1b60930-c19e-4351-b84a-bd039cd2cbd06002020-02-11T20:33:00Z2020-02-11T20:33:00Z2020-01-24Las cucarachas son uno de los insectos más exitosos del planeta debido a sus adaptaciones morfológicas y fisiológicas que les permiten tener una amplia distribución en el mundo. Algunas especies tiene la habilidad de habitar viviendas humanas y propagar enfermedades y microorganismos, razón por la cual son consideradas pestes domiciliarias. Aquí queremos identificar las especies de cucarachas urbanas habitando en tres localidades de Bogotá D.C, establecer sus relaciones filogenéticas con otras poblaciones de la misma especie a través del mundo y explorar la diversidad y estructuración genética entre las localidades evaluadas. Para lograr estos objetivos usamos dos amplicones de ADNmt: el fragmento ribosomal 16S (~400pb) y el gen Barcode COI (~600pb). Colectamos un total de 44 individuos en las localidades de Bosa, Kennedy y Chapinero. Molecularmente se identificó 1 individuo de Periplaneta americana, 1 de Periplaneta brunnea y 42 individuos de Blattella germanica. Las reconstrucciones filogenéticas no mostraron un patrón geográfico claro de parentesco para las tres especies, consistente con la dispersión mediada por humanos. Para la especie más común, Blattella germanica, se estableció la diversidad genética y la diferenciación poblacional en las tres localidades estudiadas. Nuestros resultados sugieren una alta diversidad genética para el gen COI, sin embargo esta no está explicada por una proximidad geográfica entre las poblaciones. Finalmente, la estructuración genética (FST) entre las poblaciones indica un flujo genético existente entre las localidades, sugiriendo que estas no representan una barrera y que el transporte mediado por humanos puede ayudar en el intercambio genético para estas poblaciones.Cockroaches are one of the most successful insects on the planet, due to morphological and physiological adaptations which allow them to have a wide distribution. Some species can inhabit human dwellings, spread diseases and microorganisms’ reason why they are considered domiciliary pests. Here, I wanted to identify the species of urban cockroaches living in three localities of Bogotá D.C; establish their phylogenetic relationships to other populations across the world and explore the genetic diversity and genetic population structure among the three localities. To accomplish these goals, I used two mtDNA amplicons: the ribosomal 16S (~400bp) fragment and the barcode gene COI (~600bp). I collected a total of 44 individuals across the localities sampled: Bosa, Kennedy, and Chapinero. From those, I molecularly identify 1 individual of Periplaneta americana, 1 of Periplaneta brunnea and 42 individuals of Blattella germanica. The phylogenetic reconstructions didn’t show a clear geographical pattern of relatedness for the three species, consistent with human-mediated dispersion. For the most common species, Blattella germanica, I was able to establish genetic diversity and population differentiation across the three localities within the city. Our results suggest, a high genetic diversity for the COI gene, however, this diversity was not explained by the geographical proximity of the populations. Finally, the population structure FST among these populations indicates an existent genetic flow across the evaluated localities in the city, which may indicate that cities do not represent a barrier and that human-mediated transport could be helping in the genetic exchange for these populations.application/pdfhttps://doi.org/10.48713/10336_20847 https://repository.urosario.edu.co/handle/10336/20847engUniversidad del RosarioFacultad de Ciencias Naturales y MatemáticasBiologíaAtribución-NoComercial-SinDerivadas 2.5 ColombiaAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2Alberti, M., & Marzluff, J. M. (2004). Ecological resilience in urban ecosystems: Linking urban patterns to human and ecological functions. Urban Ecosystems, 7(3), 241–265. doi: https://doi.org/10.1023/B:UECO.0000044038.90173.c6Bell, W. J., Roth, L. M., & Nalepa, C. A. (2007). Cockroaches: Ecology, Behavior and natural history (1st ed.). Baltimore: The Johns Hopkins University Press.Boyer, S., & Rivault, C. (2004). Interspecific competition among urban cockroach species. Entomologia Experimentalis et Applicata, 113(1), 15–23. https://doi.org/10.1111/j.0013-8703.2004.00200.xBrandon-Mong, G. J., Gan, H. M., Sing, K. W., Lee, P. S., Lim, P. E., & Wilson, J. J. (2015). DNA metabarcoding of insects and allies: An evaluation of primers and pipelines. Bulletin of Entomological Research, 105(6), 717–727. https://doi.org/10.1017/S0007485315000681Bujang, N. S., & Lee, C. Y. (2010). Interspecific competition between the smooth cockroach symploce pallens and the German cockroach Blattella germanica (Dictyoptera: Blattellidae) under different food and water regimes. Tropical Biomedicine, 27(1), 103–114.Cochran, D. G. (1999). Cockroaches: Their Biology, Distribution, and Control. World Health Organization/CDS/CPC/WHOPES/99.3. Geneva, Switzerland.DANE. (2018). Censo Nacional de Población y Vivienda 2018. Retrieved from https://www.dane.gov.co/files/censo2018/informacion-tecnica/cnpv-2018-presentacion-3ra-entrega.pdfEdgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.xGutiérrez, P., Pinilla, M. A., Cárdenas, J. C., Oliveros, W. A., Jaramillo, G. I., & Pavas, N. C. (2017). Blattella germánica (Blattodea: Blattellidae) como potencial vector mecánico de infecciones asociadas a la atención en salud (IAAS) en un centro hospitalario de Villavicencio (Meta-Colombia). Nova, 14(25), 19. https://doi.org/10.22490/24629448.1723Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Le, S. V. (2007). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular biology and evolution. Molecular Biology and Evolution, 35(2), msx281. https://doi.org/10.5281/zenodo.854445Huelsenbeck, J. P.., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754–755. Retrieved from https://academic.oup.com/bioinformatics/article/17/8/754/235132Jaramillo-Ramirez, G. I., Cárdenas-Henao, H., González-Obando, R., & Rosero-Galindo, C. Y. (2011). Genetic variability of Five Periplaneta americana L. (Dyctioptera: Blattidae) populations in southwestern Colombia using the AFLP molecular marker technique. Neotropical Entomology, 39(3), 371–378. https://doi.org/10.1590/s1519-566x2010000300010Jeffery, J., Sulaiman, S., Oothuman, P., Vellayan, S., Zainol-Ariffin, P., Paramaswaran, S., … Abdul-Aziz, N. M. (2012). Domiciliary cockroaches found in restaurants in five zones of Kuala Lumpur Federal Territory, peninsular Malaysia. Tropical Biomedicine, 29(1), 180–186.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6), 587–589. https://doi.org/10.1038/nmeth.4285Kang, J. H., Noh, E. S., Park, J. Y., An, C. M., Choi, J. H., & Kim, J. K. (2015). Rapid origin determination of the Northern Mauxia shrimp (Acetes chinensis) based on allele specific polymerase chain reaction of partial mitochondrial 16S rRNA gene. Asian-Australasian Journal of Animal Sciences, 28(4), 568–572. https://doi.org/10.5713/ajas.14.0613Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059–3066. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12136088%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC135756Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., ... & Thierer, T. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647-1649.Larsson, A. (2014). AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics, 30(22), 3276–3278. https://doi.org/10.1093/bioinformatics/btu531Leigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110–1116. https://doi.org/10.1111/2041-210X.12410Maddison, W. P., & Maddison, D. R. (2018). Mesquite: a modular system for evolutionary analysis. Mesquite Project Team. Retrieved from http://www.mesquiteproject.orgMiles, L. S., Rivkin, L. R., Johnson, M. T. J., Munshi‐South, J., & Verrelli, B. C. (2019). Gene flow and genetic drift in urban environments. Molecular Ecology, 28(18), 4138–4151. https://doi.org/10.1111/mec.15221Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300Resh, H. V., & Cardé, T. R. (2003). Encyclopedia of insects. Hong Kong: Academic Press.Roth, L. M. (1982). The American Cockroach. (W. J. Bell & K. G. Adiyodi, Eds.), The American Cockroach. Chapman and Hall. https://doi.org/10.1007/978-94-009-5827-2Roth, L. M. (1985). A taxonomic revision of the genus Blattella Caudell (Dictyoptera, Blattaria, Blattidae). Entomologica Scandinavica.Sanchez Herrera, M., Beatty, C., Nunes, R., Realpe, E., Salazar, C., & Ware, J. L. (2018). A molecular systematic analysis of the Neotropical banner winged damselflies (Polythoridae: Odonata). Systematic Entomology, 43(1), 56–67. https://doi.org/10.1111/syen.12249Schal, C. (1990). Integrated Suppression of Synanthropic Cockroaches. Annual Review of Entomology, 35(1), 521–551. https://doi.org/10.1146/annurev.ento.35.1.521Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction Primers. Annals of the Entomological Society of America, 87(6), 651–701. https://doi.org/10.1093/aesa/87.6.651Slatkin, M. (1985). Gene flow in natural populations. Annual Review of Ecology and Systematics. Vol. 16, 393–430.Sriwichai, P., Nacapunchai, D., Pasuralertsakul, S., Rongsriyam, Y., & Thavara, U. (2002). Survey of indoor cockroaches in some dwellings in Bangkok. The Southeast Asian Journal of Tropical Medicine and Public Health, 33 Suppl 3(Suppl 3), 36–40.Tsai, C.-W., & Lee, H.-J. (2001). Analysis of Specific Adaptation to a Domicile Habitat: A Comparative Study of Two Closely Related Cockroach Species. Journal of Medical Entomology, 38(2), 245–252. https://doi.org/10.1603/0022-2585-38.2.245Vahhabi, A., Shemshad, K., Mohammadi, P., Sayyadi, M., Shemshad, M., & Rafinejad, J. (2011). Microbiological study of domestic cockroaches in human dwelling localities. African Journal of Microbiology Research, 5(31), 5790–5792. https://doi.org/10.5897/ajmr11.1075Vargo, E. L., Crissman, J. R., Booth, W., Santangelo, R. G., Mukha, D. V., & Schal, C. (2014). Hierarchical genetic analysis of German cockroach (Blattella germanica) populations from within buildings to across continents. PLoS ONE, 9(7). https://doi.org/10.1371/journal.pone.0102321Von Beeren, C., Stoeckle, M. Y., Xia, J., Burke, G., & Kronauer, D. J. C. (2015). Interbreeding among deeply divergent mitochondrial lineages in the American cockroach (Periplaneta americana). Scientific Reports, 5, 1–7. https://doi.org/10.1038/srep08297instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURCucarachasBlattodeaPesteDiversidad genéticaÁreas urbanasNeotrópicoInvertebrados592600CockroachBlattodeaPestGenetic diversityUrban areasNeotropicsCucarachasDictyoptera: BlattodeaGenética de insectosBlattodea-TaxonomíaExploring the phylogeographic patterns and genetic diversity of urban cockroaches (Dictyoptera:Blattodea) of Bogota, Colombia.Explorando los patrones filogeográficos y la diversidad genética de las cucarachas urbanas. (Dictyoptera: Blattodea) de Bogotá, ColombiabachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fORIGINALDeMartinoFonseca-FrasellaPaola-2020.pdfDeMartinoFonseca-FrasellaPaola-2020.pdfMain articleapplication/pdf2979853https://repository.urosario.edu.co/bitstreams/14126abc-105e-452e-9728-a158fb122941/download6a25bc98155895932f1adbf318523023MD53LICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/5a79b176-9853-48c8-a5c5-61cc277f69a0/downloadfab9d9ed61d64f6ac005dee3306ae77eMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.urosario.edu.co/bitstreams/bdb3e0ca-61f1-4b3c-858b-e39e4e167b81/download217700a34da79ed616c2feb68d4c5e06MD55TEXTDeMartinoFonseca-FrasellaPaola-2020.pdf.txtDeMartinoFonseca-FrasellaPaola-2020.pdf.txtExtracted texttext/plain65751https://repository.urosario.edu.co/bitstreams/f5a92360-2d19-42cb-ad43-246d3ae279b5/download066bc9867683c38ee6d5310beb5d7bf1MD56THUMBNAILDeMartinoFonseca-FrasellaPaola-2020.pdf.jpgDeMartinoFonseca-FrasellaPaola-2020.pdf.jpgGenerated Thumbnailimage/jpeg2916https://repository.urosario.edu.co/bitstreams/bf6beffe-efe6-40f3-b97d-71695d53523d/download28ec5f9d82fc96dfe3df8ac9a6a41cffMD5710336/20847oai:repository.urosario.edu.co:10336/208472021-03-03 17:13:44.028http://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiahttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo= |