Graphs in phylogenetic comparative analysis: Anscombe's quartet revisited

In 1973, the statistician Francis Anscombe used a clever set of bivariate datasets (now known as Anscombe's quartet) to illustrate the importance of graphing data as a component of statistical analyses. In his example, each of the four datasets yielded identical regression coefficients and mode...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/22592
Acceso en línea:
https://doi.org/10.1111/2041-210X.13067
https://repository.urosario.edu.co/handle/10336/22592
Palabra clave:
Comparative methods
Macroevolution
Phylogeny
Plotting
Visualization
Rights
License
Abierto (Texto Completo)
id EDOCUR2_da5bd68b9f73efe7f7b1959850ba6ba5
oai_identifier_str oai:repository.urosario.edu.co:10336/22592
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 5fe626cc-9fa8-40ff-a954-105329f7fd2dee5a6452-1180-4a94-bf59-279ec9cc3c69ab4ce66b-6fbd-4e61-9253-9433d2cf245c3593286002020-05-25T23:57:03Z2020-05-25T23:57:03Z2018In 1973, the statistician Francis Anscombe used a clever set of bivariate datasets (now known as Anscombe's quartet) to illustrate the importance of graphing data as a component of statistical analyses. In his example, each of the four datasets yielded identical regression coefficients and model fits, and yet when visualized revealed strikingly different patterns of covariation between x and y. Phylogenetic comparative methods (the set of methodologies that use phylogenies, often combined with phenotypic trait data, to make inferences about evolution) are statistical methods too; yet visualizing the data and phylogeny in a sensible way that would permit us to detect unexpected patterns or unanticipated deviations from model assumptions is not a routine component of phylogenetic comparative analyses. Here, we use a quartet of phylogenetic datasets to illustrate that the same estimated parameters and model fits can be obtained from data that were generated using markedly different procedures—including pure Brownian motion evolution and randomly selected data uncorrelated with the tree. Just as in the case of Anscombe's quartet, when graphed the differences between the four datasets are quickly revealed. The intent of this article is to help build the general case that phylogenetic comparative methods are statistical methods and consequently that graphing or visualization should invariably be included as an essential step in our standard data analytical pipelines. Phylogenies are complex data structures and thus visualizing data on trees in a meaningful and useful way is a challenging endeavour. We recommend that the development of graphical methods for simultaneously visualizing data and tree should continue to be an important goal in phylogenetic comparative biology. © 2018 The Authors. Methods in Ecology and Evolution © 2018 British Ecological Societyapplication/pdfhttps://doi.org/10.1111/2041-210X.130672041210Xhttps://repository.urosario.edu.co/handle/10336/22592engBritish Ecological Society2154No. 102145Methods in Ecology and EvolutionVol. 9Methods in Ecology and Evolution, ISSN:2041210X, Vol.9, No.10 (2018); pp. 2145-2154https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052841574&doi=10.1111%2f2041-210X.13067&partnerID=40&md5=46423989d0a53345675ae8b01ea2b2bdAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURComparative methodsMacroevolutionPhylogenyPlottingVisualizationGraphs in phylogenetic comparative analysis: Anscombe's quartet revisitedarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Revell, Liam J.Schliep, KlausValderrama, EugenioRichardson, James-Edward10336/22592oai:repository.urosario.edu.co:10336/225922022-05-02 07:37:17.132212https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Graphs in phylogenetic comparative analysis: Anscombe's quartet revisited
title Graphs in phylogenetic comparative analysis: Anscombe's quartet revisited
spellingShingle Graphs in phylogenetic comparative analysis: Anscombe's quartet revisited
Comparative methods
Macroevolution
Phylogeny
Plotting
Visualization
title_short Graphs in phylogenetic comparative analysis: Anscombe's quartet revisited
title_full Graphs in phylogenetic comparative analysis: Anscombe's quartet revisited
title_fullStr Graphs in phylogenetic comparative analysis: Anscombe's quartet revisited
title_full_unstemmed Graphs in phylogenetic comparative analysis: Anscombe's quartet revisited
title_sort Graphs in phylogenetic comparative analysis: Anscombe's quartet revisited
dc.subject.keyword.spa.fl_str_mv Comparative methods
Macroevolution
Phylogeny
Plotting
Visualization
topic Comparative methods
Macroevolution
Phylogeny
Plotting
Visualization
description In 1973, the statistician Francis Anscombe used a clever set of bivariate datasets (now known as Anscombe's quartet) to illustrate the importance of graphing data as a component of statistical analyses. In his example, each of the four datasets yielded identical regression coefficients and model fits, and yet when visualized revealed strikingly different patterns of covariation between x and y. Phylogenetic comparative methods (the set of methodologies that use phylogenies, often combined with phenotypic trait data, to make inferences about evolution) are statistical methods too; yet visualizing the data and phylogeny in a sensible way that would permit us to detect unexpected patterns or unanticipated deviations from model assumptions is not a routine component of phylogenetic comparative analyses. Here, we use a quartet of phylogenetic datasets to illustrate that the same estimated parameters and model fits can be obtained from data that were generated using markedly different procedures—including pure Brownian motion evolution and randomly selected data uncorrelated with the tree. Just as in the case of Anscombe's quartet, when graphed the differences between the four datasets are quickly revealed. The intent of this article is to help build the general case that phylogenetic comparative methods are statistical methods and consequently that graphing or visualization should invariably be included as an essential step in our standard data analytical pipelines. Phylogenies are complex data structures and thus visualizing data on trees in a meaningful and useful way is a challenging endeavour. We recommend that the development of graphical methods for simultaneously visualizing data and tree should continue to be an important goal in phylogenetic comparative biology. © 2018 The Authors. Methods in Ecology and Evolution © 2018 British Ecological Society
publishDate 2018
dc.date.created.spa.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-05-25T23:57:03Z
dc.date.available.none.fl_str_mv 2020-05-25T23:57:03Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1111/2041-210X.13067
dc.identifier.issn.none.fl_str_mv 2041210X
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/22592
url https://doi.org/10.1111/2041-210X.13067
https://repository.urosario.edu.co/handle/10336/22592
identifier_str_mv 2041210X
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 2154
dc.relation.citationIssue.none.fl_str_mv No. 10
dc.relation.citationStartPage.none.fl_str_mv 2145
dc.relation.citationTitle.none.fl_str_mv Methods in Ecology and Evolution
dc.relation.citationVolume.none.fl_str_mv Vol. 9
dc.relation.ispartof.spa.fl_str_mv Methods in Ecology and Evolution, ISSN:2041210X, Vol.9, No.10 (2018); pp. 2145-2154
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052841574&doi=10.1111%2f2041-210X.13067&partnerID=40&md5=46423989d0a53345675ae8b01ea2b2bd
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv British Ecological Society
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167652832116736