How ectomycorrhizal communities vary from natural to urban ecosystems: Quercus humboldtii as a study case in the tropical Andes
Los paisajes urbanos son cada vez más importantes debido al crecimiento acelerado de la población y al aumento de la urbanización. Los ecosistemas urbanos sirven de hogar a diversas comunidades de plantas y hongos. Sin embargo, los estudios que se centran en la diversidad y estructura de las comunid...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/32397
- Acceso en línea:
- https://doi.org/10.48713/10336_32397
https://repository.urosario.edu.co/handle/10336/32397
- Palabra clave:
- Hongos ectomicorrízicos
Quercus humboldtii Bonpl
Estructura de la comunidad
Comunidades rurales vs urbanas
Estudios de la diversidad y estructura de las comunidades biológicas de hongos en ecosistemas urbanos
Análisis comparativo de variedad biológica de los Hongos Ectomicorrízicos en comunidades rurales vs urbanas
Ciencias botánicas
Ectomycorrhizal fungi
Quercus humboldtii Bonpl.
Community structure
Rural vs Urban communities
Studies of the diversity and structure of the biological communities of fungi in urban ecosystems
Comparative analysis of the biological variety of Ectomycorrhizal Fungi in rural vs urban communities
- Rights
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
EDOCUR2_d7f6f66e4e58b0d60207b1d3d05b4f54 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/32397 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.es.fl_str_mv |
How ectomycorrhizal communities vary from natural to urban ecosystems: Quercus humboldtii as a study case in the tropical Andes |
dc.title.TranslatedTitle.es.fl_str_mv |
Cómo las comunidades ectomicorrízicas varían de ecosistemas naturales a urbanos: Quercus humboldtii como caso de estudio en los Andes tropicales |
title |
How ectomycorrhizal communities vary from natural to urban ecosystems: Quercus humboldtii as a study case in the tropical Andes |
spellingShingle |
How ectomycorrhizal communities vary from natural to urban ecosystems: Quercus humboldtii as a study case in the tropical Andes Hongos ectomicorrízicos Quercus humboldtii Bonpl Estructura de la comunidad Comunidades rurales vs urbanas Estudios de la diversidad y estructura de las comunidades biológicas de hongos en ecosistemas urbanos Análisis comparativo de variedad biológica de los Hongos Ectomicorrízicos en comunidades rurales vs urbanas Ciencias botánicas Ectomycorrhizal fungi Quercus humboldtii Bonpl. Community structure Rural vs Urban communities Studies of the diversity and structure of the biological communities of fungi in urban ecosystems Comparative analysis of the biological variety of Ectomycorrhizal Fungi in rural vs urban communities |
title_short |
How ectomycorrhizal communities vary from natural to urban ecosystems: Quercus humboldtii as a study case in the tropical Andes |
title_full |
How ectomycorrhizal communities vary from natural to urban ecosystems: Quercus humboldtii as a study case in the tropical Andes |
title_fullStr |
How ectomycorrhizal communities vary from natural to urban ecosystems: Quercus humboldtii as a study case in the tropical Andes |
title_full_unstemmed |
How ectomycorrhizal communities vary from natural to urban ecosystems: Quercus humboldtii as a study case in the tropical Andes |
title_sort |
How ectomycorrhizal communities vary from natural to urban ecosystems: Quercus humboldtii as a study case in the tropical Andes |
dc.contributor.advisor.none.fl_str_mv |
Corrales Osorio, Adriana |
dc.subject.es.fl_str_mv |
Hongos ectomicorrízicos Quercus humboldtii Bonpl Estructura de la comunidad Comunidades rurales vs urbanas Estudios de la diversidad y estructura de las comunidades biológicas de hongos en ecosistemas urbanos Análisis comparativo de variedad biológica de los Hongos Ectomicorrízicos en comunidades rurales vs urbanas |
topic |
Hongos ectomicorrízicos Quercus humboldtii Bonpl Estructura de la comunidad Comunidades rurales vs urbanas Estudios de la diversidad y estructura de las comunidades biológicas de hongos en ecosistemas urbanos Análisis comparativo de variedad biológica de los Hongos Ectomicorrízicos en comunidades rurales vs urbanas Ciencias botánicas Ectomycorrhizal fungi Quercus humboldtii Bonpl. Community structure Rural vs Urban communities Studies of the diversity and structure of the biological communities of fungi in urban ecosystems Comparative analysis of the biological variety of Ectomycorrhizal Fungi in rural vs urban communities |
dc.subject.ddc.es.fl_str_mv |
Ciencias botánicas |
dc.subject.keyword.es.fl_str_mv |
Ectomycorrhizal fungi Quercus humboldtii Bonpl. Community structure Rural vs Urban communities Studies of the diversity and structure of the biological communities of fungi in urban ecosystems Comparative analysis of the biological variety of Ectomycorrhizal Fungi in rural vs urban communities |
description |
Los paisajes urbanos son cada vez más importantes debido al crecimiento acelerado de la población y al aumento de la urbanización. Los ecosistemas urbanos sirven de hogar a diversas comunidades de plantas y hongos. Sin embargo, los estudios que se centran en la diversidad y estructura de las comunidades biológicas son poco comunes en este hábitat. En Colombia, Quercus humboldtii Bonpl. es una especie ectomicorrízica conspicua presente en los bosques montanos tropicales que alberga una gran diversidad de hongos ectomicorrízicos en sus raíces. Quercus humboldtii se usa comúnmente como árbol urbano en Bogotá, pero las comunidades ectomicorrízicas de esta especie aún no han sido estudiadas en ecosistemas urbanos. Estudiamos cómo las comunidades de hongos ectomicorrízicos asociadas con este árbol cambian entre ecosistemas naturales y urbanos. Se muestrearon raíces de 24 árboles en dos sitios, Reserva Natural Chicaque (natural) y tres barrios de la ciudad de Bogotá (urbano). Utilizando la secuenciación de Illumina, la región ITS1 de todos los hongos asociados a la raíz se amplificó y analizó utilizando tuberías bioinformáticas tanto de OTU como de ASV. Encontramos 949 OTU en Bogotá y 514 OTU en Chicaque. No encontramos diferencias significativas en la riqueza de especies entre los sitios de Bogotá y Chicaque según el alfa de Fisher o las curvas de acumulación de especies. En las comunidades chicacas, los géneros más abundantes fueron Russula y Lactarius, mientras que Scleroderma, Hydnangium y Trechispora fueron muy abundantes en Bogotá. Un análisis de NMDS mostró que las muestras del sitio natural tenían una composición comunitaria significativamente diferente en comparación con los árboles urbanos. Nuestros resultados destacan la importancia de los árboles de Quercus como reservorios de diversidad fúngica ectomicorrízica en Bogotá. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-09-09T22:50:40Z |
dc.date.available.none.fl_str_mv |
2021-09-09T22:50:40Z |
dc.date.created.none.fl_str_mv |
2021-09-06 |
dc.type.eng.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.document.es.fl_str_mv |
Artículo |
dc.type.spa.spa.fl_str_mv |
Trabajo de grado |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.48713/10336_32397 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/32397 |
url |
https://doi.org/10.48713/10336_32397 https://repository.urosario.edu.co/handle/10336/32397 |
dc.language.iso.es.fl_str_mv |
eng |
language |
eng |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.es.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia Abierto (Texto Completo) http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.es.fl_str_mv |
24 pp. |
dc.format.mimetype.es.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.none.fl_str_mv |
Facultad de Ciencias Naturales |
dc.publisher.program.none.fl_str_mv |
Biología |
publisher.none.fl_str_mv |
Universidad del Rosario |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.es.fl_str_mv |
Abarenkov, Kessy; Zirk, Allan; Piirmann, Timo; Pöhönen, Raivo; Ivanov, Filipp; Nilsson, R. Henrik; Kõljalg, Urmas (2020): UNITE general FASTA release for Fungi. UNITE Community. 10.15156/BIO/786368 Aldrich, P. R., & Cavender-Bares, J. (2011). Quercus. In C. Kole (Ed.), Wild Crop Relatives: Genomic and Breeding Resources: Forest Trees (pp. 89–129). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-21250-5_6 Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L., Sanders, N.J., Cornell, H.V., Comita, L.S., Davies, K.F., et al., (2011). Navigating the multiple meanings of b diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19e28. Baruch, Z., Liddicoat, C., Laws, M., Kiri Marker, L., Morelli, H., Yan, D., … Breed, M. F. (2020). Characterising the soil fungal microbiome in metropolitan green spaces across a vegetation biodiversity gradient. Fungal Ecology, 47, 100939. https://doi.org/https://doi.org/10.1016/j.funeco.2020.100939 Baxter, J. W., Pickett, S. T. A., Carreiro, M. M., & Dighton, J. (1999). Ectomycorrhizal diversity and community structure in oak forest stands exposed to contrasting anthropogenic impacts. Canadian Journal of Botany, 77(6), 771–782. https://doi.org/10.1139/b99-039 Bernal, S. G. N., & Guevara, M. C. (2019). Actividad turística en el Parque Natural Chicaque como factor de desarrollo sostenible en las veredas Chicaque y Cascajal (Cundinamarca, Colombia). Turismo y Sociedad, 26. https://doi.org/10.18601/01207555.n26.08 Brundrett, M. C. (2002). Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154(2), 275–304. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. doi: 10.1038/nmeth.3869 Colparques. (2017). Organización Colparques. Chicaque. Recuperado de: http://www.colparques.net/chlcaque Corrales, A., & Ovrebo, C. L. (2020). Fungi of the Fortuna Forest Reserve: Taxonomy and ecology with emphasis on ectomycorrhizal communities. BioRxiv, 2020.04.16.045724. https://doi.org/10.1101/2020.04.16.045724 Corrales, A., Henkel, T. W., & Smith, M. E. (2018). Ectomycorrhizal associations in the tropics–biogeography, diversity patterns and ecosystem roles. New Phytologist, 220(4), 1076–1091. Departamento Administrativo Nacional de Estadística - DANE (2019) Censo Nacional de Población y Vivienda 2018. https://sitios.dane.gov.co/cnpv/#!/. Accesed 25 July 2021. Desai, N. S., Wilson, A. W., Powers, J. S., Mueller, G. M., & Egerton-Warburton, L. M. (2016). Ectomycorrhizal diversity and community structure in stands of Quercus oleoides in the seasonally dry tropical forests of Costa Rica. Environmental Research Letters, 11(12), 125007. García-Guzmán, O. M., Garibay-Orijel, R., Hernández, E., Arellano-Torres, E., & Oyama, K. (2017). Word-wide meta-analysis of Quercus forests ectomycorrhizal fungal diversity reveals southwestern Mexico as a hotspot. Mycorrhiza, 27(8), 811–822. https://doi.org/10.1007/s00572-017-0793-9 Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113–118. https://doi.org/https://doi.org/10.1111/j.1365-294X.1993.tb00005.x Halling, R. E. (2001). Ectomycorrhizae: Co-Evolution, Significance, and Biogeography. Annals of the Missouri Botanical Garden, 88(1), 5–13. https://doi.org/10.2307/2666128 Henkel, T. W., Aime, M. C., Chin, M. M. L., Miller, S. L., Vilgalys, R., & Smith, M. E. (2012). Ectomycorrhizal fungal sporocarp diversity and discovery of new taxa in Dicymbe monodominant forests of the Guiana Shield. Biodiversity and Conservation, 21(9), 2195–2220. https://doi.org/10.1007/s10531-011-0166-1 Instituto Distrital de Gestión de Riesgos y Cambio Climático IDIGER (2021) Lluvias y temperatura en Bogotá desde 1979 a 2018. https://www.idiger.gov.co/precipitacion-y-temperatura#:~:text=De%20acuerdo%20con%20el%20Instituto%20de%20Hidrolog%C3%ADa%2C%20Meteorolog%C3%ADa,lluvias%20en%20la%20ciudad%2C%20presenta%20un%20comportamiento%20bimodal%3A. Accesed 25 July 2021. Jumpponen, A. R. I., Jones, K. L., David Mattox, J., & Yaege, C. (2010). Massively parallel 454-sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Molecular Ecology, 19(s1), 41–53. https://doi.org/https://doi.org/10.1111/j.1365-294X.2009.04483.x Karpati, A. S., Handel, S. N., Dighton, J., & Horton, T. R. (2011). Quercus rubra-associated ectomycorrhizal fungal communities of disturbed urban sites and mature forests. Mycorrhiza, 21(6), 537–547. https://doi.org/10.1007/s00572-011-0362-6 Kropp, B. R., & Mueller, G. M. (1999). Laccaria BT - Ectomycorrhizal Fungi Key Genera in Profile. In J. W. G. Cairney & S. M. Chambers (Eds.) (pp. 65–88). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-06827-4_3 Lilleskov, E. A., Hobbie, E. A., & Horton, T. R. (2011). Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. fungal ecology, 4(2), 174-183. Manos, P. S., Doyle, J. J., & Nixon, K. C. (1999). Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Molecular Phylogenetics and Evolution, 12(3), 333–349. Mahecha, G, Sánchez, F, Chaparro, J, Cadena, H, Tovar, G, Villota, L, Morales, G, Castro JA, Bocanegra F, Quintero, M (2010) Manejo silvicultural. In: Arbolado urbano de Bogotá: Identificación, descripción y bases para su manejo. Bogotá, Colombia, p 74-76. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10–12. https://doi.org/10.14806/ej.17.1.200 Martinová, V., van Geel, M., Lievens, B., & Honnay, O. (2016). Strong differences in Quercus robur-associated ectomycorrhizal fungal communities along a forest-city soil sealing gradient. Fungal Ecology, 20, 88–96. https://doi.org/https://doi.org/10.1016/j.funeco.2015.12.002 McGuire, K. L. (2007). Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology, 88(3), 567–574. McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217 Morris, M. H., Pérez-Pérez, M. A., Smith, M. E., & Bledsoe, C. S. (2008). Multiple species of ectomycorrhizal fungi are frequently detected on individual oak root tips in a tropical cloud forest. Mycorrhiza, 18(8), 375–383. https://doi.org/10.1007/s00572-008-0186-1 Ochimaru, T., & Fukuda, K. (2007). Changes in fungal communities in evergreen broad-leaved forests across a gradient of urban to rural areas in JapanThis article is one of a selection of papers published in the Special Forum on Towards Sustainable Forestry — The Living Soil: Soil Biodivers. Canadian Journal of Forest Research, 37(2), 247–258. https://doi.org/10.1139/X06-293 Oksanen, J., Kindt, R., Legendre, P., O’hara, B., Simpson, G.L., Stevens, M.H.H., (2008). Vegan: community ecology package. Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin, P.R., O’hara, R.R., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E & Wagner, H, (2017). Vegan: community ecology package. R package version 2.4–0 Olchowik, J., Suchocka, M., Malewski, T., Baczewska-Dąbrowska, A., Studnicki, M., & Hilszczańska, D. (2020). The Ectomycorrhizal Community of Crimean Linden Trees in Warsaw, Poland. Forests . https://doi.org/10.3390/f11090926 Pagano, M. C., & Lugo, M. A. (2019). Mycorrhizal Fungi in South America. Springer. Palmer, J. M., Jusino, M. A., Banik, M. T., & Lindner, D. L. (2018). Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. PeerJ 6: e4925. Peña-Venegas, C. P., & Vasco-Palacios, A. M. (2019). Endo-and Ectomycorrhizas in tropical ecosystems of Colombia. In Mycorrhizal Fungi in South America (pp. 111–146). Springer. Pinzón Osorio, C. A., & Pinzón Osorio, J. (2018). Primer registro de Scleroderma bovista (Boletales, Sclerodermataceae) para Colombia. Revista Peruana de Biología, 25(4 SE-Notas científicas), 445–450. https://doi.org/10.15381/rpb.v25i4.14550 Põlme, S., Abarenkov, K., Henrik Nilsson, R., Lindahl, B. D., Clemmensen, K. E., Kauserud, H., … Tedersoo, L. (2020). FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity, 105(1), 1–16. https://doi.org/10.1007/s13225-020-00466-2 Rendón MA (2020) Diversity of mycorrhizal types along altitudinal gradients in mountain tropical forests of northern South America. Dissertation, Universidad del Rosario Rivera D. & Córdoba C. (1998). Guía Ecológica Parque Natural Chicaque. Bogotá, Colombia: Jardín Botánico de Bogotá José Celestino Mutis. Steidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D. A., Reich, P. B., … consortium, G. (2019). Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 569(7756), 404–408. https://doi.org/10.1038/s41586-019-1128-0 Stevenson, P. C., Bidartondo, M. I., Blackhall-Miles, R., Cavagnaro, T. R., Cooper, A., Geslin, B., … Suz, L. M. (2020). The state of the world’s urban ecosystems: What can we learn from trees, fungi, and bees? PLANTS, PEOPLE, PLANET, 2(5), 482–498. https://doi.org/https://doi.org/10.1002/ppp3.10143 Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant physiology and development. Sunderland, MA: Sinauer Associates. Vargas N, Restrepo S. 2019. A checklist of Ectomycorrhizal Mushrooms associated to Quercus humboldtii in Colombia. En: Guerin-Laguette A, Moreno J, Flores R, Quiang F (eds). Mushrooms, humans and nature in a changing world: Perspectives from ecological, agricultural and social sciences. Springer Nature Vasco-Palacios, A. M., Bahram, M., Boekhout, T., & Tedersoo, L. (2019). Carbon content and pH as important drivers of fungal community structure in three Amazon forests. Plant and Soil. https://doi.org/10.1007/s11104-019-04218-3 Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naive bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. doi: 10.1128/AEM.00062-07 Waring, B. G., Adams, R., Branco, S., & Powers, J. S. (2016). Scale‐dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests. New Phytologist, 209(2), 845–854. |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/4269debd-f759-4522-a80e-d76f9271cfd7/download https://repository.urosario.edu.co/bitstreams/0b781eb6-8e82-4163-8b41-18c359592906/download https://repository.urosario.edu.co/bitstreams/bdaeff4f-07a4-4e31-94af-8e7874f997fc/download https://repository.urosario.edu.co/bitstreams/9a1778b4-ad01-4bb6-a089-a3cad34ab70c/download https://repository.urosario.edu.co/bitstreams/8e9e5123-cc19-4d9b-9845-ce57bb8d28ad/download https://repository.urosario.edu.co/bitstreams/1bc9f7f9-1a70-4404-b07f-399b1441e76f/download https://repository.urosario.edu.co/bitstreams/d54e42d7-ff32-4170-b80e-d8d44ac64fa4/download https://repository.urosario.edu.co/bitstreams/2003ef04-0137-4edc-b2b0-40a7d7ad941e/download |
bitstream.checksum.fl_str_mv |
ff39382caf19395c8c45155ec2e26ed1 8ffeca5043dd7bd467a7da2f21d225a0 fab9d9ed61d64f6ac005dee3306ae77e 217700a34da79ed616c2feb68d4c5e06 652f7c16b25300eaac3a0ebc82e476db fa9b6fbbbac0db6107c5242d17d6b9a0 0bb37708ac385adc9cc61246af2dc442 3fe529700b4f7745ea6f81c99861ff10 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167483489189888 |
spelling |
Corrales Osorio, Adriana43260206600Sanchez Tello, Juan DavidBiólogoPregradoFull time14f72141-57dd-4e53-b71d-7d08b0a1f1316002021-09-09T22:50:40Z2021-09-09T22:50:40Z2021-09-06Los paisajes urbanos son cada vez más importantes debido al crecimiento acelerado de la población y al aumento de la urbanización. Los ecosistemas urbanos sirven de hogar a diversas comunidades de plantas y hongos. Sin embargo, los estudios que se centran en la diversidad y estructura de las comunidades biológicas son poco comunes en este hábitat. En Colombia, Quercus humboldtii Bonpl. es una especie ectomicorrízica conspicua presente en los bosques montanos tropicales que alberga una gran diversidad de hongos ectomicorrízicos en sus raíces. Quercus humboldtii se usa comúnmente como árbol urbano en Bogotá, pero las comunidades ectomicorrízicas de esta especie aún no han sido estudiadas en ecosistemas urbanos. Estudiamos cómo las comunidades de hongos ectomicorrízicos asociadas con este árbol cambian entre ecosistemas naturales y urbanos. Se muestrearon raíces de 24 árboles en dos sitios, Reserva Natural Chicaque (natural) y tres barrios de la ciudad de Bogotá (urbano). Utilizando la secuenciación de Illumina, la región ITS1 de todos los hongos asociados a la raíz se amplificó y analizó utilizando tuberías bioinformáticas tanto de OTU como de ASV. Encontramos 949 OTU en Bogotá y 514 OTU en Chicaque. No encontramos diferencias significativas en la riqueza de especies entre los sitios de Bogotá y Chicaque según el alfa de Fisher o las curvas de acumulación de especies. En las comunidades chicacas, los géneros más abundantes fueron Russula y Lactarius, mientras que Scleroderma, Hydnangium y Trechispora fueron muy abundantes en Bogotá. Un análisis de NMDS mostró que las muestras del sitio natural tenían una composición comunitaria significativamente diferente en comparación con los árboles urbanos. Nuestros resultados destacan la importancia de los árboles de Quercus como reservorios de diversidad fúngica ectomicorrízica en Bogotá.Urban landscapes are becoming more important due to the accelerated population growth and increasing urbanization. Urban ecosystems serve as home to diverse plant and fungal communities. However, studies focusing on the diversity and structure of biological communities are uncommon in this habitat. In Colombia, Quercus humboldtii Bonpl. is a conspicuous ectomycorrhizal species present in tropical montane forests that hosts a high diversity of ectomycorrhizal fungi in its roots. Quercus humboldtii is commonly used as an urban tree in Bogotá, but the ectomycorrhizal communities of this species have not yet been studied in urban ecosystems. We studied how the ectomycorrhizal fungal communities associated with this tree change between natural and urban ecosystems. Roots of 24 trees were sampled in two sites, Chicaque Natural Reserve (natural) and three neighborhoods of Bogotá city (urban). Using Illumina sequencing, the ITS1 region of all root associated fungi was amplified and analyzed using both OTUs and ASVs bioinformatics pipelines. We found 949 OTUs in Bogotá and 514 OTUs in Chicaque. We didn’t find significant differences in the species richness between Bogotá and Chicaque sites based on Fisher’s alpha or species-accumulation curves. In Chicaque communities, the most abundant genera were Russula and Lactarius, while Scleroderma, Hydnangium, and Trechispora were highly abundant in Bogotá. An NMDS analysis showed that samples from the natural site had a significantly different community composition compared with urban trees. Our results highlight the importance of Quercus trees as reservoirs of ectomycorrhizal fungal diversity in Bogotá.24 pp.application/pdfBogotá, ColombiaParque Natural Montañas de Chicaque, Cundinamarca, Colombiahttps://doi.org/10.48713/10336_32397 https://repository.urosario.edu.co/handle/10336/32397engUniversidad del RosarioFacultad de Ciencias NaturalesBiologíaAtribución-NoComercial-SinDerivadas 2.5 ColombiaAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2Abarenkov, Kessy; Zirk, Allan; Piirmann, Timo; Pöhönen, Raivo; Ivanov, Filipp; Nilsson, R. Henrik; Kõljalg, Urmas (2020): UNITE general FASTA release for Fungi. UNITE Community. 10.15156/BIO/786368Aldrich, P. R., & Cavender-Bares, J. (2011). Quercus. In C. Kole (Ed.), Wild Crop Relatives: Genomic and Breeding Resources: Forest Trees (pp. 89–129). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-21250-5_6Anderson, M.J., Crist, T.O., Chase, J.M., Vellend, M., Inouye, B.D., Freestone, A.L., Sanders, N.J., Cornell, H.V., Comita, L.S., Davies, K.F., et al., (2011). Navigating the multiple meanings of b diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19e28.Baruch, Z., Liddicoat, C., Laws, M., Kiri Marker, L., Morelli, H., Yan, D., … Breed, M. F. (2020). Characterising the soil fungal microbiome in metropolitan green spaces across a vegetation biodiversity gradient. Fungal Ecology, 47, 100939. https://doi.org/https://doi.org/10.1016/j.funeco.2020.100939Baxter, J. W., Pickett, S. T. A., Carreiro, M. M., & Dighton, J. (1999). Ectomycorrhizal diversity and community structure in oak forest stands exposed to contrasting anthropogenic impacts. Canadian Journal of Botany, 77(6), 771–782. https://doi.org/10.1139/b99-039Bernal, S. G. N., & Guevara, M. C. (2019). Actividad turística en el Parque Natural Chicaque como factor de desarrollo sostenible en las veredas Chicaque y Cascajal (Cundinamarca, Colombia). Turismo y Sociedad, 26. https://doi.org/10.18601/01207555.n26.08Brundrett, M. C. (2002). Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154(2), 275–304.Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. doi: 10.1038/nmeth.3869Colparques. (2017). Organización Colparques. Chicaque. Recuperado de: http://www.colparques.net/chlcaqueCorrales, A., & Ovrebo, C. L. (2020). Fungi of the Fortuna Forest Reserve: Taxonomy and ecology with emphasis on ectomycorrhizal communities. BioRxiv, 2020.04.16.045724. https://doi.org/10.1101/2020.04.16.045724Corrales, A., Henkel, T. W., & Smith, M. E. (2018). Ectomycorrhizal associations in the tropics–biogeography, diversity patterns and ecosystem roles. New Phytologist, 220(4), 1076–1091.Departamento Administrativo Nacional de Estadística - DANE (2019) Censo Nacional de Población y Vivienda 2018. https://sitios.dane.gov.co/cnpv/#!/. Accesed 25 July 2021.Desai, N. S., Wilson, A. W., Powers, J. S., Mueller, G. M., & Egerton-Warburton, L. M. (2016). Ectomycorrhizal diversity and community structure in stands of Quercus oleoides in the seasonally dry tropical forests of Costa Rica. Environmental Research Letters, 11(12), 125007.García-Guzmán, O. M., Garibay-Orijel, R., Hernández, E., Arellano-Torres, E., & Oyama, K. (2017). Word-wide meta-analysis of Quercus forests ectomycorrhizal fungal diversity reveals southwestern Mexico as a hotspot. Mycorrhiza, 27(8), 811–822. https://doi.org/10.1007/s00572-017-0793-9Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology, 2(2), 113–118. https://doi.org/https://doi.org/10.1111/j.1365-294X.1993.tb00005.xHalling, R. E. (2001). Ectomycorrhizae: Co-Evolution, Significance, and Biogeography. Annals of the Missouri Botanical Garden, 88(1), 5–13. https://doi.org/10.2307/2666128Henkel, T. W., Aime, M. C., Chin, M. M. L., Miller, S. L., Vilgalys, R., & Smith, M. E. (2012). Ectomycorrhizal fungal sporocarp diversity and discovery of new taxa in Dicymbe monodominant forests of the Guiana Shield. Biodiversity and Conservation, 21(9), 2195–2220. https://doi.org/10.1007/s10531-011-0166-1Instituto Distrital de Gestión de Riesgos y Cambio Climático IDIGER (2021) Lluvias y temperatura en Bogotá desde 1979 a 2018. https://www.idiger.gov.co/precipitacion-y-temperatura#:~:text=De%20acuerdo%20con%20el%20Instituto%20de%20Hidrolog%C3%ADa%2C%20Meteorolog%C3%ADa,lluvias%20en%20la%20ciudad%2C%20presenta%20un%20comportamiento%20bimodal%3A. Accesed 25 July 2021.Jumpponen, A. R. I., Jones, K. L., David Mattox, J., & Yaege, C. (2010). Massively parallel 454-sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Molecular Ecology, 19(s1), 41–53. https://doi.org/https://doi.org/10.1111/j.1365-294X.2009.04483.xKarpati, A. S., Handel, S. N., Dighton, J., & Horton, T. R. (2011). Quercus rubra-associated ectomycorrhizal fungal communities of disturbed urban sites and mature forests. Mycorrhiza, 21(6), 537–547. https://doi.org/10.1007/s00572-011-0362-6Kropp, B. R., & Mueller, G. M. (1999). Laccaria BT - Ectomycorrhizal Fungi Key Genera in Profile. In J. W. G. Cairney & S. M. Chambers (Eds.) (pp. 65–88). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-06827-4_3Lilleskov, E. A., Hobbie, E. A., & Horton, T. R. (2011). Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. fungal ecology, 4(2), 174-183.Manos, P. S., Doyle, J. J., & Nixon, K. C. (1999). Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Molecular Phylogenetics and Evolution, 12(3), 333–349.Mahecha, G, Sánchez, F, Chaparro, J, Cadena, H, Tovar, G, Villota, L, Morales, G, Castro JA, Bocanegra F, Quintero, M (2010) Manejo silvicultural. In: Arbolado urbano de Bogotá: Identificación, descripción y bases para su manejo. Bogotá, Colombia, p 74-76.Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10–12. https://doi.org/10.14806/ej.17.1.200Martinová, V., van Geel, M., Lievens, B., & Honnay, O. (2016). Strong differences in Quercus robur-associated ectomycorrhizal fungal communities along a forest-city soil sealing gradient. Fungal Ecology, 20, 88–96. https://doi.org/https://doi.org/10.1016/j.funeco.2015.12.002McGuire, K. L. (2007). Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology, 88(3), 567–574.McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217Morris, M. H., Pérez-Pérez, M. A., Smith, M. E., & Bledsoe, C. S. (2008). Multiple species of ectomycorrhizal fungi are frequently detected on individual oak root tips in a tropical cloud forest. Mycorrhiza, 18(8), 375–383. https://doi.org/10.1007/s00572-008-0186-1Ochimaru, T., & Fukuda, K. (2007). Changes in fungal communities in evergreen broad-leaved forests across a gradient of urban to rural areas in JapanThis article is one of a selection of papers published in the Special Forum on Towards Sustainable Forestry — The Living Soil: Soil Biodivers. Canadian Journal of Forest Research, 37(2), 247–258. https://doi.org/10.1139/X06-293Oksanen, J., Kindt, R., Legendre, P., O’hara, B., Simpson, G.L., Stevens, M.H.H., (2008). Vegan: community ecology package.Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin, P.R., O’hara, R.R., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E & Wagner, H, (2017). Vegan: community ecology package. R package version 2.4–0Olchowik, J., Suchocka, M., Malewski, T., Baczewska-Dąbrowska, A., Studnicki, M., & Hilszczańska, D. (2020). The Ectomycorrhizal Community of Crimean Linden Trees in Warsaw, Poland. Forests . https://doi.org/10.3390/f11090926Pagano, M. C., & Lugo, M. A. (2019). Mycorrhizal Fungi in South America. Springer.Palmer, J. M., Jusino, M. A., Banik, M. T., & Lindner, D. L. (2018). Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. PeerJ 6: e4925.Peña-Venegas, C. P., & Vasco-Palacios, A. M. (2019). Endo-and Ectomycorrhizas in tropical ecosystems of Colombia. In Mycorrhizal Fungi in South America (pp. 111–146). Springer.Pinzón Osorio, C. A., & Pinzón Osorio, J. (2018). Primer registro de Scleroderma bovista (Boletales, Sclerodermataceae) para Colombia. Revista Peruana de Biología, 25(4 SE-Notas científicas), 445–450. https://doi.org/10.15381/rpb.v25i4.14550Põlme, S., Abarenkov, K., Henrik Nilsson, R., Lindahl, B. D., Clemmensen, K. E., Kauserud, H., … Tedersoo, L. (2020). FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity, 105(1), 1–16. https://doi.org/10.1007/s13225-020-00466-2Rendón MA (2020) Diversity of mycorrhizal types along altitudinal gradients in mountain tropical forests of northern South America. Dissertation, Universidad del RosarioRivera D. & Córdoba C. (1998). Guía Ecológica Parque Natural Chicaque. Bogotá, Colombia: Jardín Botánico de Bogotá José Celestino Mutis.Steidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D. A., Reich, P. B., … consortium, G. (2019). Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 569(7756), 404–408. https://doi.org/10.1038/s41586-019-1128-0Stevenson, P. C., Bidartondo, M. I., Blackhall-Miles, R., Cavagnaro, T. R., Cooper, A., Geslin, B., … Suz, L. M. (2020). The state of the world’s urban ecosystems: What can we learn from trees, fungi, and bees? PLANTS, PEOPLE, PLANET, 2(5), 482–498. https://doi.org/https://doi.org/10.1002/ppp3.10143Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant physiology and development. Sunderland, MA: Sinauer Associates.Vargas N, Restrepo S. 2019. A checklist of Ectomycorrhizal Mushrooms associated to Quercus humboldtii in Colombia. En: Guerin-Laguette A, Moreno J, Flores R, Quiang F (eds). Mushrooms, humans and nature in a changing world: Perspectives from ecological, agricultural and social sciences. Springer NatureVasco-Palacios, A. M., Bahram, M., Boekhout, T., & Tedersoo, L. (2019). Carbon content and pH as important drivers of fungal community structure in three Amazon forests. Plant and Soil. https://doi.org/10.1007/s11104-019-04218-3Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naive bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. doi: 10.1128/AEM.00062-07Waring, B. G., Adams, R., Branco, S., & Powers, J. S. (2016). Scale‐dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests. New Phytologist, 209(2), 845–854.instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURHongos ectomicorrízicosQuercus humboldtii BonplEstructura de la comunidadComunidades rurales vs urbanasEstudios de la diversidad y estructura de las comunidades biológicas de hongos en ecosistemas urbanosAnálisis comparativo de variedad biológica de los Hongos Ectomicorrízicos en comunidades rurales vs urbanasCiencias botánicas580600Ectomycorrhizal fungiQuercus humboldtii Bonpl.Community structureRural vs Urban communitiesStudies of the diversity and structure of the biological communities of fungi in urban ecosystemsComparative analysis of the biological variety of Ectomycorrhizal Fungi in rural vs urban communitiesHow ectomycorrhizal communities vary from natural to urban ecosystems: Quercus humboldtii as a study case in the tropical AndesCómo las comunidades ectomicorrízicas varían de ecosistemas naturales a urbanos: Quercus humboldtii como caso de estudio en los Andes tropicalesbachelorThesisArtículoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fORIGINALSanchezTello-JuanDavid-2021.pdfSanchezTello-JuanDavid-2021.pdfArticulo principalapplication/pdf711845https://repository.urosario.edu.co/bitstreams/4269debd-f759-4522-a80e-d76f9271cfd7/downloadff39382caf19395c8c45155ec2e26ed1MD51SanchezTello-JuanDavid-1-2021.pdfSanchezTello-JuanDavid-1-2021.pdfMaterial suplementarioapplication/pdf675713https://repository.urosario.edu.co/bitstreams/0b781eb6-8e82-4163-8b41-18c359592906/download8ffeca5043dd7bd467a7da2f21d225a0MD52LICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/bdaeff4f-07a4-4e31-94af-8e7874f997fc/downloadfab9d9ed61d64f6ac005dee3306ae77eMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.urosario.edu.co/bitstreams/9a1778b4-ad01-4bb6-a089-a3cad34ab70c/download217700a34da79ed616c2feb68d4c5e06MD54TEXTSanchezTello-JuanDavid-2021.pdf.txtSanchezTello-JuanDavid-2021.pdf.txtExtracted texttext/plain44183https://repository.urosario.edu.co/bitstreams/8e9e5123-cc19-4d9b-9845-ce57bb8d28ad/download652f7c16b25300eaac3a0ebc82e476dbMD55SanchezTello-JuanDavid-1-2021.pdf.txtSanchezTello-JuanDavid-1-2021.pdf.txtExtracted texttext/plain1407https://repository.urosario.edu.co/bitstreams/1bc9f7f9-1a70-4404-b07f-399b1441e76f/downloadfa9b6fbbbac0db6107c5242d17d6b9a0MD57THUMBNAILSanchezTello-JuanDavid-2021.pdf.jpgSanchezTello-JuanDavid-2021.pdf.jpgGenerated Thumbnailimage/jpeg2149https://repository.urosario.edu.co/bitstreams/d54e42d7-ff32-4170-b80e-d8d44ac64fa4/download0bb37708ac385adc9cc61246af2dc442MD56SanchezTello-JuanDavid-1-2021.pdf.jpgSanchezTello-JuanDavid-1-2021.pdf.jpgGenerated Thumbnailimage/jpeg3548https://repository.urosario.edu.co/bitstreams/2003ef04-0137-4edc-b2b0-40a7d7ad941e/download3fe529700b4f7745ea6f81c99861ff10MD5810336/32397oai:repository.urosario.edu.co:10336/323972021-09-10 03:03:01.138http://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiahttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo= |