Impact of dampening demand variability in a production/inventory system with multiple retailers

We study a supply chain consisting of a single manufacturer and two retailers. The manufacturer produces goods on a make-to-order basis, while both retailers maintain an inventory and use a periodic replenishment rule. As opposed to the traditional (r, S) policy, where a retailer at the end of each...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/28527
Acceso en línea:
https://doi.org/10.1007/978-1-4614-4909-6_11
https://repository.urosario.edu.co/handle/10336/28527
Palabra clave:
Structured markov chains
Supply chain
Inventory
MSC: primary 60J22
Secondary 90B30
90B05
Rights
License
Restringido (Acceso a grupos específicos)
id EDOCUR2_d7c6778ac2c55535fcf1d829750e5af6
oai_identifier_str oai:repository.urosario.edu.co:10336/28527
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 9434e46a-0bd9-48dd-af17-71c10f74be0b800352026002020-08-28T15:49:16Z2020-08-28T15:49:16Z2013We study a supply chain consisting of a single manufacturer and two retailers. The manufacturer produces goods on a make-to-order basis, while both retailers maintain an inventory and use a periodic replenishment rule. As opposed to the traditional (r, S) policy, where a retailer at the end of each period orders the demand seen during the previous period, we assume that the retailers dampen their demand variability by smoothing the order size. More specifically, the order placed at the end of a period is equal to ? times the demand seen during the last period plus (1 ? ?) times the previous order size, with ? ? (0, 1] the smoothing parameter. We develop a GI/M/1-type Markov chain with only two nonzero blocks A 0 and A d to analyze this supply chain. The dimension of these blocks prohibits us from computing its rate matrix R in order to obtain the steady state probabilities. Instead we rely on fast numerical methods that exploit the structure of the matrices A 0 and A d , i.e., the power method, the Gauss–Seidel iteration, and GMRES, to approximate the steady state probabilities. Finally, we provide various numerical examples that indicate that the smoothing parameters can be set in such a manner that all the involved parties benefit from smoothing. We consider both homogeneous and heterogeneous settings for the smoothing parameters.application/pdfhttps://doi.org/10.1007/978-1-4614-4909-6_11ISBN: 978-1-4614-4908-9EISBN: 978-1-4614-4909-6https://repository.urosario.edu.co/handle/10336/28527engSpringer ScienceBusiness Media250227Matrix-Analytic Methods in Stochastic ModelsMatrix-Analytic Methods in Stochastic Models, ISBN: 978-1-4614-4908-9;EISBN: 978-1-4614-4909-6 (2013); pp.227-250https://link.springer.com/chapter/10.1007/978-1-4614-4909-6_11Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecMatrix-Analytic Methods in Stochastic Modelsinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURStructured markov chainsSupply chainInventoryMSC: primary 60J22Secondary 90B3090B05Impact of dampening demand variability in a production/inventory system with multiple retailersImpacto de atenuar la variabilidad de la demanda en un sistema de producción / inventario con múltiples minoristasbookPartParte de librohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248Van Houdt B.Pérez, Juan F.10336/28527oai:repository.urosario.edu.co:10336/285272021-09-23 01:03:03.652https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Impact of dampening demand variability in a production/inventory system with multiple retailers
dc.title.TranslatedTitle.spa.fl_str_mv Impacto de atenuar la variabilidad de la demanda en un sistema de producción / inventario con múltiples minoristas
title Impact of dampening demand variability in a production/inventory system with multiple retailers
spellingShingle Impact of dampening demand variability in a production/inventory system with multiple retailers
Structured markov chains
Supply chain
Inventory
MSC: primary 60J22
Secondary 90B30
90B05
title_short Impact of dampening demand variability in a production/inventory system with multiple retailers
title_full Impact of dampening demand variability in a production/inventory system with multiple retailers
title_fullStr Impact of dampening demand variability in a production/inventory system with multiple retailers
title_full_unstemmed Impact of dampening demand variability in a production/inventory system with multiple retailers
title_sort Impact of dampening demand variability in a production/inventory system with multiple retailers
dc.subject.keyword.spa.fl_str_mv Structured markov chains
Supply chain
Inventory
MSC: primary 60J22
Secondary 90B30
90B05
topic Structured markov chains
Supply chain
Inventory
MSC: primary 60J22
Secondary 90B30
90B05
description We study a supply chain consisting of a single manufacturer and two retailers. The manufacturer produces goods on a make-to-order basis, while both retailers maintain an inventory and use a periodic replenishment rule. As opposed to the traditional (r, S) policy, where a retailer at the end of each period orders the demand seen during the previous period, we assume that the retailers dampen their demand variability by smoothing the order size. More specifically, the order placed at the end of a period is equal to ? times the demand seen during the last period plus (1 ? ?) times the previous order size, with ? ? (0, 1] the smoothing parameter. We develop a GI/M/1-type Markov chain with only two nonzero blocks A 0 and A d to analyze this supply chain. The dimension of these blocks prohibits us from computing its rate matrix R in order to obtain the steady state probabilities. Instead we rely on fast numerical methods that exploit the structure of the matrices A 0 and A d , i.e., the power method, the Gauss–Seidel iteration, and GMRES, to approximate the steady state probabilities. Finally, we provide various numerical examples that indicate that the smoothing parameters can be set in such a manner that all the involved parties benefit from smoothing. We consider both homogeneous and heterogeneous settings for the smoothing parameters.
publishDate 2013
dc.date.created.spa.fl_str_mv 2013
dc.date.accessioned.none.fl_str_mv 2020-08-28T15:49:16Z
dc.date.available.none.fl_str_mv 2020-08-28T15:49:16Z
dc.type.eng.fl_str_mv bookPart
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.spa.spa.fl_str_mv Parte de libro
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/978-1-4614-4909-6_11
dc.identifier.issn.none.fl_str_mv ISBN: 978-1-4614-4908-9
EISBN: 978-1-4614-4909-6
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/28527
url https://doi.org/10.1007/978-1-4614-4909-6_11
https://repository.urosario.edu.co/handle/10336/28527
identifier_str_mv ISBN: 978-1-4614-4908-9
EISBN: 978-1-4614-4909-6
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 250
dc.relation.citationStartPage.none.fl_str_mv 227
dc.relation.citationTitle.none.fl_str_mv Matrix-Analytic Methods in Stochastic Models
dc.relation.ispartof.spa.fl_str_mv Matrix-Analytic Methods in Stochastic Models, ISBN: 978-1-4614-4908-9;EISBN: 978-1-4614-4909-6 (2013); pp.227-250
dc.relation.uri.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-1-4614-4909-6_11
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.acceso.spa.fl_str_mv Restringido (Acceso a grupos específicos)
rights_invalid_str_mv Restringido (Acceso a grupos específicos)
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer Science
Business Media
dc.source.spa.fl_str_mv Matrix-Analytic Methods in Stochastic Models
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167576074256384