Impact of dampening demand variability in a production/inventory system with multiple retailers
We study a supply chain consisting of a single manufacturer and two retailers. The manufacturer produces goods on a make-to-order basis, while both retailers maintain an inventory and use a periodic replenishment rule. As opposed to the traditional (r, S) policy, where a retailer at the end of each...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/28527
- Acceso en línea:
- https://doi.org/10.1007/978-1-4614-4909-6_11
https://repository.urosario.edu.co/handle/10336/28527
- Palabra clave:
- Structured markov chains
Supply chain
Inventory
MSC: primary 60J22
Secondary 90B30
90B05
- Rights
- License
- Restringido (Acceso a grupos específicos)
id |
EDOCUR2_d7c6778ac2c55535fcf1d829750e5af6 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/28527 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
9434e46a-0bd9-48dd-af17-71c10f74be0b800352026002020-08-28T15:49:16Z2020-08-28T15:49:16Z2013We study a supply chain consisting of a single manufacturer and two retailers. The manufacturer produces goods on a make-to-order basis, while both retailers maintain an inventory and use a periodic replenishment rule. As opposed to the traditional (r, S) policy, where a retailer at the end of each period orders the demand seen during the previous period, we assume that the retailers dampen their demand variability by smoothing the order size. More specifically, the order placed at the end of a period is equal to ? times the demand seen during the last period plus (1 ? ?) times the previous order size, with ? ? (0, 1] the smoothing parameter. We develop a GI/M/1-type Markov chain with only two nonzero blocks A 0 and A d to analyze this supply chain. The dimension of these blocks prohibits us from computing its rate matrix R in order to obtain the steady state probabilities. Instead we rely on fast numerical methods that exploit the structure of the matrices A 0 and A d , i.e., the power method, the Gauss–Seidel iteration, and GMRES, to approximate the steady state probabilities. Finally, we provide various numerical examples that indicate that the smoothing parameters can be set in such a manner that all the involved parties benefit from smoothing. We consider both homogeneous and heterogeneous settings for the smoothing parameters.application/pdfhttps://doi.org/10.1007/978-1-4614-4909-6_11ISBN: 978-1-4614-4908-9EISBN: 978-1-4614-4909-6https://repository.urosario.edu.co/handle/10336/28527engSpringer ScienceBusiness Media250227Matrix-Analytic Methods in Stochastic ModelsMatrix-Analytic Methods in Stochastic Models, ISBN: 978-1-4614-4908-9;EISBN: 978-1-4614-4909-6 (2013); pp.227-250https://link.springer.com/chapter/10.1007/978-1-4614-4909-6_11Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecMatrix-Analytic Methods in Stochastic Modelsinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURStructured markov chainsSupply chainInventoryMSC: primary 60J22Secondary 90B3090B05Impact of dampening demand variability in a production/inventory system with multiple retailersImpacto de atenuar la variabilidad de la demanda en un sistema de producción / inventario con múltiples minoristasbookPartParte de librohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248Van Houdt B.Pérez, Juan F.10336/28527oai:repository.urosario.edu.co:10336/285272021-09-23 01:03:03.652https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Impact of dampening demand variability in a production/inventory system with multiple retailers |
dc.title.TranslatedTitle.spa.fl_str_mv |
Impacto de atenuar la variabilidad de la demanda en un sistema de producción / inventario con múltiples minoristas |
title |
Impact of dampening demand variability in a production/inventory system with multiple retailers |
spellingShingle |
Impact of dampening demand variability in a production/inventory system with multiple retailers Structured markov chains Supply chain Inventory MSC: primary 60J22 Secondary 90B30 90B05 |
title_short |
Impact of dampening demand variability in a production/inventory system with multiple retailers |
title_full |
Impact of dampening demand variability in a production/inventory system with multiple retailers |
title_fullStr |
Impact of dampening demand variability in a production/inventory system with multiple retailers |
title_full_unstemmed |
Impact of dampening demand variability in a production/inventory system with multiple retailers |
title_sort |
Impact of dampening demand variability in a production/inventory system with multiple retailers |
dc.subject.keyword.spa.fl_str_mv |
Structured markov chains Supply chain Inventory MSC: primary 60J22 Secondary 90B30 90B05 |
topic |
Structured markov chains Supply chain Inventory MSC: primary 60J22 Secondary 90B30 90B05 |
description |
We study a supply chain consisting of a single manufacturer and two retailers. The manufacturer produces goods on a make-to-order basis, while both retailers maintain an inventory and use a periodic replenishment rule. As opposed to the traditional (r, S) policy, where a retailer at the end of each period orders the demand seen during the previous period, we assume that the retailers dampen their demand variability by smoothing the order size. More specifically, the order placed at the end of a period is equal to ? times the demand seen during the last period plus (1 ? ?) times the previous order size, with ? ? (0, 1] the smoothing parameter. We develop a GI/M/1-type Markov chain with only two nonzero blocks A 0 and A d to analyze this supply chain. The dimension of these blocks prohibits us from computing its rate matrix R in order to obtain the steady state probabilities. Instead we rely on fast numerical methods that exploit the structure of the matrices A 0 and A d , i.e., the power method, the Gauss–Seidel iteration, and GMRES, to approximate the steady state probabilities. Finally, we provide various numerical examples that indicate that the smoothing parameters can be set in such a manner that all the involved parties benefit from smoothing. We consider both homogeneous and heterogeneous settings for the smoothing parameters. |
publishDate |
2013 |
dc.date.created.spa.fl_str_mv |
2013 |
dc.date.accessioned.none.fl_str_mv |
2020-08-28T15:49:16Z |
dc.date.available.none.fl_str_mv |
2020-08-28T15:49:16Z |
dc.type.eng.fl_str_mv |
bookPart |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.spa.spa.fl_str_mv |
Parte de libro |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/978-1-4614-4909-6_11 |
dc.identifier.issn.none.fl_str_mv |
ISBN: 978-1-4614-4908-9 EISBN: 978-1-4614-4909-6 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/28527 |
url |
https://doi.org/10.1007/978-1-4614-4909-6_11 https://repository.urosario.edu.co/handle/10336/28527 |
identifier_str_mv |
ISBN: 978-1-4614-4908-9 EISBN: 978-1-4614-4909-6 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
250 |
dc.relation.citationStartPage.none.fl_str_mv |
227 |
dc.relation.citationTitle.none.fl_str_mv |
Matrix-Analytic Methods in Stochastic Models |
dc.relation.ispartof.spa.fl_str_mv |
Matrix-Analytic Methods in Stochastic Models, ISBN: 978-1-4614-4908-9;EISBN: 978-1-4614-4909-6 (2013); pp.227-250 |
dc.relation.uri.spa.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-1-4614-4909-6_11 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.acceso.spa.fl_str_mv |
Restringido (Acceso a grupos específicos) |
rights_invalid_str_mv |
Restringido (Acceso a grupos específicos) http://purl.org/coar/access_right/c_16ec |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer Science Business Media |
dc.source.spa.fl_str_mv |
Matrix-Analytic Methods in Stochastic Models |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167576074256384 |