Predicting healthcare cost of diabetes using machine learning models
Diabetes mellitus (DM) describes a group of metabolic disorders characterised by high blood glucose levels. People with diabetes have an increased risk of developing several serious lifethreatening health problems resulting in higher medical care costs, reduced quality of life and increased mortalit...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/29889
- Acceso en línea:
- https://repository.urosario.edu.co/handle/10336/29889
- Palabra clave:
- Diabetes mellitus Type II
Infarction
Stroke
Retinopathy
Renal failure
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_d73ffde67e5f534e3680b0b26130b709 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/29889 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
67580566002b4245d6-1f62-4338-b7a3-945a573d8509-1d0cad454-6f9a-429f-8450-e7257a430a9c-1392aa6b5-716f-4328-a207-3ad0213e6800-196f80ba0-a99b-4f82-a2af-53d70d53e9e1-12020-09-11T21:06:48Z2020-09-11T21:06:48Z2019-07Diabetes mellitus (DM) describes a group of metabolic disorders characterised by high blood glucose levels. People with diabetes have an increased risk of developing several serious lifethreatening health problems resulting in higher medical care costs, reduced quality of life and increased mortality [1] DM, like the majority of non-contagious chronic diseases, is associated with multimorbidity, defined in the growing literature as the existence of two or more chronic conditions [2,3]. Multimorbidity causes a negative impact on both clinical and health indicators and primary health care costs [1,4]. While true that the analysis of multimorbidity in this type of population is relatively new, the tendency towards this approach to the study of chronic diseases is ever increasing.application/pdfISBN: 978-84-09-16428-8https://repository.urosario.edu.co/handle/10336/29889engUniversitat Politécnica de Valncia10499Modelling for Engineering & Human Behaviour 2019Predicting healthcare cost of diabetes using machine learning models,ISBN: 978-84-09-16428-8, (2019); pp. 99- 104https://www.valueinhealthjournal.com/article/S1098-3015(19)33281-4/fulltextAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Modelling for Engineering & Human Behaviour 2019instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURDiabetes mellitus Type IIInfarctionStrokeRetinopathyRenal failurePredicting healthcare cost of diabetes using machine learning modelsPredecir el costo sanitario de la diabetes mediante modelos de aprendizaje automáticobookPartParte de librohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248González Rodríguez, Javier LeonardoDíaz Carnicereo, JavierVivas Consuelo, DavidGonzález de Julian, SilviaPinzón Espitia, Olga Lucia10336/29889oai:repository.urosario.edu.co:10336/298892021-06-03 00:52:38.288https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Predicting healthcare cost of diabetes using machine learning models |
dc.title.TranslatedTitle.spa.fl_str_mv |
Predecir el costo sanitario de la diabetes mediante modelos de aprendizaje automático |
title |
Predicting healthcare cost of diabetes using machine learning models |
spellingShingle |
Predicting healthcare cost of diabetes using machine learning models Diabetes mellitus Type II Infarction Stroke Retinopathy Renal failure |
title_short |
Predicting healthcare cost of diabetes using machine learning models |
title_full |
Predicting healthcare cost of diabetes using machine learning models |
title_fullStr |
Predicting healthcare cost of diabetes using machine learning models |
title_full_unstemmed |
Predicting healthcare cost of diabetes using machine learning models |
title_sort |
Predicting healthcare cost of diabetes using machine learning models |
dc.subject.keyword.spa.fl_str_mv |
Diabetes mellitus Type II Infarction Stroke Retinopathy Renal failure |
topic |
Diabetes mellitus Type II Infarction Stroke Retinopathy Renal failure |
description |
Diabetes mellitus (DM) describes a group of metabolic disorders characterised by high blood glucose levels. People with diabetes have an increased risk of developing several serious lifethreatening health problems resulting in higher medical care costs, reduced quality of life and increased mortality [1] DM, like the majority of non-contagious chronic diseases, is associated with multimorbidity, defined in the growing literature as the existence of two or more chronic conditions [2,3]. Multimorbidity causes a negative impact on both clinical and health indicators and primary health care costs [1,4]. While true that the analysis of multimorbidity in this type of population is relatively new, the tendency towards this approach to the study of chronic diseases is ever increasing. |
publishDate |
2019 |
dc.date.created.spa.fl_str_mv |
2019-07 |
dc.date.accessioned.none.fl_str_mv |
2020-09-11T21:06:48Z |
dc.date.available.none.fl_str_mv |
2020-09-11T21:06:48Z |
dc.type.eng.fl_str_mv |
bookPart |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.spa.spa.fl_str_mv |
Parte de libro |
dc.identifier.isbn.spa.fl_str_mv |
ISBN: 978-84-09-16428-8 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/29889 |
identifier_str_mv |
ISBN: 978-84-09-16428-8 |
url |
https://repository.urosario.edu.co/handle/10336/29889 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
104 |
dc.relation.citationStartPage.none.fl_str_mv |
99 |
dc.relation.citationTitle.none.fl_str_mv |
Modelling for Engineering & Human Behaviour 2019 |
dc.relation.ispartof.spa.fl_str_mv |
Predicting healthcare cost of diabetes using machine learning models,ISBN: 978-84-09-16428-8, (2019); pp. 99- 104 |
dc.relation.uri.spa.fl_str_mv |
https://www.valueinhealthjournal.com/article/S1098-3015(19)33281-4/fulltext |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universitat Politécnica de Valncia |
dc.source.spa.fl_str_mv |
Modelling for Engineering & Human Behaviour 2019 |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167494032621568 |