Fusion of sentinel-1a and sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia

Land cover–land use (LCLU) classification tasks can take advantage of the fusion of radar and optical remote sensing data, leading generally to increase mapping accuracy. Here we propose a methodological approach to fuse information from the new European Space Agency Sentinel-1 and Sentinel-2 imager...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/22391
Acceso en línea:
https://doi.org/10.1080/17445647.2017.1372316
https://repository.urosario.edu.co/handle/10336/22391
Palabra clave:
Colombia
Data fusion
Land cover mapping
Segmentation
Sentinel-1
Sentinel-2
Rights
License
Abierto (Texto Completo)
id EDOCUR2_d73474ce8a9a4bc426a4947e95e08d5f
oai_identifier_str oai:repository.urosario.edu.co:10336/22391
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 45081160080416177600ea3b4102-1b0e-475d-9059-304bd9db38012020-05-25T23:56:18Z2020-05-25T23:56:18Z2017Land cover–land use (LCLU) classification tasks can take advantage of the fusion of radar and optical remote sensing data, leading generally to increase mapping accuracy. Here we propose a methodological approach to fuse information from the new European Space Agency Sentinel-1 and Sentinel-2 imagery for accurate land cover mapping of a portion of the Lower Magdalena region, Colombia. Data pre-processing was carried out using the European Space Agency’s Sentinel Application Platform and the SEN2COR toolboxes. LCLU classification was performed following an object-based and spectral classification approach, exploiting also vegetation indices. A comparison of classification performance using three commonly used classification algorithms was performed. The radar and visible-near infrared integrated dataset classified with a Support Vector Machine algorithm produce the most accurate LCLU map, showing an overall classification accuracy of 88.75%, and a Kappa coefficient of 0.86. The proposed mapping approach has the main advantages of combining the all-weather capability of the radar sensor, spectrally rich information in the visible-near infrared spectrum, with the short revisit period of both satellites. The mapping results represent an important step toward future tasks of aboveground biomass and carbon estimation in the region. © 2017 The Author(s).application/pdfhttps://doi.org/10.1080/17445647.2017.137231617445647https://repository.urosario.edu.co/handle/10336/22391engTaylor and Francis Ltd.726No. 2718Journal of MapsVol. 13Journal of Maps, ISSN:17445647, Vol.13, No.2 (2017); pp. 718-726https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038228468&doi=10.1080%2f17445647.2017.1372316&partnerID=40&md5=b095970f6a068cdebb7d84290bad8366Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURColombiaData fusionLand cover mappingSegmentationSentinel-1Sentinel-2Fusion of sentinel-1a and sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, ColombiaarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Clerici, NicolaPosada Hostettler, Juan Manuel RobertoCalderón, Cesar Augusto Valbuena10336/22391oai:repository.urosario.edu.co:10336/223912022-05-02 07:37:17.92143https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Fusion of sentinel-1a and sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia
title Fusion of sentinel-1a and sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia
spellingShingle Fusion of sentinel-1a and sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia
Colombia
Data fusion
Land cover mapping
Segmentation
Sentinel-1
Sentinel-2
title_short Fusion of sentinel-1a and sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia
title_full Fusion of sentinel-1a and sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia
title_fullStr Fusion of sentinel-1a and sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia
title_full_unstemmed Fusion of sentinel-1a and sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia
title_sort Fusion of sentinel-1a and sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia
dc.subject.keyword.spa.fl_str_mv Colombia
Data fusion
Land cover mapping
Segmentation
Sentinel-1
Sentinel-2
topic Colombia
Data fusion
Land cover mapping
Segmentation
Sentinel-1
Sentinel-2
description Land cover–land use (LCLU) classification tasks can take advantage of the fusion of radar and optical remote sensing data, leading generally to increase mapping accuracy. Here we propose a methodological approach to fuse information from the new European Space Agency Sentinel-1 and Sentinel-2 imagery for accurate land cover mapping of a portion of the Lower Magdalena region, Colombia. Data pre-processing was carried out using the European Space Agency’s Sentinel Application Platform and the SEN2COR toolboxes. LCLU classification was performed following an object-based and spectral classification approach, exploiting also vegetation indices. A comparison of classification performance using three commonly used classification algorithms was performed. The radar and visible-near infrared integrated dataset classified with a Support Vector Machine algorithm produce the most accurate LCLU map, showing an overall classification accuracy of 88.75%, and a Kappa coefficient of 0.86. The proposed mapping approach has the main advantages of combining the all-weather capability of the radar sensor, spectrally rich information in the visible-near infrared spectrum, with the short revisit period of both satellites. The mapping results represent an important step toward future tasks of aboveground biomass and carbon estimation in the region. © 2017 The Author(s).
publishDate 2017
dc.date.created.spa.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2020-05-25T23:56:18Z
dc.date.available.none.fl_str_mv 2020-05-25T23:56:18Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1080/17445647.2017.1372316
dc.identifier.issn.none.fl_str_mv 17445647
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/22391
url https://doi.org/10.1080/17445647.2017.1372316
https://repository.urosario.edu.co/handle/10336/22391
identifier_str_mv 17445647
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 726
dc.relation.citationIssue.none.fl_str_mv No. 2
dc.relation.citationStartPage.none.fl_str_mv 718
dc.relation.citationTitle.none.fl_str_mv Journal of Maps
dc.relation.citationVolume.none.fl_str_mv Vol. 13
dc.relation.ispartof.spa.fl_str_mv Journal of Maps, ISSN:17445647, Vol.13, No.2 (2017); pp. 718-726
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038228468&doi=10.1080%2f17445647.2017.1372316&partnerID=40&md5=b095970f6a068cdebb7d84290bad8366
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Taylor and Francis Ltd.
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167519034867712