Computational prediction and experimental assessment of secreted/surface proteins from Mycobacterium tuberculosis H37Rv
The mycobacterial cell envelope has been implicated in the pathogenicity of tuberculosis and therefore has been a prime target for the identification and characterization of surface proteins with potential application in drug and vaccine development. In this study, the genome of Mycobacterium tuberc...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2010
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/18754
- Acceso en línea:
- https://doi.org/10.1371/journal.pcbi.1000824
http://repository.urosario.edu.co/handle/10336/18754
- Palabra clave:
- Proteína bacteriana
Bacteriana
Linfocito B
Gel de poliacrilamida
Proteína de citoplasma
Proteína de membrana
Vacuna peptídica
Proteína Rv178
Proteína Rv361
Proteína Rv43C
Proteína Rv835
Proteína Rv122
Proteína Rv36
Medicamento no clasificado
Anticuerpo bacteriano
Epítopo
Proteína de membrana externa
Péptido
Experimento con animales
Genoma bacteriano
Cepa bacteriana
Fraccionamiento Celular
Predicción por computadora
Estudio controlado
Citoplasma
Identificación de drogas
Aprendizaje automático
Computación Matemática
Estructura de la membrana
Tuberculosis micobacteriana
Localización de proteínas
Secreción de proteínas
Producción de vacunas
Inteligencia artificial
Escherichia Coli
inmunotransferencia
Microscopía inmunoelectrónica
Inmunología
Metabolismo
Metodología
Mycobacterium Smegmatis
Electroforesis en gel de poliacrilamida
Modelo estadístico
Ultrasonido
Tuberculosis micobacteriana
Anticuerpos
Inteligencia artificial
Proteínas de la membrana externa bacteriana
Fraccionamiento Celular
Biología Computacional
Electroforesis
Epítopos
Fracciones subcelulares
Subcellular Fractions
Immunoelectron
Microscopy
Models
Computational Biology
Epitopes
Cell Fractionation
Bacterial Outer Membrane Proteins
Artificial Intelligence
Antibodies
Mycobacterium Tuberculosis
Ultrasound
Statistical Model
Polyacrylamide Gel Electrophoresis
Methodology
Metabolism
Immunology
Immunoelectron Microscopy
Immunoblotting
Artificial Intelligence
Vaccine Production
Protein Secretion
Protein Localization
Mycobacterium Tuberculosis
Membrane Structure
Mathematical Computing
Machine Learning
Drug Identification
Cytoplasm
Controlled Study
Computer Prediction
Cell Fractionation
Bacterial Strain
Bacterial Genome
Peptide
Animal Experiment
Outer Membrane Protein
Outer Membrane Protein
Bacterium Antibody
Unclassified Drug
Protein Rv363
Protein Rv122
Protein Rv43C
Protein Rv835
Protein Rv361
Protein Rv178
Peptide Vaccine
Cytoplasm Protein
Membrane Protein
Polyacrylamide Gel
B-Lymphocyte
Bacterial
Bacterial Protein
Electrophoresis
Mycobacterium tuberculosis
Mycobacterium
Immunoblotting
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_d665d6f02752ba70338e44028d7594ad |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/18754 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Computational prediction and experimental assessment of secreted/surface proteins from Mycobacterium tuberculosis H37Rv |
title |
Computational prediction and experimental assessment of secreted/surface proteins from Mycobacterium tuberculosis H37Rv |
spellingShingle |
Computational prediction and experimental assessment of secreted/surface proteins from Mycobacterium tuberculosis H37Rv Proteína bacteriana Bacteriana Linfocito B Gel de poliacrilamida Proteína de citoplasma Proteína de membrana Vacuna peptídica Proteína Rv178 Proteína Rv361 Proteína Rv43C Proteína Rv835 Proteína Rv122 Proteína Rv36 Medicamento no clasificado Anticuerpo bacteriano Epítopo Proteína de membrana externa Péptido Experimento con animales Genoma bacteriano Cepa bacteriana Fraccionamiento Celular Predicción por computadora Estudio controlado Citoplasma Identificación de drogas Aprendizaje automático Computación Matemática Estructura de la membrana Tuberculosis micobacteriana Localización de proteínas Secreción de proteínas Producción de vacunas Inteligencia artificial Escherichia Coli inmunotransferencia Microscopía inmunoelectrónica Inmunología Metabolismo Metodología Mycobacterium Smegmatis Electroforesis en gel de poliacrilamida Modelo estadístico Ultrasonido Tuberculosis micobacteriana Anticuerpos Inteligencia artificial Proteínas de la membrana externa bacteriana Fraccionamiento Celular Biología Computacional Electroforesis Epítopos Fracciones subcelulares Subcellular Fractions Immunoelectron Microscopy Models Computational Biology Epitopes Cell Fractionation Bacterial Outer Membrane Proteins Artificial Intelligence Antibodies Mycobacterium Tuberculosis Ultrasound Statistical Model Polyacrylamide Gel Electrophoresis Methodology Metabolism Immunology Immunoelectron Microscopy Immunoblotting Artificial Intelligence Vaccine Production Protein Secretion Protein Localization Mycobacterium Tuberculosis Membrane Structure Mathematical Computing Machine Learning Drug Identification Cytoplasm Controlled Study Computer Prediction Cell Fractionation Bacterial Strain Bacterial Genome Peptide Animal Experiment Outer Membrane Protein Outer Membrane Protein Bacterium Antibody Unclassified Drug Protein Rv363 Protein Rv122 Protein Rv43C Protein Rv835 Protein Rv361 Protein Rv178 Peptide Vaccine Cytoplasm Protein Membrane Protein Polyacrylamide Gel B-Lymphocyte Bacterial Bacterial Protein Electrophoresis Mycobacterium tuberculosis Mycobacterium Immunoblotting |
title_short |
Computational prediction and experimental assessment of secreted/surface proteins from Mycobacterium tuberculosis H37Rv |
title_full |
Computational prediction and experimental assessment of secreted/surface proteins from Mycobacterium tuberculosis H37Rv |
title_fullStr |
Computational prediction and experimental assessment of secreted/surface proteins from Mycobacterium tuberculosis H37Rv |
title_full_unstemmed |
Computational prediction and experimental assessment of secreted/surface proteins from Mycobacterium tuberculosis H37Rv |
title_sort |
Computational prediction and experimental assessment of secreted/surface proteins from Mycobacterium tuberculosis H37Rv |
dc.subject.spa.fl_str_mv |
Proteína bacteriana Bacteriana Linfocito B Gel de poliacrilamida Proteína de citoplasma Proteína de membrana Vacuna peptídica Proteína Rv178 Proteína Rv361 Proteína Rv43C Proteína Rv835 Proteína Rv122 Proteína Rv36 Medicamento no clasificado Anticuerpo bacteriano Epítopo Proteína de membrana externa Péptido Experimento con animales Genoma bacteriano Cepa bacteriana Fraccionamiento Celular Predicción por computadora Estudio controlado Citoplasma Identificación de drogas Aprendizaje automático Computación Matemática Estructura de la membrana Tuberculosis micobacteriana Localización de proteínas Secreción de proteínas Producción de vacunas Inteligencia artificial Escherichia Coli inmunotransferencia Microscopía inmunoelectrónica Inmunología Metabolismo Metodología Mycobacterium Smegmatis Electroforesis en gel de poliacrilamida Modelo estadístico Ultrasonido Tuberculosis micobacteriana Anticuerpos Inteligencia artificial Proteínas de la membrana externa bacteriana Fraccionamiento Celular Biología Computacional Electroforesis Epítopos Fracciones subcelulares |
topic |
Proteína bacteriana Bacteriana Linfocito B Gel de poliacrilamida Proteína de citoplasma Proteína de membrana Vacuna peptídica Proteína Rv178 Proteína Rv361 Proteína Rv43C Proteína Rv835 Proteína Rv122 Proteína Rv36 Medicamento no clasificado Anticuerpo bacteriano Epítopo Proteína de membrana externa Péptido Experimento con animales Genoma bacteriano Cepa bacteriana Fraccionamiento Celular Predicción por computadora Estudio controlado Citoplasma Identificación de drogas Aprendizaje automático Computación Matemática Estructura de la membrana Tuberculosis micobacteriana Localización de proteínas Secreción de proteínas Producción de vacunas Inteligencia artificial Escherichia Coli inmunotransferencia Microscopía inmunoelectrónica Inmunología Metabolismo Metodología Mycobacterium Smegmatis Electroforesis en gel de poliacrilamida Modelo estadístico Ultrasonido Tuberculosis micobacteriana Anticuerpos Inteligencia artificial Proteínas de la membrana externa bacteriana Fraccionamiento Celular Biología Computacional Electroforesis Epítopos Fracciones subcelulares Subcellular Fractions Immunoelectron Microscopy Models Computational Biology Epitopes Cell Fractionation Bacterial Outer Membrane Proteins Artificial Intelligence Antibodies Mycobacterium Tuberculosis Ultrasound Statistical Model Polyacrylamide Gel Electrophoresis Methodology Metabolism Immunology Immunoelectron Microscopy Immunoblotting Artificial Intelligence Vaccine Production Protein Secretion Protein Localization Mycobacterium Tuberculosis Membrane Structure Mathematical Computing Machine Learning Drug Identification Cytoplasm Controlled Study Computer Prediction Cell Fractionation Bacterial Strain Bacterial Genome Peptide Animal Experiment Outer Membrane Protein Outer Membrane Protein Bacterium Antibody Unclassified Drug Protein Rv363 Protein Rv122 Protein Rv43C Protein Rv835 Protein Rv361 Protein Rv178 Peptide Vaccine Cytoplasm Protein Membrane Protein Polyacrylamide Gel B-Lymphocyte Bacterial Bacterial Protein Electrophoresis Mycobacterium tuberculosis Mycobacterium Immunoblotting |
dc.subject.keyword.eng.fl_str_mv |
Subcellular Fractions Immunoelectron Microscopy Models Computational Biology Epitopes Cell Fractionation Bacterial Outer Membrane Proteins Artificial Intelligence Antibodies Mycobacterium Tuberculosis Ultrasound Statistical Model Polyacrylamide Gel Electrophoresis Methodology Metabolism Immunology Immunoelectron Microscopy Immunoblotting Artificial Intelligence Vaccine Production Protein Secretion Protein Localization Mycobacterium Tuberculosis Membrane Structure Mathematical Computing Machine Learning Drug Identification Cytoplasm Controlled Study Computer Prediction Cell Fractionation Bacterial Strain Bacterial Genome Peptide Animal Experiment Outer Membrane Protein Outer Membrane Protein Bacterium Antibody Unclassified Drug Protein Rv363 Protein Rv122 Protein Rv43C Protein Rv835 Protein Rv361 Protein Rv178 Peptide Vaccine Cytoplasm Protein Membrane Protein Polyacrylamide Gel B-Lymphocyte Bacterial Bacterial Protein |
dc.subject.keyword.spa.fl_str_mv |
Electrophoresis |
dc.subject.lemb.spa.fl_str_mv |
Mycobacterium tuberculosis Mycobacterium Immunoblotting |
description |
The mycobacterial cell envelope has been implicated in the pathogenicity of tuberculosis and therefore has been a prime target for the identification and characterization of surface proteins with potential application in drug and vaccine development. In this study, the genome of Mycobacterium tuberculosis H37Rv was screened using Machine Learning tools that included feature-based predictors, general localizers and transmembrane topology predictors to identify proteins that are potentially secreted to the surface of M. tuberculosis, or to the extracellular milieu through different secretory pathways. The subcellular localization of a set of 8 hypothetically secreted/surface candidate proteins was experimentally assessed by cellular fractionation and immunoelectron microscopy (IEM) to determine the reliability of the computational methodology proposed here, using 4 secreted/surface proteins with experimental confirmation as positive controls and 2 cytoplasmic proteins as negative controls. Subcellular fractionation and IEM studies provided evidence that the candidate proteins Rv0403c, Rv3630, Rv1022, Rv0835, Rv0361 and Rv0178 are secreted either to the mycobacterial surface or to the extracellular milieu. Surface localization was also confirmed for the positive controls, whereas negative controls were located on the cytoplasm. Based on statistical learning methods, we obtained computational subcellular localization predictions that were experimentally assessed and allowed us to construct a computational protocol with experimental support that allowed us to identify a new set of secreted/surface proteins as potential vaccine candidates. © 2010 Vizcaíno et al. |
publishDate |
2010 |
dc.date.created.none.fl_str_mv |
2010 |
dc.date.issued.none.fl_str_mv |
2010 |
dc.date.accessioned.none.fl_str_mv |
2018-11-29T15:13:09Z |
dc.date.available.none.fl_str_mv |
2018-11-29T15:13:09Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1371/journal.pcbi.1000824 |
dc.identifier.issn.none.fl_str_mv |
ISSN 1553-734X |
dc.identifier.uri.none.fl_str_mv |
http://repository.urosario.edu.co/handle/10336/18754 |
url |
https://doi.org/10.1371/journal.pcbi.1000824 http://repository.urosario.edu.co/handle/10336/18754 |
identifier_str_mv |
ISSN 1553-734X |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
14 |
dc.relation.citationIssue.none.fl_str_mv |
No. 6 |
dc.relation.citationStartPage.none.fl_str_mv |
1 |
dc.relation.citationTitle.none.fl_str_mv |
PLoS Computational Biology |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 6 |
dc.relation.ispartof.spa.fl_str_mv |
PLoS Computational Biology, ISSN: 1553-734X, Vol. 6/No. 6 (2010) pp. 1-14 |
dc.relation.uri.spa.fl_str_mv |
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000824&type=printable |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.cc.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
rights_invalid_str_mv |
Abierto (Texto Completo) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.spa.fl_str_mv |
(2009) Global Tuberculosis Control: Surveillance, Planning, Financing, , WHO, World Health Organization. Genova: WHO, World Health Organization |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/7a6ffb37-ba20-4e0d-828e-49c2ba831e3d/download https://repository.urosario.edu.co/bitstreams/cc55df75-b106-4642-bece-dbfba9df2ddb/download https://repository.urosario.edu.co/bitstreams/19e4b917-0368-4687-a783-88c781734e3f/download |
bitstream.checksum.fl_str_mv |
b6e1fd33a97abe64e44fac23396dce97 510ccbe639f30584d235694df88207c3 8fe2cde18fcca5bbe50b3dbb08d19ea4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1818106556536848384 |
spelling |
9de1cfc2-5d95-4925-a819-b9b2b20ff2d2600ea367fd3-bbe1-4a83-a43c-43c368b594d260052994699600f1992b30-16ca-49f4-b4e8-998341f500426005184882660051721018600331a21ba-fadd-4452-be62-097bbd0dd9ea600a1662400-58a5-4191-b9a1-45a3771ad84f60010ecd4f9-843f-4ef2-bec0-7d39d3381a13600796530656002018-11-29T15:13:09Z2018-11-29T15:13:09Z20102010The mycobacterial cell envelope has been implicated in the pathogenicity of tuberculosis and therefore has been a prime target for the identification and characterization of surface proteins with potential application in drug and vaccine development. In this study, the genome of Mycobacterium tuberculosis H37Rv was screened using Machine Learning tools that included feature-based predictors, general localizers and transmembrane topology predictors to identify proteins that are potentially secreted to the surface of M. tuberculosis, or to the extracellular milieu through different secretory pathways. The subcellular localization of a set of 8 hypothetically secreted/surface candidate proteins was experimentally assessed by cellular fractionation and immunoelectron microscopy (IEM) to determine the reliability of the computational methodology proposed here, using 4 secreted/surface proteins with experimental confirmation as positive controls and 2 cytoplasmic proteins as negative controls. Subcellular fractionation and IEM studies provided evidence that the candidate proteins Rv0403c, Rv3630, Rv1022, Rv0835, Rv0361 and Rv0178 are secreted either to the mycobacterial surface or to the extracellular milieu. Surface localization was also confirmed for the positive controls, whereas negative controls were located on the cytoplasm. Based on statistical learning methods, we obtained computational subcellular localization predictions that were experimentally assessed and allowed us to construct a computational protocol with experimental support that allowed us to identify a new set of secreted/surface proteins as potential vaccine candidates. © 2010 Vizcaíno et al.application/pdfhttps://doi.org/10.1371/journal.pcbi.1000824ISSN 1553-734Xhttp://repository.urosario.edu.co/handle/10336/18754eng14No. 61PLoS Computational BiologyVol. 6PLoS Computational Biology, ISSN: 1553-734X, Vol. 6/No. 6 (2010) pp. 1-14https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000824&type=printableAbierto (Texto Completo)https://creativecommons.org/licenses/by/4.0/http://purl.org/coar/access_right/c_abf2(2009) Global Tuberculosis Control: Surveillance, Planning, Financing, , WHO, World Health Organization. Genova: WHO, World Health Organizationinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURProteína bacterianaBacterianaLinfocito BGel de poliacrilamidaProteína de citoplasmaProteína de membranaVacuna peptídicaProteína Rv178Proteína Rv361Proteína Rv43CProteína Rv835Proteína Rv122Proteína Rv36Medicamento no clasificadoAnticuerpo bacterianoEpítopoProteína de membrana externaPéptidoExperimento con animalesGenoma bacterianoCepa bacterianaFraccionamiento CelularPredicción por computadoraEstudio controladoCitoplasmaIdentificación de drogasAprendizaje automáticoComputación MatemáticaEstructura de la membranaTuberculosis micobacterianaLocalización de proteínasSecreción de proteínasProducción de vacunasInteligencia artificialEscherichia ColiinmunotransferenciaMicroscopía inmunoelectrónicaInmunologíaMetabolismoMetodologíaMycobacterium SmegmatisElectroforesis en gel de poliacrilamidaModelo estadísticoUltrasonidoTuberculosis micobacterianaAnticuerposInteligencia artificialProteínas de la membrana externa bacterianaFraccionamiento CelularBiología ComputacionalElectroforesisEpítoposFracciones subcelularesSubcellular FractionsImmunoelectronMicroscopyModelsComputational BiologyEpitopesCell FractionationBacterial Outer Membrane ProteinsArtificial IntelligenceAntibodiesMycobacterium TuberculosisUltrasoundStatistical ModelPolyacrylamide Gel ElectrophoresisMethodologyMetabolismImmunologyImmunoelectron MicroscopyImmunoblottingArtificial IntelligenceVaccine ProductionProtein SecretionProtein LocalizationMycobacterium TuberculosisMembrane StructureMathematical ComputingMachine LearningDrug IdentificationCytoplasmControlled StudyComputer PredictionCell FractionationBacterial StrainBacterial GenomePeptideAnimal ExperimentOuter Membrane ProteinOuter Membrane ProteinBacterium AntibodyUnclassified DrugProtein Rv363Protein Rv122Protein Rv43CProtein Rv835Protein Rv361Protein Rv178Peptide VaccineCytoplasm ProteinMembrane ProteinPolyacrylamide GelB-LymphocyteBacterialBacterial ProteinElectrophoresisMycobacterium tuberculosisMycobacteriumImmunoblottingComputational prediction and experimental assessment of secreted/surface proteins from Mycobacterium tuberculosis H37RvarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Vizcaíno, CarolinaRestrepo-Montoya, DanielRodríguez Burbano, Diana ConsueloNiño, Luis F.Ocampo, MarisolVanegas, MagnoliaReguero, María T.Martínez, Nora L.Patarroyo, Manuel E.Patarroyo, Manuel A.Vizcaíno, CarolinaRestrepo-Montoya, DanielRodríguez, DianaNiño, Luis F.Ocampo, MarisolVanegas, MagnoliaReguero, María T.Martínez, Nora L.Patarroyo, Manuel E.Patarroyo, Manuel A.ORIGINAL146.pdfapplication/pdf8110867https://repository.urosario.edu.co/bitstreams/7a6ffb37-ba20-4e0d-828e-49c2ba831e3d/downloadb6e1fd33a97abe64e44fac23396dce97MD51TEXT146.pdf.txt146.pdf.txtExtracted texttext/plain84234https://repository.urosario.edu.co/bitstreams/cc55df75-b106-4642-bece-dbfba9df2ddb/download510ccbe639f30584d235694df88207c3MD52THUMBNAIL146.pdf.jpg146.pdf.jpgGenerated Thumbnailimage/jpeg4863https://repository.urosario.edu.co/bitstreams/19e4b917-0368-4687-a783-88c781734e3f/download8fe2cde18fcca5bbe50b3dbb08d19ea4MD5310336/18754oai:repository.urosario.edu.co:10336/187542022-08-29 12:00:25.053https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |