A dataset of microscopic peripheral blood cell images for development of automatic recognition systems
This article makes available a dataset that was used for the development of an automatic recognition system of peripheral blood cell images using convolutional neural networks [1]. The dataset contains a total of 17,092 images of individual normal cells, which were acquired using the analyzer CellaV...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/23834
- Acceso en línea:
- https://doi.org/10.1016/j.dib.2020.105474
https://repository.urosario.edu.co/handle/10336/23834
- Palabra clave:
- Blood cell automatic recognition
Blood cell images
Blood cell morphology
Deep learning
Hematological diagnosis
Machine learning
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_d6413efc29a00b89fc29d8a23a6ce754 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/23834 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
07c53249-319f-4aa3-a271-782bcea6f53777576fd3-64ae-4743-bed5-0276eaeeb2021146ea38-26f3-43fe-b3ea-904b27747297e0a79c61-25aa-47fd-be41-9fb6e735f7e967a052f9-ab33-4056-af24-f21c6951892ab63c34ab-e4fa-4c6f-afe4-2f90029b94262020-05-26T00:05:52Z2020-05-26T00:05:52Z2020This article makes available a dataset that was used for the development of an automatic recognition system of peripheral blood cell images using convolutional neural networks [1]. The dataset contains a total of 17,092 images of individual normal cells, which were acquired using the analyzer CellaVision DM96 in the Core Laboratory at the Hospital Clinic of Barcelona. The dataset is organized in the following eight groups: neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature granulocytes (promyelocytes, myelocytes, and metamyelocytes), erythroblasts and platelets or thrombocytes. The size of the images is 360 × 363 pixels, in format jpg, and they were annotated by expert clinical pathologists. The images were captured from individuals without infection, hematologic or oncologic disease and free of any pharmacologic treatment at the moment of blood collection. This high-quality labelled dataset may be used to train and test machine learning and deep learning models to recognize different types of normal peripheral blood cells. To our knowledge, this is the first publicly available set with large numbers of normal peripheral blood cells, so that it is expected to be a canonical dataset for model benchmarking. © 2020 The Author(s)application/pdfhttps://doi.org/10.1016/j.dib.2020.10547423523409https://repository.urosario.edu.co/handle/10336/23834engElsevier Inc.Data in BriefVol. 30Data in Brief, ISSN:23523409, Vol.30,(2020)https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083451557&doi=10.1016%2fj.dib.2020.105474&partnerID=40&md5=48d8da7e59b8d94c9407b59cd1616f9eAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURBlood cell automatic recognitionBlood cell imagesBlood cell morphologyDeep learningHematological diagnosisMachine learningA dataset of microscopic peripheral blood cell images for development of automatic recognition systemsarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Acevedo, AndreaMerino, AnnaAlférez, SantiagoMolina, ÁngelBoldú, LauraRodellar, JoséORIGINAL1-s2-0-S2352340920303681-main.pdfapplication/pdf724320https://repository.urosario.edu.co/bitstreams/9bd25593-356b-4ae0-b53a-0ef14e43e6e6/download48fcf556ae5cfbf598b302265bff479eMD51TEXT1-s2-0-S2352340920303681-main.pdf.txt1-s2-0-S2352340920303681-main.pdf.txtExtracted texttext/plain11212https://repository.urosario.edu.co/bitstreams/710ce7e2-5ac4-4c50-b8e9-7f53532b1cc6/downloada35a042e2b38dfd153389b76025f7609MD52THUMBNAIL1-s2-0-S2352340920303681-main.pdf.jpg1-s2-0-S2352340920303681-main.pdf.jpgGenerated Thumbnailimage/jpeg4390https://repository.urosario.edu.co/bitstreams/9e2e51e1-3201-459d-baba-440e7f4b4874/downloadc0115de3573d3c8907627c3c38b51350MD5310336/23834oai:repository.urosario.edu.co:10336/238342022-05-02 07:37:16.982213https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
A dataset of microscopic peripheral blood cell images for development of automatic recognition systems |
title |
A dataset of microscopic peripheral blood cell images for development of automatic recognition systems |
spellingShingle |
A dataset of microscopic peripheral blood cell images for development of automatic recognition systems Blood cell automatic recognition Blood cell images Blood cell morphology Deep learning Hematological diagnosis Machine learning |
title_short |
A dataset of microscopic peripheral blood cell images for development of automatic recognition systems |
title_full |
A dataset of microscopic peripheral blood cell images for development of automatic recognition systems |
title_fullStr |
A dataset of microscopic peripheral blood cell images for development of automatic recognition systems |
title_full_unstemmed |
A dataset of microscopic peripheral blood cell images for development of automatic recognition systems |
title_sort |
A dataset of microscopic peripheral blood cell images for development of automatic recognition systems |
dc.subject.keyword.spa.fl_str_mv |
Blood cell automatic recognition Blood cell images Blood cell morphology Deep learning Hematological diagnosis Machine learning |
topic |
Blood cell automatic recognition Blood cell images Blood cell morphology Deep learning Hematological diagnosis Machine learning |
description |
This article makes available a dataset that was used for the development of an automatic recognition system of peripheral blood cell images using convolutional neural networks [1]. The dataset contains a total of 17,092 images of individual normal cells, which were acquired using the analyzer CellaVision DM96 in the Core Laboratory at the Hospital Clinic of Barcelona. The dataset is organized in the following eight groups: neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature granulocytes (promyelocytes, myelocytes, and metamyelocytes), erythroblasts and platelets or thrombocytes. The size of the images is 360 × 363 pixels, in format jpg, and they were annotated by expert clinical pathologists. The images were captured from individuals without infection, hematologic or oncologic disease and free of any pharmacologic treatment at the moment of blood collection. This high-quality labelled dataset may be used to train and test machine learning and deep learning models to recognize different types of normal peripheral blood cells. To our knowledge, this is the first publicly available set with large numbers of normal peripheral blood cells, so that it is expected to be a canonical dataset for model benchmarking. © 2020 The Author(s) |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-05-26T00:05:52Z |
dc.date.available.none.fl_str_mv |
2020-05-26T00:05:52Z |
dc.date.created.spa.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.dib.2020.105474 |
dc.identifier.issn.none.fl_str_mv |
23523409 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/23834 |
url |
https://doi.org/10.1016/j.dib.2020.105474 https://repository.urosario.edu.co/handle/10336/23834 |
identifier_str_mv |
23523409 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationTitle.none.fl_str_mv |
Data in Brief |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 30 |
dc.relation.ispartof.spa.fl_str_mv |
Data in Brief, ISSN:23523409, Vol.30,(2020) |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083451557&doi=10.1016%2fj.dib.2020.105474&partnerID=40&md5=48d8da7e59b8d94c9407b59cd1616f9e |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier Inc. |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/9bd25593-356b-4ae0-b53a-0ef14e43e6e6/download https://repository.urosario.edu.co/bitstreams/710ce7e2-5ac4-4c50-b8e9-7f53532b1cc6/download https://repository.urosario.edu.co/bitstreams/9e2e51e1-3201-459d-baba-440e7f4b4874/download |
bitstream.checksum.fl_str_mv |
48fcf556ae5cfbf598b302265bff479e a35a042e2b38dfd153389b76025f7609 c0115de3573d3c8907627c3c38b51350 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167595314577408 |