A dataset of microscopic peripheral blood cell images for development of automatic recognition systems

This article makes available a dataset that was used for the development of an automatic recognition system of peripheral blood cell images using convolutional neural networks [1]. The dataset contains a total of 17,092 images of individual normal cells, which were acquired using the analyzer CellaV...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/23834
Acceso en línea:
https://doi.org/10.1016/j.dib.2020.105474
https://repository.urosario.edu.co/handle/10336/23834
Palabra clave:
Blood cell automatic recognition
Blood cell images
Blood cell morphology
Deep learning
Hematological diagnosis
Machine learning
Rights
License
Abierto (Texto Completo)
id EDOCUR2_d6413efc29a00b89fc29d8a23a6ce754
oai_identifier_str oai:repository.urosario.edu.co:10336/23834
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 07c53249-319f-4aa3-a271-782bcea6f53777576fd3-64ae-4743-bed5-0276eaeeb2021146ea38-26f3-43fe-b3ea-904b27747297e0a79c61-25aa-47fd-be41-9fb6e735f7e967a052f9-ab33-4056-af24-f21c6951892ab63c34ab-e4fa-4c6f-afe4-2f90029b94262020-05-26T00:05:52Z2020-05-26T00:05:52Z2020This article makes available a dataset that was used for the development of an automatic recognition system of peripheral blood cell images using convolutional neural networks [1]. The dataset contains a total of 17,092 images of individual normal cells, which were acquired using the analyzer CellaVision DM96 in the Core Laboratory at the Hospital Clinic of Barcelona. The dataset is organized in the following eight groups: neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature granulocytes (promyelocytes, myelocytes, and metamyelocytes), erythroblasts and platelets or thrombocytes. The size of the images is 360 × 363 pixels, in format jpg, and they were annotated by expert clinical pathologists. The images were captured from individuals without infection, hematologic or oncologic disease and free of any pharmacologic treatment at the moment of blood collection. This high-quality labelled dataset may be used to train and test machine learning and deep learning models to recognize different types of normal peripheral blood cells. To our knowledge, this is the first publicly available set with large numbers of normal peripheral blood cells, so that it is expected to be a canonical dataset for model benchmarking. © 2020 The Author(s)application/pdfhttps://doi.org/10.1016/j.dib.2020.10547423523409https://repository.urosario.edu.co/handle/10336/23834engElsevier Inc.Data in BriefVol. 30Data in Brief, ISSN:23523409, Vol.30,(2020)https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083451557&doi=10.1016%2fj.dib.2020.105474&partnerID=40&md5=48d8da7e59b8d94c9407b59cd1616f9eAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURBlood cell automatic recognitionBlood cell imagesBlood cell morphologyDeep learningHematological diagnosisMachine learningA dataset of microscopic peripheral blood cell images for development of automatic recognition systemsarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Acevedo, AndreaMerino, AnnaAlférez, SantiagoMolina, ÁngelBoldú, LauraRodellar, JoséORIGINAL1-s2-0-S2352340920303681-main.pdfapplication/pdf724320https://repository.urosario.edu.co/bitstreams/9bd25593-356b-4ae0-b53a-0ef14e43e6e6/download48fcf556ae5cfbf598b302265bff479eMD51TEXT1-s2-0-S2352340920303681-main.pdf.txt1-s2-0-S2352340920303681-main.pdf.txtExtracted texttext/plain11212https://repository.urosario.edu.co/bitstreams/710ce7e2-5ac4-4c50-b8e9-7f53532b1cc6/downloada35a042e2b38dfd153389b76025f7609MD52THUMBNAIL1-s2-0-S2352340920303681-main.pdf.jpg1-s2-0-S2352340920303681-main.pdf.jpgGenerated Thumbnailimage/jpeg4390https://repository.urosario.edu.co/bitstreams/9e2e51e1-3201-459d-baba-440e7f4b4874/downloadc0115de3573d3c8907627c3c38b51350MD5310336/23834oai:repository.urosario.edu.co:10336/238342022-05-02 07:37:16.982213https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv A dataset of microscopic peripheral blood cell images for development of automatic recognition systems
title A dataset of microscopic peripheral blood cell images for development of automatic recognition systems
spellingShingle A dataset of microscopic peripheral blood cell images for development of automatic recognition systems
Blood cell automatic recognition
Blood cell images
Blood cell morphology
Deep learning
Hematological diagnosis
Machine learning
title_short A dataset of microscopic peripheral blood cell images for development of automatic recognition systems
title_full A dataset of microscopic peripheral blood cell images for development of automatic recognition systems
title_fullStr A dataset of microscopic peripheral blood cell images for development of automatic recognition systems
title_full_unstemmed A dataset of microscopic peripheral blood cell images for development of automatic recognition systems
title_sort A dataset of microscopic peripheral blood cell images for development of automatic recognition systems
dc.subject.keyword.spa.fl_str_mv Blood cell automatic recognition
Blood cell images
Blood cell morphology
Deep learning
Hematological diagnosis
Machine learning
topic Blood cell automatic recognition
Blood cell images
Blood cell morphology
Deep learning
Hematological diagnosis
Machine learning
description This article makes available a dataset that was used for the development of an automatic recognition system of peripheral blood cell images using convolutional neural networks [1]. The dataset contains a total of 17,092 images of individual normal cells, which were acquired using the analyzer CellaVision DM96 in the Core Laboratory at the Hospital Clinic of Barcelona. The dataset is organized in the following eight groups: neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature granulocytes (promyelocytes, myelocytes, and metamyelocytes), erythroblasts and platelets or thrombocytes. The size of the images is 360 × 363 pixels, in format jpg, and they were annotated by expert clinical pathologists. The images were captured from individuals without infection, hematologic or oncologic disease and free of any pharmacologic treatment at the moment of blood collection. This high-quality labelled dataset may be used to train and test machine learning and deep learning models to recognize different types of normal peripheral blood cells. To our knowledge, this is the first publicly available set with large numbers of normal peripheral blood cells, so that it is expected to be a canonical dataset for model benchmarking. © 2020 The Author(s)
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-05-26T00:05:52Z
dc.date.available.none.fl_str_mv 2020-05-26T00:05:52Z
dc.date.created.spa.fl_str_mv 2020
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.dib.2020.105474
dc.identifier.issn.none.fl_str_mv 23523409
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/23834
url https://doi.org/10.1016/j.dib.2020.105474
https://repository.urosario.edu.co/handle/10336/23834
identifier_str_mv 23523409
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationTitle.none.fl_str_mv Data in Brief
dc.relation.citationVolume.none.fl_str_mv Vol. 30
dc.relation.ispartof.spa.fl_str_mv Data in Brief, ISSN:23523409, Vol.30,(2020)
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083451557&doi=10.1016%2fj.dib.2020.105474&partnerID=40&md5=48d8da7e59b8d94c9407b59cd1616f9e
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier Inc.
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/9bd25593-356b-4ae0-b53a-0ef14e43e6e6/download
https://repository.urosario.edu.co/bitstreams/710ce7e2-5ac4-4c50-b8e9-7f53532b1cc6/download
https://repository.urosario.edu.co/bitstreams/9e2e51e1-3201-459d-baba-440e7f4b4874/download
bitstream.checksum.fl_str_mv 48fcf556ae5cfbf598b302265bff479e
a35a042e2b38dfd153389b76025f7609
c0115de3573d3c8907627c3c38b51350
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167595314577408