A major gene controls mimicry and crypsis in butterflies and moths
The wing patterns of butterflies and moths (Lepidoptera) are diverse and striking examples of evolutionary diversification by natural selection1,2. Lepidopteran wing colour patterns are a key innovation, consisting of arrays of coloured scales. We still lack a general understanding of how these patt...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/27542
- Acceso en línea:
- https://doi.org/10.1038/nature17961
https://repository.urosario.edu.co/handle/10336/27542
- Palabra clave:
- Butterflies
Moths
Insects
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_d240665286036cd9f0ad377dfeebc00d |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/27542 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
7987375760053107311600e20b97bf-8d50-4330-b1d1-4038de1549df9c979648-b5f6-4dba-b8ad-9964318a53decc8eae0c-0ff1-48da-a07c-b570bad7ad4b2020-08-19T14:42:39Z2020-08-19T14:42:39Z2016-06-01The wing patterns of butterflies and moths (Lepidoptera) are diverse and striking examples of evolutionary diversification by natural selection1,2. Lepidopteran wing colour patterns are a key innovation, consisting of arrays of coloured scales. We still lack a general understanding of how these patterns are controlled and whether this control shows any commonality across the 160,000 moth and 17,000 butterfly species. Here, we use fine-scale mapping with population genomics and gene expression analyses to identify a gene, cortex, that regulates pattern switches in multiple species across the mimetic radiation in Heliconius butterflies. cortex belongs to a fast-evolving subfamily of the otherwise highly conserved fizzy family of cell-cycle regulators3, suggesting that it probably regulates pigmentation patterning by regulating scale cell development. In parallel with findings in the peppered moth (Biston betularia)4, our results suggest that this mechanism is common within Lepidoptera and that cortex has become a major target for natural selection acting on colour and pattern variation in this group of insects.application/pdfhttps://doi.org/10.1038/nature17961EISSN: 1476-4687https://repository.urosario.edu.co/handle/10336/27542engSpriger Nature110No. 534106NatureNature, EISSN: 1476-4687, No.534 (2016); pp.106-110https://www.nature.com/articles/nature17961Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Natureinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURButterfliesMothsInsectsA major gene controls mimicry and crypsis in butterflies and mothsUn gen importante controla el mimetismo y la cripsis en mariposas y polillas.articleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Salazar, CamiloPardo Díaz, Geimy CarolinaWhibley, AnnabelSupple, Megan A.Saenko, Suzanne V.10336/27542oai:repository.urosario.edu.co:10336/275422021-10-19 16:28:07.416https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
A major gene controls mimicry and crypsis in butterflies and moths |
dc.title.TranslatedTitle.spa.fl_str_mv |
Un gen importante controla el mimetismo y la cripsis en mariposas y polillas. |
title |
A major gene controls mimicry and crypsis in butterflies and moths |
spellingShingle |
A major gene controls mimicry and crypsis in butterflies and moths Butterflies Moths Insects |
title_short |
A major gene controls mimicry and crypsis in butterflies and moths |
title_full |
A major gene controls mimicry and crypsis in butterflies and moths |
title_fullStr |
A major gene controls mimicry and crypsis in butterflies and moths |
title_full_unstemmed |
A major gene controls mimicry and crypsis in butterflies and moths |
title_sort |
A major gene controls mimicry and crypsis in butterflies and moths |
dc.subject.keyword.spa.fl_str_mv |
Butterflies Moths Insects |
topic |
Butterflies Moths Insects |
description |
The wing patterns of butterflies and moths (Lepidoptera) are diverse and striking examples of evolutionary diversification by natural selection1,2. Lepidopteran wing colour patterns are a key innovation, consisting of arrays of coloured scales. We still lack a general understanding of how these patterns are controlled and whether this control shows any commonality across the 160,000 moth and 17,000 butterfly species. Here, we use fine-scale mapping with population genomics and gene expression analyses to identify a gene, cortex, that regulates pattern switches in multiple species across the mimetic radiation in Heliconius butterflies. cortex belongs to a fast-evolving subfamily of the otherwise highly conserved fizzy family of cell-cycle regulators3, suggesting that it probably regulates pigmentation patterning by regulating scale cell development. In parallel with findings in the peppered moth (Biston betularia)4, our results suggest that this mechanism is common within Lepidoptera and that cortex has become a major target for natural selection acting on colour and pattern variation in this group of insects. |
publishDate |
2016 |
dc.date.created.spa.fl_str_mv |
2016-06-01 |
dc.date.accessioned.none.fl_str_mv |
2020-08-19T14:42:39Z |
dc.date.available.none.fl_str_mv |
2020-08-19T14:42:39Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1038/nature17961 |
dc.identifier.issn.none.fl_str_mv |
EISSN: 1476-4687 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/27542 |
url |
https://doi.org/10.1038/nature17961 https://repository.urosario.edu.co/handle/10336/27542 |
identifier_str_mv |
EISSN: 1476-4687 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
110 |
dc.relation.citationIssue.none.fl_str_mv |
No. 534 |
dc.relation.citationStartPage.none.fl_str_mv |
106 |
dc.relation.citationTitle.none.fl_str_mv |
Nature |
dc.relation.ispartof.spa.fl_str_mv |
Nature, EISSN: 1476-4687, No.534 (2016); pp.106-110 |
dc.relation.uri.spa.fl_str_mv |
https://www.nature.com/articles/nature17961 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Spriger Nature |
dc.source.spa.fl_str_mv |
Nature |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167696993943552 |