Next-generation sequencing and genome analysis in dimorphic fungi and human: using genomic variation to recognize and understand disease

The work of this thesis has a common focus on bioinformatics, comparative genomics of fungal genomes and clinical genomics of human chronic disease. We primarily focused on using genomic data of dimorphic fungal pathogens in order to obtain a better perspective and understanding of how commonly used...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
spa
OAI Identifier:
oai:repository.urosario.edu.co:10336/13803
Acceso en línea:
https://doi.org/10.48713/10336_13803
http://repository.urosario.edu.co/handle/10336/13803
Palabra clave:
Genomics
Bioinformatics
Enfermedades
Biología Computacional
Genoma fúngico
Genoma viral
Enfermedad crónica
Genomics
Bioinformatics
Rights
License
Abierto (Texto Completo)
id EDOCUR2_d17ac1be888472b34d380935a601dde9
oai_identifier_str oai:repository.urosario.edu.co:10336/13803
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.spa.fl_str_mv Next-generation sequencing and genome analysis in dimorphic fungi and human: using genomic variation to recognize and understand disease
title Next-generation sequencing and genome analysis in dimorphic fungi and human: using genomic variation to recognize and understand disease
spellingShingle Next-generation sequencing and genome analysis in dimorphic fungi and human: using genomic variation to recognize and understand disease
Genomics
Bioinformatics
Enfermedades
Biología Computacional
Genoma fúngico
Genoma viral
Enfermedad crónica
Genomics
Bioinformatics
title_short Next-generation sequencing and genome analysis in dimorphic fungi and human: using genomic variation to recognize and understand disease
title_full Next-generation sequencing and genome analysis in dimorphic fungi and human: using genomic variation to recognize and understand disease
title_fullStr Next-generation sequencing and genome analysis in dimorphic fungi and human: using genomic variation to recognize and understand disease
title_full_unstemmed Next-generation sequencing and genome analysis in dimorphic fungi and human: using genomic variation to recognize and understand disease
title_sort Next-generation sequencing and genome analysis in dimorphic fungi and human: using genomic variation to recognize and understand disease
dc.contributor.advisor.none.fl_str_mv Clay, Oliver
dc.subject.spa.fl_str_mv Genomics
Bioinformatics
topic Genomics
Bioinformatics
Enfermedades
Biología Computacional
Genoma fúngico
Genoma viral
Enfermedad crónica
Genomics
Bioinformatics
dc.subject.ddc.none.fl_str_mv Enfermedades
dc.subject.decs.spa.fl_str_mv Biología Computacional
Genoma fúngico
Genoma viral
Enfermedad crónica
dc.subject.keyword.eng.fl_str_mv Genomics
Bioinformatics
description The work of this thesis has a common focus on bioinformatics, comparative genomics of fungal genomes and clinical genomics of human chronic disease. We primarily focused on using genomic data of dimorphic fungal pathogens in order to obtain a better perspective and understanding of how commonly used assembly, annotation and genomic comparison bioinformatics programs dealt with genomic data. Our group re-sequenced the reference strains that had been used for the existing assemblies and annotations of Paracoccidioides spp., and used the new, higher quality reads to substantially improve the reference assemblies and annotations of these pathogenic fungi. We also sequenced de novo the species Emmonsia crescens and E. parva, which are closely related to the causal agent of blastomycosis, Blastomyces dermatitidis, but non-pathogenic or with low virulence. We performed comparative analyses of gene content and structure between various strains of B. dermatitidis, E. crescens and E. parva. Using available sequences, we then designed and analytically validated two primer pairs from regions that are unique to Histoplasma capsulatum but present across diverse strains of this species, and can therefore be utilized to detect the presence of H. capsulatum. Using the same approach, we also designed and analytically validated three primer pairs of high confidence for the amplification of sequence fragments that are unique to the genus Paracoccidioides. We designed and implemented an algorithm that takes any given sequence(s) and splits the sequence into fragments in order to query the unique percentage of the fragment against a group of sequences that are closely related to the query as well as outgroups that may be relevant in clinical settings, including human. we genotyped 67 selected SNPs within the 9p21.3 locus of the human genome, motivated by its proven association with cardiovascular disease, for a Colombian cohort of 357 healthy individuals with data collected for detailed hemodynamic and other phenotypic traits. We also sequenced the exome of a patient with familiar hypercholesterolemia.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-10-10T12:32:35Z
dc.date.available.none.fl_str_mv 2017-10-10T12:32:35Z
dc.date.created.none.fl_str_mv 2017-08-29
dc.date.issued.none.fl_str_mv 2017
dc.type.eng.fl_str_mv doctoralThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.spa.spa.fl_str_mv Tesis de doctorado
dc.identifier.doi.none.fl_str_mv https://doi.org/10.48713/10336_13803
dc.identifier.uri.none.fl_str_mv http://repository.urosario.edu.co/handle/10336/13803
url https://doi.org/10.48713/10336_13803
http://repository.urosario.edu.co/handle/10336/13803
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.cc.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
rights_invalid_str_mv Abierto (Texto Completo)
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad del Rosario
dc.publisher.department.spa.fl_str_mv Facultad de Ciencias Naturales y Matemáticas
dc.publisher.program.spa.fl_str_mv Doctorado en Ciencias Biomédicas
institution Universidad del Rosario
dc.source.bibliographicCitation.none.fl_str_mv Muñoz JF, Gallo JE, Misas E, McEwen JG, Clay OK. The eukaryotic genome, its reads, and the unfinished assembly. FEBS Lett. 2013 Jul 11;587(14):2090–3
Muñoz JF, Misas E, Gallo JE, McEwen JG, Clay OK. Limits to Sequencing and de novo Assembly: Classic Benchmark Sequences for Optimizing Fungal NGS Designs. In: Castillo LF, Cristancho M, Isaza G, Pinz n AS, Rodr guez JMC, editors. Advances in Computational Biology. Cham: Springer International Publishing; 2014. pp. 221–30. (Advances in Intelligent Systems and Computing; vol. 232).
Gallo JE, Muñoz JF, Misas E, McEwen JG, Clay OK. The complex task of choosing a de novo assembly: lessons from fungal genomes. Comput Biol Chem. 2014 Dec;53 Pt A:97–107
Muñoz JF, Gauthier GM, Desjardins CA, Gallo JE, Holder J, Sullivan TD, et al. The Dynamic Genome and Transcriptome of the Human Fungal Pathogen Blastomyces and Close Relative Emmonsia. Haridas S, editor. PLoS Genet. 2015 Oct;11(10):e1005493
Misas E, Muñoz JF, Gallo JE, McEwen JG, Clay OK. From NGS assembly challenges to instability of fungal mitochondrial genomes: A case study in genome complexity. Comput Biol Chem. 2016 Apr;61:258–69.
Muñoz JF, Farrer RA, Desjardins CA, Gallo JE, Sykes S, Sakthikumar S, et al. Genome Diversity, RecombinatLineages of Paracoccidioides. Mitchell AP, editor. mSphere. American Society for Microbiology Journals; 2016 Sep;1(5):e00213–6.ion, and Virulence across the Major
Paynter NP, Chasman DI, Buring JE, Shiffman D, Cook NR, Ridker PM. Cardiovascular disease risk prediction with and without knowledge of genetic variation at chromosome 9p21.3. Ann Intern Med. NIH Public Access; 2009 Jan 20;150(2):65–72.
Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, et al. Common variants conferring risk of schizophrenia. Nature. 2009 Aug 6;460(7256):744–7.
Jarinova O, Stewart AFR, Roberts R, Wells G, Lau P, Naing T, et al. Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler Thromb Vasc Biol. American Heart Association, Inc; 2009 Oct;29(10):1671–7
Pasmant E, Sabbagh A, Vidaud M, Bièche I. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J. Federation of American Societies for Experimental Biology; 2011 Feb;25(2):444–8.
Scheffold T, Waldmüller S, Borisov K. A case of familial hypertrophic cardiomyopathy emphasizes the importance of parallel screening of multiple disease genes. Clin Res Cardiol. Springer-Verlag; 2011 Jul;100(7):627–8.
Sherborne AL, Hosking FJ, Prasad RB, Kumar R, Koehler R, Vijayakrishnan J, et al. Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nat Genet. 2010 Jun;42(6):492–4.
Lucioni M, Novara F, Fiandrino G, Riboni R, Fanoni D, Arra M, et al. Twenty-one cases of blastic plasmacytoid dendritic cell neoplasm: focus on biallelic locus 9p21.3 deletion. Blood. American Society of Hematology; 2011 Oct 27;118(17):4591–4.
Savola S, Nardi F, Scotlandi K, Picci P, Knuutila S. Microdeletions in 9p21.3 induce false negative results in CDKN2A FISH analysis of Ewing sarcoma. Cytogenet Genome Res. 2007;119(1-2):21–6
Silander K, Tang H, Myles S, Jakkula E, Timpson NJ, Cavalli-Sforza L, et al. Worldwide patterns of haplotype diversity at 9p21.3, a locus associated with type 2 diabetes and coronary heart disease. Genome Med. BioMed Central; 2009 May 12;1(5):51
Cheng X, Shi L, Nie S, Wang F, Li X, Xu C, et al. The same chromosome 9p21.3 locus is associated with type 2 diabetes and coronary artery disease in a Chinese Han population. Diabetes. 2011 Feb;60(2):680–4
Züchner S, Gilbert JR, Martin ER, Leon-Guerrero CR, Xu P-T, Browning C, et al. Linkage and association study of late-onset Alzheimer disease families linked to 9p21.3. Ann Hum Genet. Blackwell Publishing Ltd; 2008 Nov;72(Pt 6):725–31.
Halaschek-Wiener J, Amirabbasi-Beik M, Monfared N, Pieczyk M, Sailer C, Kollar A, et al. Genetic variation in healthy oldest-old. Mary Bridger J, editor. PLoS ONE. 2009 Aug 14;4(8):e6641
Gallo JE. Current state of cardiovascular genomics in Colombia. Revista Colombiana de Cardiologia. 2017 Jan;24(1):e1–e2
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/a85e66d1-8e89-42e8-80b2-c7d8a9d00fb3/download
https://repository.urosario.edu.co/bitstreams/93f60763-6ce6-481b-b614-d5d3b581630e/download
https://repository.urosario.edu.co/bitstreams/964fd13b-da0e-48f2-8aea-79a7ea059e8a/download
https://repository.urosario.edu.co/bitstreams/390227b1-160f-4c58-a6a6-59280be94b32/download
https://repository.urosario.edu.co/bitstreams/10e24ea6-18bc-4a4a-a480-0376c2629a71/download
https://repository.urosario.edu.co/bitstreams/727d8f1e-e69f-4037-b842-d48d6aaf9e9a/download
https://repository.urosario.edu.co/bitstreams/1f77fa9a-34f6-4174-94a5-25c313544266/download
bitstream.checksum.fl_str_mv 2bab795cd8959363908f0a705781e59b
fab9d9ed61d64f6ac005dee3306ae77e
9f5eb859bd5c30bc88515135ce7ba417
a84060c4596f4f0f5abbc4dcfde96185
a84060c4596f4f0f5abbc4dcfde96185
d0a4ac2c843c224129e3eecd6fd877bb
9e39a7f6607e3bd6beee43627dd789ad
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1808390670781513728
spelling Clay, Oliver3dbef47b-7587-49f5-87f1-bb5e174d6b8c-1Gallo Bonilla, Juan EstebanDoctor en Ciencias Biomédicas69d858ab-244b-4fb1-a42c-00d5e09d82f2-12017-10-10T12:32:35Z2017-10-10T12:32:35Z2017-08-292017The work of this thesis has a common focus on bioinformatics, comparative genomics of fungal genomes and clinical genomics of human chronic disease. We primarily focused on using genomic data of dimorphic fungal pathogens in order to obtain a better perspective and understanding of how commonly used assembly, annotation and genomic comparison bioinformatics programs dealt with genomic data. Our group re-sequenced the reference strains that had been used for the existing assemblies and annotations of Paracoccidioides spp., and used the new, higher quality reads to substantially improve the reference assemblies and annotations of these pathogenic fungi. We also sequenced de novo the species Emmonsia crescens and E. parva, which are closely related to the causal agent of blastomycosis, Blastomyces dermatitidis, but non-pathogenic or with low virulence. We performed comparative analyses of gene content and structure between various strains of B. dermatitidis, E. crescens and E. parva. Using available sequences, we then designed and analytically validated two primer pairs from regions that are unique to Histoplasma capsulatum but present across diverse strains of this species, and can therefore be utilized to detect the presence of H. capsulatum. Using the same approach, we also designed and analytically validated three primer pairs of high confidence for the amplification of sequence fragments that are unique to the genus Paracoccidioides. We designed and implemented an algorithm that takes any given sequence(s) and splits the sequence into fragments in order to query the unique percentage of the fragment against a group of sequences that are closely related to the query as well as outgroups that may be relevant in clinical settings, including human. we genotyped 67 selected SNPs within the 9p21.3 locus of the human genome, motivated by its proven association with cardiovascular disease, for a Colombian cohort of 357 healthy individuals with data collected for detailed hemodynamic and other phenotypic traits. We also sequenced the exome of a patient with familiar hypercholesterolemia.2021-10-12 01:01:01: Script de automatizacion de embargos. info:eu-repo/date/embargoEnd/2021-10-112019-10-11 07:55:01: Script de automatizacion de embargos. 11 oct 2019 Le llego el correo automático de finalización de embargo. 11 oct 2019 Correo recibido, Por favor no abrir acceso a esta tesis ya que aun nos encontramos en proceso de publicación en revista científica de algunos de sus contenidos. Gracias Juan Esteban Gallo Scientific Director GenomaCES 11 oct 2019 se cambia el nombre del documento y se embarga nuevamente por dos años2019-10-11 01:01:01: Script de automatizacion de embargos. info:eu-repo/date/embargoEnd/2019-10-10application/pdfhttps://doi.org/10.48713/10336_13803 http://repository.urosario.edu.co/handle/10336/13803spaUniversidad del RosarioFacultad de Ciencias Naturales y MatemáticasDoctorado en Ciencias BiomédicasAbierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 ColombiaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.http://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2Muñoz JF, Gallo JE, Misas E, McEwen JG, Clay OK. The eukaryotic genome, its reads, and the unfinished assembly. FEBS Lett. 2013 Jul 11;587(14):2090–3Muñoz JF, Misas E, Gallo JE, McEwen JG, Clay OK. Limits to Sequencing and de novo Assembly: Classic Benchmark Sequences for Optimizing Fungal NGS Designs. In: Castillo LF, Cristancho M, Isaza G, Pinz n AS, Rodr guez JMC, editors. Advances in Computational Biology. Cham: Springer International Publishing; 2014. pp. 221–30. (Advances in Intelligent Systems and Computing; vol. 232).Gallo JE, Muñoz JF, Misas E, McEwen JG, Clay OK. The complex task of choosing a de novo assembly: lessons from fungal genomes. Comput Biol Chem. 2014 Dec;53 Pt A:97–107Muñoz JF, Gauthier GM, Desjardins CA, Gallo JE, Holder J, Sullivan TD, et al. The Dynamic Genome and Transcriptome of the Human Fungal Pathogen Blastomyces and Close Relative Emmonsia. Haridas S, editor. PLoS Genet. 2015 Oct;11(10):e1005493Misas E, Muñoz JF, Gallo JE, McEwen JG, Clay OK. From NGS assembly challenges to instability of fungal mitochondrial genomes: A case study in genome complexity. Comput Biol Chem. 2016 Apr;61:258–69.Muñoz JF, Farrer RA, Desjardins CA, Gallo JE, Sykes S, Sakthikumar S, et al. Genome Diversity, RecombinatLineages of Paracoccidioides. Mitchell AP, editor. mSphere. American Society for Microbiology Journals; 2016 Sep;1(5):e00213–6.ion, and Virulence across the MajorPaynter NP, Chasman DI, Buring JE, Shiffman D, Cook NR, Ridker PM. Cardiovascular disease risk prediction with and without knowledge of genetic variation at chromosome 9p21.3. Ann Intern Med. NIH Public Access; 2009 Jan 20;150(2):65–72.Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, et al. Common variants conferring risk of schizophrenia. Nature. 2009 Aug 6;460(7256):744–7.Jarinova O, Stewart AFR, Roberts R, Wells G, Lau P, Naing T, et al. Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler Thromb Vasc Biol. American Heart Association, Inc; 2009 Oct;29(10):1671–7Pasmant E, Sabbagh A, Vidaud M, Bièche I. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J. Federation of American Societies for Experimental Biology; 2011 Feb;25(2):444–8.Scheffold T, Waldmüller S, Borisov K. A case of familial hypertrophic cardiomyopathy emphasizes the importance of parallel screening of multiple disease genes. Clin Res Cardiol. Springer-Verlag; 2011 Jul;100(7):627–8.Sherborne AL, Hosking FJ, Prasad RB, Kumar R, Koehler R, Vijayakrishnan J, et al. Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nat Genet. 2010 Jun;42(6):492–4.Lucioni M, Novara F, Fiandrino G, Riboni R, Fanoni D, Arra M, et al. Twenty-one cases of blastic plasmacytoid dendritic cell neoplasm: focus on biallelic locus 9p21.3 deletion. Blood. American Society of Hematology; 2011 Oct 27;118(17):4591–4.Savola S, Nardi F, Scotlandi K, Picci P, Knuutila S. Microdeletions in 9p21.3 induce false negative results in CDKN2A FISH analysis of Ewing sarcoma. Cytogenet Genome Res. 2007;119(1-2):21–6Silander K, Tang H, Myles S, Jakkula E, Timpson NJ, Cavalli-Sforza L, et al. Worldwide patterns of haplotype diversity at 9p21.3, a locus associated with type 2 diabetes and coronary heart disease. Genome Med. BioMed Central; 2009 May 12;1(5):51Cheng X, Shi L, Nie S, Wang F, Li X, Xu C, et al. The same chromosome 9p21.3 locus is associated with type 2 diabetes and coronary artery disease in a Chinese Han population. Diabetes. 2011 Feb;60(2):680–4Züchner S, Gilbert JR, Martin ER, Leon-Guerrero CR, Xu P-T, Browning C, et al. Linkage and association study of late-onset Alzheimer disease families linked to 9p21.3. Ann Hum Genet. Blackwell Publishing Ltd; 2008 Nov;72(Pt 6):725–31.Halaschek-Wiener J, Amirabbasi-Beik M, Monfared N, Pieczyk M, Sailer C, Kollar A, et al. Genetic variation in healthy oldest-old. Mary Bridger J, editor. PLoS ONE. 2009 Aug 14;4(8):e6641Gallo JE. Current state of cardiovascular genomics in Colombia. Revista Colombiana de Cardiologia. 2017 Jan;24(1):e1–e2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURGenomicsBioinformaticsEnfermedades616600Biología ComputacionalGenoma fúngicoGenoma viralEnfermedad crónicaGenomicsBioinformaticsNext-generation sequencing and genome analysis in dimorphic fungi and human: using genomic variation to recognize and understand diseasedoctoralThesisTesis de doctoradohttp://purl.org/coar/resource_type/c_db06Escuela de Medicina y Ciencias de la SaludORIGINALGalloBonilla-JuanEsteban-2017_OK.pdfGalloBonilla-JuanEsteban-2017_OK.pdfapplication/pdf22981734https://repository.urosario.edu.co/bitstreams/a85e66d1-8e89-42e8-80b2-c7d8a9d00fb3/download2bab795cd8959363908f0a705781e59bMD56LICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/93f60763-6ce6-481b-b614-d5d3b581630e/downloadfab9d9ed61d64f6ac005dee3306ae77eMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8810https://repository.urosario.edu.co/bitstreams/964fd13b-da0e-48f2-8aea-79a7ea059e8a/download9f5eb859bd5c30bc88515135ce7ba417MD53TEXTGalloBonilla-JuanEsteban-2017.pdf.txtGalloBonilla-JuanEsteban-2017.pdf.txtExtracted texttext/plain632175https://repository.urosario.edu.co/bitstreams/390227b1-160f-4c58-a6a6-59280be94b32/downloada84060c4596f4f0f5abbc4dcfde96185MD54GalloBonilla-JuanEsteban-2017_OK.pdf.txtGalloBonilla-JuanEsteban-2017_OK.pdf.txtExtracted texttext/plain632175https://repository.urosario.edu.co/bitstreams/10e24ea6-18bc-4a4a-a480-0376c2629a71/downloada84060c4596f4f0f5abbc4dcfde96185MD57THUMBNAILGalloBonilla-JuanEsteban-2017.pdf.jpgGalloBonilla-JuanEsteban-2017.pdf.jpgGenerated Thumbnailimage/jpeg2041https://repository.urosario.edu.co/bitstreams/727d8f1e-e69f-4037-b842-d48d6aaf9e9a/downloadd0a4ac2c843c224129e3eecd6fd877bbMD55GalloBonilla-JuanEsteban-2017_OK.pdf.jpgGalloBonilla-JuanEsteban-2017_OK.pdf.jpgGenerated Thumbnailimage/jpeg3085https://repository.urosario.edu.co/bitstreams/1f77fa9a-34f6-4174-94a5-25c313544266/download9e39a7f6607e3bd6beee43627dd789adMD5810336/13803oai:repository.urosario.edu.co:10336/138032021-10-12 01:01:01.938602http://creativecommons.org/licenses/by-nc-nd/2.5/co/https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo=