Branching random motions, nonlinear hyperbolic systems and travelling waves
A branching random motion on a line, with abrupt changes of direction, is studied. The branching mechanism, being independent of random motion, and intensities of reverses are defined by a particle’s current direction. A solution of a certain hyperbolic system of coupled non-linear equations (Kolmog...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2006
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/14385
- Acceso en línea:
- http://repository.urosario.edu.co/handle/10336/14385
- Palabra clave:
- Branching random motion
Travelling wave
Feynman-Kac connection
Non-linear hyperbolic system
Mckean solution
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_d0ecfe3147d9d49137af8eb5d9daa5be |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/14385 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
Facultad de Economía Ratanov, NikitaRatanov, Nikita3203526002018-02-14T20:49:03Z2018-02-14T20:49:03Z20062006A branching random motion on a line, with abrupt changes of direction, is studied. The branching mechanism, being independent of random motion, and intensities of reverses are defined by a particle’s current direction. A solution of a certain hyperbolic system of coupled non-linear equations (Kolmogorov type backward equation) has a so-called McKean representation via such processes. Commonly this system possesses travelling-wave solutions. The convergence of solutions with Heaviside terminal data to the travelling waves is discussed. The paper realizes the McKean’s program for the Kolmogorov-Petrovskii-Piskunov equation in this case. The Feynman-Kac formula plays a key role.application/pdfeISSN: 1262-3318http://repository.urosario.edu.co/handle/10336/14385eng257236Esaim P&S: Probability And StatisticsVol. 10Esaim P&S: Probability And Statistics, eISSN: 1262-3318, Vol. 10 (Abril 2006), pp. 236–257https://www.esaim-ps.org/articles/ps/pdf/2006/01/ps0515.pdfAbierto (Texto Completo)http://www.sherpa.ac.uk/romeo/issn/1292-81/http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURBranching random motionTravelling waveFeynman-Kac connectionNon-linear hyperbolic systemMckean solutionBranching random motions, nonlinear hyperbolic systems and travelling wavesarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501ORIGINALPDF196.pdfapplication/pdf267972https://repository.urosario.edu.co/bitstreams/9c724751-18a9-425e-b976-52f1cf9478b2/download79d7ce100edb66259173f4b728509f53MD51TEXTPDF196.pdf.txtPDF196.pdf.txtExtracted texttext/plain54866https://repository.urosario.edu.co/bitstreams/da71e9b0-8e91-4fe3-9daf-7c400502aa5d/download9b005cd5ed782b56376a38115c62f72eMD56THUMBNAILPDF196.pdf.jpgPDF196.pdf.jpgGenerated Thumbnailimage/jpeg3469https://repository.urosario.edu.co/bitstreams/8214e04f-02c1-400d-87ce-a0b1873d3f42/download528473e680fc31a6c7152257755e8d4aMD5710336/14385oai:repository.urosario.edu.co:10336/143852019-09-19 07:38:03.190837http://www.sherpa.ac.uk/romeo/issn/1292-81/https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Branching random motions, nonlinear hyperbolic systems and travelling waves |
title |
Branching random motions, nonlinear hyperbolic systems and travelling waves |
spellingShingle |
Branching random motions, nonlinear hyperbolic systems and travelling waves Branching random motion Travelling wave Feynman-Kac connection Non-linear hyperbolic system Mckean solution |
title_short |
Branching random motions, nonlinear hyperbolic systems and travelling waves |
title_full |
Branching random motions, nonlinear hyperbolic systems and travelling waves |
title_fullStr |
Branching random motions, nonlinear hyperbolic systems and travelling waves |
title_full_unstemmed |
Branching random motions, nonlinear hyperbolic systems and travelling waves |
title_sort |
Branching random motions, nonlinear hyperbolic systems and travelling waves |
dc.contributor.gruplac.spa.fl_str_mv |
Facultad de Economía |
dc.subject.spa.fl_str_mv |
Branching random motion Travelling wave Feynman-Kac connection Non-linear hyperbolic system Mckean solution |
topic |
Branching random motion Travelling wave Feynman-Kac connection Non-linear hyperbolic system Mckean solution |
description |
A branching random motion on a line, with abrupt changes of direction, is studied. The branching mechanism, being independent of random motion, and intensities of reverses are defined by a particle’s current direction. A solution of a certain hyperbolic system of coupled non-linear equations (Kolmogorov type backward equation) has a so-called McKean representation via such processes. Commonly this system possesses travelling-wave solutions. The convergence of solutions with Heaviside terminal data to the travelling waves is discussed. The paper realizes the McKean’s program for the Kolmogorov-Petrovskii-Piskunov equation in this case. The Feynman-Kac formula plays a key role. |
publishDate |
2006 |
dc.date.created.none.fl_str_mv |
2006 |
dc.date.issued.none.fl_str_mv |
2006 |
dc.date.accessioned.none.fl_str_mv |
2018-02-14T20:49:03Z |
dc.date.available.none.fl_str_mv |
2018-02-14T20:49:03Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.issn.none.fl_str_mv |
eISSN: 1262-3318 |
dc.identifier.uri.none.fl_str_mv |
http://repository.urosario.edu.co/handle/10336/14385 |
identifier_str_mv |
eISSN: 1262-3318 |
url |
http://repository.urosario.edu.co/handle/10336/14385 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
257 |
dc.relation.citationStartPage.none.fl_str_mv |
236 |
dc.relation.citationTitle.none.fl_str_mv |
Esaim P&S: Probability And Statistics |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 10 |
dc.relation.ispartof.spa.fl_str_mv |
Esaim P&S: Probability And Statistics, eISSN: 1262-3318, Vol. 10 (Abril 2006), pp. 236–257 |
dc.relation.uri.none.fl_str_mv |
https://www.esaim-ps.org/articles/ps/pdf/2006/01/ps0515.pdf |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.none.fl_str_mv |
http://www.sherpa.ac.uk/romeo/issn/1292-81/ |
rights_invalid_str_mv |
Abierto (Texto Completo) http://www.sherpa.ac.uk/romeo/issn/1292-81/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/9c724751-18a9-425e-b976-52f1cf9478b2/download https://repository.urosario.edu.co/bitstreams/da71e9b0-8e91-4fe3-9daf-7c400502aa5d/download https://repository.urosario.edu.co/bitstreams/8214e04f-02c1-400d-87ce-a0b1873d3f42/download |
bitstream.checksum.fl_str_mv |
79d7ce100edb66259173f4b728509f53 9b005cd5ed782b56376a38115c62f72e 528473e680fc31a6c7152257755e8d4a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167504658890752 |