Dynamic cerebral autoregulation reproducibility is affected by physiological variability

Parameters describing dynamic cerebral autoregulation (DCA) have limited reproducibility. In an international, multi-center study, we evaluated the influence of multiple analytical methods on the reproducibility of DCA. Fourteen participating centers analyzed repeated measurements from 75 healthy su...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/24099
Acceso en línea:
https://doi.org/10.3389/fphys.2019.00865
https://repository.urosario.edu.co/handle/10336/24099
Palabra clave:
Adult
Analytic method
Article
Autoregulation
Autoregulation index
Blood flow velocity
Blood pressure fluctuation
Brain blood flow
Correlation coefficient
Dynamic cerebral autoregulation
End tidal carbon dioxide tension
Female
Fourier transformation
Hemodynamic parameters
Human
Human experiment
Male
Mean arterial pressure
Middle aged
Mild cognitive impairment
Normal human
Physiological process
Reproducibility
Transfer function analysis
Ari index
Cerebral blood flow
Cerebral hemodynamics
Transcranial doppler
Transfer function analysis
Rights
License
Abierto (Texto Completo)
id EDOCUR2_cfdf4c60a5b66b88466e32aad4698e89
oai_identifier_str oai:repository.urosario.edu.co:10336/24099
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.spa.fl_str_mv Dynamic cerebral autoregulation reproducibility is affected by physiological variability
title Dynamic cerebral autoregulation reproducibility is affected by physiological variability
spellingShingle Dynamic cerebral autoregulation reproducibility is affected by physiological variability
Adult
Analytic method
Article
Autoregulation
Autoregulation index
Blood flow velocity
Blood pressure fluctuation
Brain blood flow
Correlation coefficient
Dynamic cerebral autoregulation
End tidal carbon dioxide tension
Female
Fourier transformation
Hemodynamic parameters
Human
Human experiment
Male
Mean arterial pressure
Middle aged
Mild cognitive impairment
Normal human
Physiological process
Reproducibility
Transfer function analysis
Ari index
Cerebral blood flow
Cerebral hemodynamics
Transcranial doppler
Transfer function analysis
title_short Dynamic cerebral autoregulation reproducibility is affected by physiological variability
title_full Dynamic cerebral autoregulation reproducibility is affected by physiological variability
title_fullStr Dynamic cerebral autoregulation reproducibility is affected by physiological variability
title_full_unstemmed Dynamic cerebral autoregulation reproducibility is affected by physiological variability
title_sort Dynamic cerebral autoregulation reproducibility is affected by physiological variability
dc.subject.keyword.spa.fl_str_mv Adult
Analytic method
Article
Autoregulation
Autoregulation index
Blood flow velocity
Blood pressure fluctuation
Brain blood flow
Correlation coefficient
Dynamic cerebral autoregulation
End tidal carbon dioxide tension
Female
Fourier transformation
Hemodynamic parameters
Human
Human experiment
Male
Mean arterial pressure
Middle aged
Mild cognitive impairment
Normal human
Physiological process
Reproducibility
Transfer function analysis
Ari index
Cerebral blood flow
Cerebral hemodynamics
Transcranial doppler
Transfer function analysis
topic Adult
Analytic method
Article
Autoregulation
Autoregulation index
Blood flow velocity
Blood pressure fluctuation
Brain blood flow
Correlation coefficient
Dynamic cerebral autoregulation
End tidal carbon dioxide tension
Female
Fourier transformation
Hemodynamic parameters
Human
Human experiment
Male
Mean arterial pressure
Middle aged
Mild cognitive impairment
Normal human
Physiological process
Reproducibility
Transfer function analysis
Ari index
Cerebral blood flow
Cerebral hemodynamics
Transcranial doppler
Transfer function analysis
description Parameters describing dynamic cerebral autoregulation (DCA) have limited reproducibility. In an international, multi-center study, we evaluated the influence of multiple analytical methods on the reproducibility of DCA. Fourteen participating centers analyzed repeated measurements from 75 healthy subjects, consisting of 5 min of spontaneous fluctuations in blood pressure and cerebral blood flow velocity signals, based on their usual methods of analysis. DCA methods were grouped into three broad categories, depending on output types: (1) transfer function analysis (TFA); (2) autoregulation index (ARI); and (3) correlation coefficient. Only TFA gain in the low frequency (LF) band showed good reproducibility in approximately half of the estimates of gain, defined as an intraclass correlation coefficient (ICC) of > 0.6. None of the other DCA metrics had good reproducibility. For TFA-like and ARI-like methods, ICCs were lower than values obtained with surrogate data (p less than 0.05). For TFA-like methods, ICCs were lower for the very LF band (gain 0.38 ± 0.057, phase 0.17 ± 0.13) than for LF band (gain 0.59 ± 0.078, phase 0.39 ± 0.11, p ? 0.001 for both gain and phase). For ARI-like methods, the mean ICC was 0.30 ± 0.12 and for the correlation methods 0.24 ± 0.23. Based on comparisons with ICC estimates obtained from surrogate data, we conclude that physiological variability or non-stationarity is likely to be the main reason for the poor reproducibility of DCA parameters. Copyright © 2019 Sanders, Elting, Panerai, Aries, Bor-Seng-Shu, Caicedo, Chacon, Gommer, Van Huffel, Jara, Kostoglou, Mahdi, Marmarelis, Mitsis, Müller, Nikolic, Nogueira, Payne, Puppo, Shin, Simpson, Tarumi, Yelicich, Zhang and Claassen.
publishDate 2019
dc.date.created.spa.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-05-26T00:08:37Z
dc.date.available.none.fl_str_mv 2020-05-26T00:08:37Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3389/fphys.2019.00865
dc.identifier.issn.none.fl_str_mv 1664042X
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/24099
url https://doi.org/10.3389/fphys.2019.00865
https://repository.urosario.edu.co/handle/10336/24099
identifier_str_mv 1664042X
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationIssue.none.fl_str_mv No. JUL
dc.relation.citationTitle.none.fl_str_mv Frontiers in Physiology
dc.relation.citationVolume.none.fl_str_mv Vol. 10
dc.relation.ispartof.spa.fl_str_mv Frontiers in Physiology, ISSN:1664042X, Vol.10, No.JUL (2019)
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069901274&doi=10.3389%2ffphys.2019.00865&partnerID=40&md5=9fdfe759fb9f1e263eefea57c01f9385
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Frontiers Media S.A.
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/9e18d968-19cf-49f3-8c25-a009226c0b33/download
https://repository.urosario.edu.co/bitstreams/2bd30cf7-f57d-4259-8658-12f6e99bc1ea/download
https://repository.urosario.edu.co/bitstreams/fbbdeb52-c968-4032-9270-ae8167dbff14/download
bitstream.checksum.fl_str_mv a2e4fbe68c48e23603d8417d31e8b021
116313dacbf67aff12817da165d22fff
5cedbd5c7f324375377a151d9225dcf2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167560739880960
spelling b314b022-697b-4cf1-8b03-29db8c58a344-1701c36be-053d-4c1e-8cac-9be65dd35dcb-17deb38d9-faad-445a-a5a9-641788d4c146-1f593337d-e3a2-439e-b8b3-577bb80d9aa4-1b1f691a3-d4b5-433f-94f3-c696f4dd0533-10544c289-4862-4319-933c-8e691c699821-1b3c2f764-4d8c-461a-860d-80e9b73bea3d-1373c77e3-5093-43fd-831b-0db88cefa50d-149a968e6-d80d-47ce-9bba-3cd250d057bb-169e741c2-cd04-4adb-b90d-fdf2cf766228-189b40cc2-d14b-46ec-8713-52e3efbfacd6-1233ca51b-f900-4069-afca-ca9051010305-1c2ae2e6b-90bc-4db6-b3f8-38a4b37eeffb-10c198e71-86b9-4997-acdb-c2f3e2ebf040-146f4b5fe-f184-470c-b6ca-69b49a7782ee-1a9264f66-9269-43e5-bb9c-74a7e3ea134e-151854686-d4e6-4a53-a5d9-ebfe43825ba9-139745285-1693-4fe1-a4b3-4a6a0fce5791-1470df8ca-a06f-4eb5-94c7-df3f2f0adb3f-15611b762-e643-4cb5-9e09-58279ac2f6a2-184d4ddad-4b4f-4197-8e1a-b41ed5384618-149fa26b3-f365-445e-9e61-4456bf863863-1684a1903-b316-46de-85d5-3efc4843a670-1f3d4383d-3167-4320-bbd7-7b5fbc8d6e0f-1141395126002020-05-26T00:08:37Z2020-05-26T00:08:37Z2019Parameters describing dynamic cerebral autoregulation (DCA) have limited reproducibility. In an international, multi-center study, we evaluated the influence of multiple analytical methods on the reproducibility of DCA. Fourteen participating centers analyzed repeated measurements from 75 healthy subjects, consisting of 5 min of spontaneous fluctuations in blood pressure and cerebral blood flow velocity signals, based on their usual methods of analysis. DCA methods were grouped into three broad categories, depending on output types: (1) transfer function analysis (TFA); (2) autoregulation index (ARI); and (3) correlation coefficient. Only TFA gain in the low frequency (LF) band showed good reproducibility in approximately half of the estimates of gain, defined as an intraclass correlation coefficient (ICC) of > 0.6. None of the other DCA metrics had good reproducibility. For TFA-like and ARI-like methods, ICCs were lower than values obtained with surrogate data (p less than 0.05). For TFA-like methods, ICCs were lower for the very LF band (gain 0.38 ± 0.057, phase 0.17 ± 0.13) than for LF band (gain 0.59 ± 0.078, phase 0.39 ± 0.11, p ? 0.001 for both gain and phase). For ARI-like methods, the mean ICC was 0.30 ± 0.12 and for the correlation methods 0.24 ± 0.23. Based on comparisons with ICC estimates obtained from surrogate data, we conclude that physiological variability or non-stationarity is likely to be the main reason for the poor reproducibility of DCA parameters. Copyright © 2019 Sanders, Elting, Panerai, Aries, Bor-Seng-Shu, Caicedo, Chacon, Gommer, Van Huffel, Jara, Kostoglou, Mahdi, Marmarelis, Mitsis, Müller, Nikolic, Nogueira, Payne, Puppo, Shin, Simpson, Tarumi, Yelicich, Zhang and Claassen.application/pdfhttps://doi.org/10.3389/fphys.2019.008651664042Xhttps://repository.urosario.edu.co/handle/10336/24099engFrontiers Media S.A.No. JULFrontiers in PhysiologyVol. 10Frontiers in Physiology, ISSN:1664042X, Vol.10, No.JUL (2019)https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069901274&doi=10.3389%2ffphys.2019.00865&partnerID=40&md5=9fdfe759fb9f1e263eefea57c01f9385Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURAdultAnalytic methodArticleAutoregulationAutoregulation indexBlood flow velocityBlood pressure fluctuationBrain blood flowCorrelation coefficientDynamic cerebral autoregulationEnd tidal carbon dioxide tensionFemaleFourier transformationHemodynamic parametersHumanHuman experimentMaleMean arterial pressureMiddle agedMild cognitive impairmentNormal humanPhysiological processReproducibilityTransfer function analysisAri indexCerebral blood flowCerebral hemodynamicsTranscranial dopplerTransfer function analysisDynamic cerebral autoregulation reproducibility is affected by physiological variabilityarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Sanders, Marit L.Elting, Jan Willem J.Panerai, Ronney B.Aries, MarcelBor-Seng-Shu, EdsonChacon, MaxGommer, Erik D.Van Huffel, SabineJara, José L.Kostoglou, KyriakiMahdi, AdamMarmarelis, Vasilis Z.Mitsis, Georgios D.Müller, MartinNikolic, DraganaNogueira, Ricardo C.Payne, Stephen J.Puppo, CorinaShin, Dae C.Simpson, David M.Tarumi, TakashiYelicich, BernardoZhang, RongClaassen, Jurgen A. H. R.Caicedo Dorado, AlexanderORIGINALfphys-10-00865.pdfapplication/pdf2008997https://repository.urosario.edu.co/bitstreams/9e18d968-19cf-49f3-8c25-a009226c0b33/downloada2e4fbe68c48e23603d8417d31e8b021MD51TEXTfphys-10-00865.pdf.txtfphys-10-00865.pdf.txtExtracted texttext/plain56295https://repository.urosario.edu.co/bitstreams/2bd30cf7-f57d-4259-8658-12f6e99bc1ea/download116313dacbf67aff12817da165d22fffMD52THUMBNAILfphys-10-00865.pdf.jpgfphys-10-00865.pdf.jpgGenerated Thumbnailimage/jpeg4441https://repository.urosario.edu.co/bitstreams/fbbdeb52-c968-4032-9270-ae8167dbff14/download5cedbd5c7f324375377a151d9225dcf2MD5310336/24099oai:repository.urosario.edu.co:10336/240992022-05-02 07:37:14.918356https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co