Dynamic cerebral autoregulation reproducibility is affected by physiological variability
Parameters describing dynamic cerebral autoregulation (DCA) have limited reproducibility. In an international, multi-center study, we evaluated the influence of multiple analytical methods on the reproducibility of DCA. Fourteen participating centers analyzed repeated measurements from 75 healthy su...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/24099
- Acceso en línea:
- https://doi.org/10.3389/fphys.2019.00865
https://repository.urosario.edu.co/handle/10336/24099
- Palabra clave:
- Adult
Analytic method
Article
Autoregulation
Autoregulation index
Blood flow velocity
Blood pressure fluctuation
Brain blood flow
Correlation coefficient
Dynamic cerebral autoregulation
End tidal carbon dioxide tension
Female
Fourier transformation
Hemodynamic parameters
Human
Human experiment
Male
Mean arterial pressure
Middle aged
Mild cognitive impairment
Normal human
Physiological process
Reproducibility
Transfer function analysis
Ari index
Cerebral blood flow
Cerebral hemodynamics
Transcranial doppler
Transfer function analysis
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_cfdf4c60a5b66b88466e32aad4698e89 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/24099 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Dynamic cerebral autoregulation reproducibility is affected by physiological variability |
title |
Dynamic cerebral autoregulation reproducibility is affected by physiological variability |
spellingShingle |
Dynamic cerebral autoregulation reproducibility is affected by physiological variability Adult Analytic method Article Autoregulation Autoregulation index Blood flow velocity Blood pressure fluctuation Brain blood flow Correlation coefficient Dynamic cerebral autoregulation End tidal carbon dioxide tension Female Fourier transformation Hemodynamic parameters Human Human experiment Male Mean arterial pressure Middle aged Mild cognitive impairment Normal human Physiological process Reproducibility Transfer function analysis Ari index Cerebral blood flow Cerebral hemodynamics Transcranial doppler Transfer function analysis |
title_short |
Dynamic cerebral autoregulation reproducibility is affected by physiological variability |
title_full |
Dynamic cerebral autoregulation reproducibility is affected by physiological variability |
title_fullStr |
Dynamic cerebral autoregulation reproducibility is affected by physiological variability |
title_full_unstemmed |
Dynamic cerebral autoregulation reproducibility is affected by physiological variability |
title_sort |
Dynamic cerebral autoregulation reproducibility is affected by physiological variability |
dc.subject.keyword.spa.fl_str_mv |
Adult Analytic method Article Autoregulation Autoregulation index Blood flow velocity Blood pressure fluctuation Brain blood flow Correlation coefficient Dynamic cerebral autoregulation End tidal carbon dioxide tension Female Fourier transformation Hemodynamic parameters Human Human experiment Male Mean arterial pressure Middle aged Mild cognitive impairment Normal human Physiological process Reproducibility Transfer function analysis Ari index Cerebral blood flow Cerebral hemodynamics Transcranial doppler Transfer function analysis |
topic |
Adult Analytic method Article Autoregulation Autoregulation index Blood flow velocity Blood pressure fluctuation Brain blood flow Correlation coefficient Dynamic cerebral autoregulation End tidal carbon dioxide tension Female Fourier transformation Hemodynamic parameters Human Human experiment Male Mean arterial pressure Middle aged Mild cognitive impairment Normal human Physiological process Reproducibility Transfer function analysis Ari index Cerebral blood flow Cerebral hemodynamics Transcranial doppler Transfer function analysis |
description |
Parameters describing dynamic cerebral autoregulation (DCA) have limited reproducibility. In an international, multi-center study, we evaluated the influence of multiple analytical methods on the reproducibility of DCA. Fourteen participating centers analyzed repeated measurements from 75 healthy subjects, consisting of 5 min of spontaneous fluctuations in blood pressure and cerebral blood flow velocity signals, based on their usual methods of analysis. DCA methods were grouped into three broad categories, depending on output types: (1) transfer function analysis (TFA); (2) autoregulation index (ARI); and (3) correlation coefficient. Only TFA gain in the low frequency (LF) band showed good reproducibility in approximately half of the estimates of gain, defined as an intraclass correlation coefficient (ICC) of > 0.6. None of the other DCA metrics had good reproducibility. For TFA-like and ARI-like methods, ICCs were lower than values obtained with surrogate data (p less than 0.05). For TFA-like methods, ICCs were lower for the very LF band (gain 0.38 ± 0.057, phase 0.17 ± 0.13) than for LF band (gain 0.59 ± 0.078, phase 0.39 ± 0.11, p ? 0.001 for both gain and phase). For ARI-like methods, the mean ICC was 0.30 ± 0.12 and for the correlation methods 0.24 ± 0.23. Based on comparisons with ICC estimates obtained from surrogate data, we conclude that physiological variability or non-stationarity is likely to be the main reason for the poor reproducibility of DCA parameters. Copyright © 2019 Sanders, Elting, Panerai, Aries, Bor-Seng-Shu, Caicedo, Chacon, Gommer, Van Huffel, Jara, Kostoglou, Mahdi, Marmarelis, Mitsis, Müller, Nikolic, Nogueira, Payne, Puppo, Shin, Simpson, Tarumi, Yelicich, Zhang and Claassen. |
publishDate |
2019 |
dc.date.created.spa.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-05-26T00:08:37Z |
dc.date.available.none.fl_str_mv |
2020-05-26T00:08:37Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3389/fphys.2019.00865 |
dc.identifier.issn.none.fl_str_mv |
1664042X |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/24099 |
url |
https://doi.org/10.3389/fphys.2019.00865 https://repository.urosario.edu.co/handle/10336/24099 |
identifier_str_mv |
1664042X |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationIssue.none.fl_str_mv |
No. JUL |
dc.relation.citationTitle.none.fl_str_mv |
Frontiers in Physiology |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 10 |
dc.relation.ispartof.spa.fl_str_mv |
Frontiers in Physiology, ISSN:1664042X, Vol.10, No.JUL (2019) |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069901274&doi=10.3389%2ffphys.2019.00865&partnerID=40&md5=9fdfe759fb9f1e263eefea57c01f9385 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Frontiers Media S.A. |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/9e18d968-19cf-49f3-8c25-a009226c0b33/download https://repository.urosario.edu.co/bitstreams/2bd30cf7-f57d-4259-8658-12f6e99bc1ea/download https://repository.urosario.edu.co/bitstreams/fbbdeb52-c968-4032-9270-ae8167dbff14/download |
bitstream.checksum.fl_str_mv |
a2e4fbe68c48e23603d8417d31e8b021 116313dacbf67aff12817da165d22fff 5cedbd5c7f324375377a151d9225dcf2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167560739880960 |
spelling |
b314b022-697b-4cf1-8b03-29db8c58a344-1701c36be-053d-4c1e-8cac-9be65dd35dcb-17deb38d9-faad-445a-a5a9-641788d4c146-1f593337d-e3a2-439e-b8b3-577bb80d9aa4-1b1f691a3-d4b5-433f-94f3-c696f4dd0533-10544c289-4862-4319-933c-8e691c699821-1b3c2f764-4d8c-461a-860d-80e9b73bea3d-1373c77e3-5093-43fd-831b-0db88cefa50d-149a968e6-d80d-47ce-9bba-3cd250d057bb-169e741c2-cd04-4adb-b90d-fdf2cf766228-189b40cc2-d14b-46ec-8713-52e3efbfacd6-1233ca51b-f900-4069-afca-ca9051010305-1c2ae2e6b-90bc-4db6-b3f8-38a4b37eeffb-10c198e71-86b9-4997-acdb-c2f3e2ebf040-146f4b5fe-f184-470c-b6ca-69b49a7782ee-1a9264f66-9269-43e5-bb9c-74a7e3ea134e-151854686-d4e6-4a53-a5d9-ebfe43825ba9-139745285-1693-4fe1-a4b3-4a6a0fce5791-1470df8ca-a06f-4eb5-94c7-df3f2f0adb3f-15611b762-e643-4cb5-9e09-58279ac2f6a2-184d4ddad-4b4f-4197-8e1a-b41ed5384618-149fa26b3-f365-445e-9e61-4456bf863863-1684a1903-b316-46de-85d5-3efc4843a670-1f3d4383d-3167-4320-bbd7-7b5fbc8d6e0f-1141395126002020-05-26T00:08:37Z2020-05-26T00:08:37Z2019Parameters describing dynamic cerebral autoregulation (DCA) have limited reproducibility. In an international, multi-center study, we evaluated the influence of multiple analytical methods on the reproducibility of DCA. Fourteen participating centers analyzed repeated measurements from 75 healthy subjects, consisting of 5 min of spontaneous fluctuations in blood pressure and cerebral blood flow velocity signals, based on their usual methods of analysis. DCA methods were grouped into three broad categories, depending on output types: (1) transfer function analysis (TFA); (2) autoregulation index (ARI); and (3) correlation coefficient. Only TFA gain in the low frequency (LF) band showed good reproducibility in approximately half of the estimates of gain, defined as an intraclass correlation coefficient (ICC) of > 0.6. None of the other DCA metrics had good reproducibility. For TFA-like and ARI-like methods, ICCs were lower than values obtained with surrogate data (p less than 0.05). For TFA-like methods, ICCs were lower for the very LF band (gain 0.38 ± 0.057, phase 0.17 ± 0.13) than for LF band (gain 0.59 ± 0.078, phase 0.39 ± 0.11, p ? 0.001 for both gain and phase). For ARI-like methods, the mean ICC was 0.30 ± 0.12 and for the correlation methods 0.24 ± 0.23. Based on comparisons with ICC estimates obtained from surrogate data, we conclude that physiological variability or non-stationarity is likely to be the main reason for the poor reproducibility of DCA parameters. Copyright © 2019 Sanders, Elting, Panerai, Aries, Bor-Seng-Shu, Caicedo, Chacon, Gommer, Van Huffel, Jara, Kostoglou, Mahdi, Marmarelis, Mitsis, Müller, Nikolic, Nogueira, Payne, Puppo, Shin, Simpson, Tarumi, Yelicich, Zhang and Claassen.application/pdfhttps://doi.org/10.3389/fphys.2019.008651664042Xhttps://repository.urosario.edu.co/handle/10336/24099engFrontiers Media S.A.No. JULFrontiers in PhysiologyVol. 10Frontiers in Physiology, ISSN:1664042X, Vol.10, No.JUL (2019)https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069901274&doi=10.3389%2ffphys.2019.00865&partnerID=40&md5=9fdfe759fb9f1e263eefea57c01f9385Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURAdultAnalytic methodArticleAutoregulationAutoregulation indexBlood flow velocityBlood pressure fluctuationBrain blood flowCorrelation coefficientDynamic cerebral autoregulationEnd tidal carbon dioxide tensionFemaleFourier transformationHemodynamic parametersHumanHuman experimentMaleMean arterial pressureMiddle agedMild cognitive impairmentNormal humanPhysiological processReproducibilityTransfer function analysisAri indexCerebral blood flowCerebral hemodynamicsTranscranial dopplerTransfer function analysisDynamic cerebral autoregulation reproducibility is affected by physiological variabilityarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Sanders, Marit L.Elting, Jan Willem J.Panerai, Ronney B.Aries, MarcelBor-Seng-Shu, EdsonChacon, MaxGommer, Erik D.Van Huffel, SabineJara, José L.Kostoglou, KyriakiMahdi, AdamMarmarelis, Vasilis Z.Mitsis, Georgios D.Müller, MartinNikolic, DraganaNogueira, Ricardo C.Payne, Stephen J.Puppo, CorinaShin, Dae C.Simpson, David M.Tarumi, TakashiYelicich, BernardoZhang, RongClaassen, Jurgen A. H. R.Caicedo Dorado, AlexanderORIGINALfphys-10-00865.pdfapplication/pdf2008997https://repository.urosario.edu.co/bitstreams/9e18d968-19cf-49f3-8c25-a009226c0b33/downloada2e4fbe68c48e23603d8417d31e8b021MD51TEXTfphys-10-00865.pdf.txtfphys-10-00865.pdf.txtExtracted texttext/plain56295https://repository.urosario.edu.co/bitstreams/2bd30cf7-f57d-4259-8658-12f6e99bc1ea/download116313dacbf67aff12817da165d22fffMD52THUMBNAILfphys-10-00865.pdf.jpgfphys-10-00865.pdf.jpgGenerated Thumbnailimage/jpeg4441https://repository.urosario.edu.co/bitstreams/fbbdeb52-c968-4032-9270-ae8167dbff14/download5cedbd5c7f324375377a151d9225dcf2MD5310336/24099oai:repository.urosario.edu.co:10336/240992022-05-02 07:37:14.918356https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |