Caracterización genómica de especies de Clostridiales Circulantes en el río Pasto

La clase Clostridia está compuesta por bacterias con diversos roles potenciales, contando con especies comensales y otras patógenos oportunistas. Estas bacterias son clasificadas como anaerobias y están presentes a nivel intestinal de humanos y animales; sin embargo, la alta resistencia de sus espor...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
spa
OAI Identifier:
oai:repository.urosario.edu.co:10336/43372
Acceso en línea:
https://repository.urosario.edu.co/handle/10336/43372
Palabra clave:
Clostridiales
Patógenos
Marcadores de resistencia microbiana
Factores de Virulencia
Clostridials
Pathogens
Antimicrobial Resistance Markers
Virulence Factors
Rights
License
Attribution-NonCommercial-ShareAlike 4.0 International
id EDOCUR2_cef651979c612ac4557246ae835f8453
oai_identifier_str oai:repository.urosario.edu.co:10336/43372
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.none.fl_str_mv Caracterización genómica de especies de Clostridiales Circulantes en el río Pasto
dc.title.TranslatedTitle.none.fl_str_mv Genomic Characterization of Circulating Clostridial Species in the Pasto River
title Caracterización genómica de especies de Clostridiales Circulantes en el río Pasto
spellingShingle Caracterización genómica de especies de Clostridiales Circulantes en el río Pasto
Clostridiales
Patógenos
Marcadores de resistencia microbiana
Factores de Virulencia
Clostridials
Pathogens
Antimicrobial Resistance Markers
Virulence Factors
title_short Caracterización genómica de especies de Clostridiales Circulantes en el río Pasto
title_full Caracterización genómica de especies de Clostridiales Circulantes en el río Pasto
title_fullStr Caracterización genómica de especies de Clostridiales Circulantes en el río Pasto
title_full_unstemmed Caracterización genómica de especies de Clostridiales Circulantes en el río Pasto
title_sort Caracterización genómica de especies de Clostridiales Circulantes en el río Pasto
dc.contributor.advisor.none.fl_str_mv Muñoz Díaz, Marina
dc.contributor.gruplac.none.fl_str_mv Grupo de Investigaciones Microbiológicas UR (GIMUR)
dc.subject.none.fl_str_mv Clostridiales
Patógenos
Marcadores de resistencia microbiana
Factores de Virulencia
topic Clostridiales
Patógenos
Marcadores de resistencia microbiana
Factores de Virulencia
Clostridials
Pathogens
Antimicrobial Resistance Markers
Virulence Factors
dc.subject.keyword.none.fl_str_mv Clostridials
Pathogens
Antimicrobial Resistance Markers
Virulence Factors
description La clase Clostridia está compuesta por bacterias con diversos roles potenciales, contando con especies comensales y otras patógenos oportunistas. Estas bacterias son clasificadas como anaerobias y están presentes a nivel intestinal de humanos y animales; sin embargo, la alta resistencia de sus esporas al oxígeno les permite ampliar su rango de dispersión, siendo encontrados en muestras ambientales de suelos y aguas. La presencia de este tipo de microorganismos en cuerpos de agua puede ser un marcador de pérdida de su calidad. Zonas en las que es frecuente el contacto entre poblaciones humanas y cuerpos hídricos pueden ser propensas a contaminación de diferentes tipos, siendo una de ellas los microorganismos, muchos de los cuales son de importancia clínica por su potencial patógeno. Este estudio tuvo como objetivo detectar y caracterizar a nivel genómico bacterias Clostridiales aisladas de muestras de agua, tomadas entre septiembre del 2022 hasta marzo del 2023 del Río Pasto. Para el proceso de caracterización se ensamblaron Genomas Metagenómicos Ensamblados (MAGs) en los cuales se identificaron marcadores de resistencia a antimicrobianos y factores de virulencia, siendo esto tema relevante de salud pública. Se ensamblaron 33 MAGs de alta calidad y cuatro de calidad media, correspondientes a 11 especies clostridiales, estando entre estas Clostridium perfringens, Clostridium tetani, Clostridium botulinum y Clostridioides difficile, que son medicamente relevantes. Pymaiobacter missiliensis y Clostridium sulfidigenes también fueron detectadas en este estudio, siendo especies Clostridiales recientemente descritas y poco estudiadas, por lo que no es claro su impacto sobre hospederos. La búsqueda de factores de virulencia a partir de los MAGs mostró la presencia de genes nag, junto con otros genes de este tipo frecuentes en C. perfringens. Adicionalmente, se encontraron marcadores de resistencia a antibióticos, especialmente asociados a resistencia a fluoroquinolonas, aminoglucósidos, lincosamidas, péptidos y tetraciclinas, ampliamente distribuidos en los MAGs obtenidos. En este estudio se identificó la presencia de 11 especies Clostridiales en cuerpos de agua, las cuales transportan factores de virulencia y marcadores de resistencia, revelando un riesgo microbiológico en el río Pasto.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-03T20:58:06Z
dc.date.available.none.fl_str_mv 2024-09-03T20:58:06Z
dc.date.created.none.fl_str_mv 2024-08-22
dc.type.none.fl_str_mv bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.document.none.fl_str_mv Trabajo de grado
dc.type.spa.none.fl_str_mv Trabajo de grado
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/43372
url https://repository.urosario.edu.co/handle/10336/43372
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.none.fl_str_mv Abierto (Texto Completo)
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
Abierto (Texto Completo)
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.extent.none.fl_str_mv 34 pp
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad del Rosario
dc.publisher.department.none.fl_str_mv Facultad de Ciencias Naturales
dc.publisher.program.none.fl_str_mv Biología
publisher.none.fl_str_mv Universidad del Rosario
institution Universidad del Rosario
dc.source.bibliographicCitation.none.fl_str_mv Adams, J. J., Gregg, K., Bayer, E. A., Boraston, A. B., & Smith, S. P. (2008). Structural basis of Clostridium perfringens toxin complex formation. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12194–12199. https://doi.org/10.1073/pnas.0803154105
Akhi, M. T., Asl, S. B., Pirzadeh, T., Naghili, B., Yeganeh, F., Memar, Y., & Mohammadzadeh, Y. (2015). Antibiotic Sensitivity of Clostridium perfringens Isolated From Faeces in Tabriz. Iran. Jundishapur Journal of Microbiology, 8(7). https://doi.org/10.5812/jjm.20863v2
Alcock, B. P., Huynh, W., Chalil, R., Smith, K. W., Raphenya, A. R., Wlodarski, M. A., Edalatmand, A., Petkau, A., Syed, S. A., Tsang, K. K., Baker, S. J. C., Dave, M., McCarthy, M. C., Mukiri, K. M., Nasir, J. A., Golbon, B., Imtiaz, H., Jiang, X., Kaur, K., . . . McArthur, A. G. (2022). CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research, 51(D1), D690-D699. https://doi.org/10.1093/nar/gkac920
Alneberg, J., Bjarnason, B. S., De Bruijn, I., Schirmer, M., Quick, J., Ijaz, U. Z., Lahti, L., Loman, N. J., Andersson, A. F., & Quince, C. (2014). Binning metagenomic contigs by coverage and composition. Nature Methods, 11(11), 1144-1146. https://doi.org/10.1038/nmeth.3103
Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Bien, J., Palagani, V., & Bozko, P. (2012). The intestinal microbiota dysbiosis andClostridium difficileinfection: is there a relationship with inflammatory bowel disease? Therapeutic Advances in Gastroenterology, 6(1), 53–68. https://doi.org/10.1177/1756283x12454590
Bilen, M., Mbogning, M., Cadoret, F., Dubourg, G., Daoud, Z., Fournier, P., & Raoult, D. (2017). ‘Pygmaiobacter massiliensis’ sp. nov., a new bacterium isolated from the human gut of a Pygmy woman. New Microbes and New Infections, 16, 37–38. https://doi.org/10.1016/j.nmni.2016.12.015
Böer, T., Bengelsdorf, F. R., Bömeke, M., Daniel, R., & Poehlein, A. (2023). Genome-based metabolic and phylogenomic analysis of three Terrisporobacter species. PloS One, 18(10), e0290128. https://doi.org/10.1371/journal.pone.0290128
Botes, M., De Kwaadsteniet, M., & Cloete, T. E. (2012). Application of quantitative PCR for the detection of microorganisms in water. Analytical And Bioanalytical Chemistry/Analytical & Bioanalytical Chemistry, 405(1), 91-108. https://doi.org/10.1007/s00216-012-6399-3
Cassir, N., Benamar, S., & La Scola, B. B. (2016). Clostridium butyricum : from beneficial to a new emerging pathogen. Clinical Microbiology and Infection, 22(1), 37–45. https://doi.org/10.1016/j.cmi.2015.10.014
Cersosimo LM, Worley JN, Bry L. Approaching pathogenic Clostridia from a One Health perspective. bioRxiv [Preprint]. 2024 Jan 9:2024.01.08.574718. doi: 10.1101/2024.01.08.574718. Update in: Anaerobe. 2024 Jun;87:102839. doi: 10.1016/j.anaerobe.2024.102839. PMID: 38260382; PMCID: PMC10802438.
Chaumeil, P., Mussig, A. J., Hugenholtz, P., & Parks, D. H. (2019). GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics, 36(6), 1925-1927. https://doi.org/10.1093/bioinformatics/btz848
Chapeton-Montes, D., Plourde, L., Bouchier, C., Ma, L., Diancourt, L., Criscuolo, A., Popoff, M. R., & Brüggemann, H. (2019). The population structure of Clostridium tetani deduced from its pan-genome. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-47551-4
Chopra, I., & Roberts, M. (2001). Tetracycline Antibiotics: Mode of action, applications, molecular biology, and Epidemiology of Bacterial resistance. Microbiology and Molecular Biology Reviews, 65(2), 232–260. https://doi.org/10.1128/mmbr.65.2.232- 260.2001
Chukamnerd, A., Jeenkeawpiam, K., Chusri, S., Pomwised, R., Singkhamanan, K., & Surachat, K. (2023). BACSEQ: a User-Friendly automated pipeline for Whole-Genome sequence analysis of bacterial genomes. Microorganisms, 11(7), 1769. https://doi.org/10.3390/microorganisms11071769
Cohen, J. E., Wang, R., Shen, R., Wu, W. W., & Keller, J. E. (2017). Comparative pathogenomics of Clostridium tetani. PloS One, 12(8), e0182909. https://doi.org/10.1371/journal.pone.0182909
Corporación Autónoma Regional del Nariño. (2019). Elaboración del plan de ordenación y manejo de la cuenca hidrográfica del río Juanambú. http://repositorio.gestiondelriesgo.gov.co/handle/20.500.11762/32553
Cross, A. S. (2008). What is a virulence factor? Critical Care, 12(6), 197. https://doi.org/10.1186/cc7127
Dall’Agnol, R., Sahoo, P. K., Salomão, G. N., De Araújo, A. D. M., Da Silva, M. S., Powell, M. A., Ferreira, J., Junior, Ramos, S. J., Martins, G. C., Da Costa, M. F., & Guilherme, L. R. G. (2022). Soil-sediment linkage and trace element contamination in forested/deforested areas of the Itacaiúnas River Watershed, Brazil: To what extent land-use change plays a role? Science of the Total Environment, 828, 154327. https://doi.org/10.1016/j.scitotenv.2022.154327
Dingle, K. E., Elliott, B., Robinson, E., Griffiths, D., Eyre, D. W., Stoesser, N., Vaughan, A., Golubchik, T., Fawley, W. N., Wilcox, M. H., Peto, T. E., Walker, A. S., Riley, T. V., Crook, D. W., & Didelot, X. (2013). Evolutionary History of the Clostridium difficile Pathogenicity Locus. Genome Biology and Evolution, 6(1), 36–52. https://doi.org/10.1093/gbe/evt204
Dridi, L., Tankovic, J., & Petit, J. (2004). CdeA of Clostridium difficile, a New Multidrug Efflux Transporter of the MATE Family. Microbial Drug Resistance, 10(3), 191–196. https://doi.org/10.1089/mdr.2004.10.191
Du P, Cao B, Wang J, Li W, Jia H, Zhang W, Lu J, Li Z, Yu H, Chen C, Cheng Y. Sequence variation in tcdA and tcdB of Clostridium difficile: ST37 with truncated tcdA is a potential epidemic strain in China. J Clin Microbiol. 2014 Sep;52(9):3264-70. doi: 10.1128/JCM.03487-13. Epub 2014 Jun 23. PMID: 24958798; PMCID: PMC4313148.
Espelund, M., & Klaveness, D. (2014). Botulism outbreaks in natural environments – an update. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00287
Freier, L., Zacharias, N., Gemein, S., Gebel, J., Engelhart, S., Exner, M., & Mutters, N. T. (2023). Environmental Contamination and Persistence of Clostridioides difficile in Hospital Wastewater Systems. Applied and Environmental Microbiology, 89(5). https://doi.org/10.1128/aem.00014-23
German Center for Infection Research (2024). Resistance gene https://www.dzif.de/en/glossary/resistance-gene.
Gupta, A., Gupta, R., & Singh, R. L. (2016). Microbes and Environment. En Springer eBooks (pp. 43-84). https://doi.org/10.1007/978-981-10-1866-4_3
Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S. K., Cook, H., Mende, D. R., Letunic, I., Rattei, T., Jensen, L. J., Von Mering, C., & Bork, P. (2018). eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research, 47(D1), D309-D314. https://doi.org/10.1093/nar/gky1085
Jaime Huerta-Cepas, Damian Szklarczyk, Davide Heller, Ana Hernández-Plaza, Sofia K Forslund, Helen Cook, Daniel R Mende, Ivica Letunic, Thomas Rattei, Lars J Jensen, Christian von Mering, Peer Bork Nucleic Acids Res. 2019 Jan 8; 47(Database issue): D309–D314. doi: 10.1093/nar/gky1085
Janezic, S., Potocnik, M., Zidaric, V., & Rupnik, M. (2016). Highly Divergent Clostridium difficile Strains Isolated from the Environment. PloS One, 11(11), e0167101. https://doi.org/10.1371/journal.pone.0167101
Játiva, C. L. (2009). El Río Pasto como elemento conector de la ciudad (Parque Central Pasto). Recuperado de: http://hdl.handle.net/10554/4001.
Johnson, B. B., & Heuck, A. P. (2014). Perfringolysin O Structure and mechanism of pore formation as a paradigm for Cholesterol-Dependent cytolysins. In Sub-cellular biochemistry/Subcellular biochemistry (pp. 63–81). https://doi.org/10.1007/978-94-017- 8881-6_5
Kang, D., Li, F., Kirton, E. S., Thomas, A., Egan, R. S., An, H., & Wang, Z. (2019). MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ, 7, e7359. https://doi.org/10.7717/peerj.7359
Kator, H., & Rhodes, M. (2003). Detection, enumeration and identification of environmental microorganisms of public health significance. En Elsevier eBooks (pp. 113-144). https://doi.org/10.1016/b978-012470100-7/50009-1
Kellenberger, E. (2001). Exploring the unknown. EMBO Reports, 2(1), 5-7. https://doi.org/10.1093/embo-reports/kve014
Kim, N., Ma, J., Kim, W., Kim, J., Belenky, P., & Lee, I. (2024). Genome-resolved metagenomics: a game changer for microbiome medicine. Experimental & Molecular Medicine, 56(7), 1501–1512. https://doi.org/10.1038/s12276-024-01262-7
Knight, D. R., & Riley, T. V. (2019). Genomic Delineation of Zoonotic Origins of Clostridium difficile. Frontiers in Public Health, 7. https://doi.org/10.3389/fpubh.2019.00164
Langmead, B., Trapnell, C., Pop, M. et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25 (2009). https://doi.org/10.1186/gb-2009-10-3-r25
León, D. F. (2023). Diagnóstico sobre la gestión en torno a la calidad del agua en el río Pasto. Recuperado de: http://hdl.handle.net/10554/64260.
Li, M., Wang, Y., Hou, B., Chen, Y., Hu, M., Zhao, X., Zhang, Q., Li, L., Luo, Y., Liu, Y., & Cai, Y. (2024). Toxin gene detection and antibiotic resistance of Clostridium perfringens from aquatic sources. International Journal of Food Microbiology, 110642. https://doi.org/10.1016/j.ijfoodmicro.2024.110642
Lin, C., Wade, T., & Hilborn, E. (2015). Flooding and Clostridium difficile Infection: A Case-Crossover Analysis. International Journal of Environmental  Research and Public Health/International Journal of Environmental Research and Public Health, 12(6), 6948–6964. https://doi.org/10.3390/ijerph120606948
Liu, B., Zheng, D., Zhou, S., Chen, L., & Yang, J. (2021). VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Research, 50(D1), D912-D917. https://doi.org/10.1093/nar/gkab1107
Lugli, G. A., Milani, C., Mancabelli, L., Turroni, F., Ferrario, C., Duranti, S., Van Sinderen, D., & Ventura, M. (2017). Ancient bacteria of the Ötzi’s microbiome: a genomic tale from the Copper Age. Microbiome, 5(1). https://doi.org/10.1186/s40168-016-0221-y
Lugli, G. A., Milani, C., Mancabelli, L., Turroni, F., Ferrario, C., Duranti, S., Van Sinderen, D., & Ventura, M. (2017). Ancient bacteria of the Ötzi’s microbiome: a genomic tale from the Copper Age. Microbiome, 5(1). https://doi.org/10.1186/s40168-016-0221-y
Mazzoli, R., Pescarolo, S., Gilli, G., Gilardi, G., & Valetti, F. (2024). Hydrogen production pathways in Clostridia and their improvement by metabolic engineering. Biotechnology Advances, 73, 108379. https://doi.org/10.1016/j.biotechadv.2024.108379
Moreno LF. Gestión Integral del Agua en la Cuenca Alta del Río Pasto (2013). Mediante un Esquema de Pago por Servicios Ambientales. Universidad de Nariño [Internet].. Disponible en: https://core.ac.uk/download/pdf/147429716.pdf
Mueller-Spitz, S. R., Stewart, L. B., Klump, J. V., & McLellan, S. L. (2010). Freshwater Suspended Sediments and Sewage Are Reservoirs for Enterotoxin-Positive Clostridium perfringens. Applied and Environmental Microbiology, 76(16), 5556–5562. https://doi.org/10.1128/aem.01702-09
Muñoz, M., Restrepo-Montoya, D., Kumar, N., Iraola, G., Herrera, G., Ríos-Chaparro, D. I., Díaz-Arévalo, D., Patarroyo, M. A., Lawley, T. D., & Ramírez, J. D. (2019). Comparative genomics identifies potential virulence factors in Clostridium tertium and C. paraputrificum. Virulence, 10(1), 657–676. https://doi.org/10.1080/21505594.2019.1637699
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res (2017) May;27(5):824-834. doi: 10.1101/gr.213959.116. Epub 2017 Mar 15. PMID: 28298430; PMCID: PMC5411777.
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., & Tyson, G. W. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 25(7), 1043-1055. https://doi.org/10.1101/gr.186072.114
Peterson, J. W. (1996). Bacterial pathogenesis. Medical Microbiology - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK8526/
Philip Ewels, Måns Magnusson, Sverker Lundin, Max Käller, MultiQC: summarize analysis results for multiple tools and samples in a single report, Bioinformatics, Volume 32, Issue 19, October 2016, Pages 3047–3048, https://doi.org/10.1093/bioinformatics/btw354
Schloss, P. D., & Handelsman, J. (2004). Status of the Microbial Census. Microbiology And Molecular Biology Reviews, 68(4), 686-691. https://doi.org/10.1128/mmbr.68.4.686-691.2004
Schmeisser, C., Steele, H., & Streit, W. R. (2007). Metagenomics, biotechnology with non-culturable microbes. Applied Microbiology and Biotechnology, 75(5), 955–962. https://doi.org/10.1007/s00253-007-0945-5
Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068-2069. https://doi.org/10.1093/bioinformatics/btu153
Seemann, T. (2016). ABRicate: mass screening of contigs for antiobiotic resistance genes. https://github.com/tseemann/abricate
Setlow, P. (2014). Spore resistance properties. Microbiology Spectrum, 2(5). https://doi.org/10.1128/microbiolspec.tbs-0003-2012
Setubal, J. C. (2021). Metagenome-assembled genomes: concepts, analogies, and challenges. Biophysical Reviews, 13(6), 905–909. https://doi.org/10.1007/s12551-021-00865-y
Shalaby, M., Catenazzi, A., Smith, M., Farrow, R., & Farcy, D. (2023). 157 an assessment of the prevalence of clostridium tetani in the environment. Annals of Emergency Medicine, 82(4), S68. https://doi.org/10.1016/j.annemergmed.2023.08.179
Shimizu, T., Ohtani, K., Hirakawa, H., Ohshima, K., Yamashita, A., Shiba, T., Ogasawara, N., Hattori, M., Kuhara, S., & Hayashi, H. (2002). Complete genome sequence of Clostridium perfringens , an anaerobic flesh-eater. Proceedings of the National Academy of Sciences of the United States of America, 99(2), 996–1001. https://doi.org/10.1073/pnas.022493799
Sieber, C. M. K., Probst, A. J., Sharrar, A., Thomas, B. C., Hess, M., Tringe, S. G., & Banfield, J. F. (2018). Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nature Microbiology, 3(7), 836-843. https://doi.org/10.1038/s41564-018-0171-1
Sloan, J., McMurry, L. M., Lyras, D., Levy, S. B., & Rood, J. I. (1994). The Clostridium perfringens Tet P determinant comprises two overlapping genes: tetA(P), which mediates active tetracycline efflux, and tetB(P), which is related to the ribosomal protection family of tetracycline‐resistance determinants. Molecular Microbiology, 11(2), 403–415. https://doi.org/10.1111/j.1365-2958.1994.tb00320.x
Stelma, G. N. (2018). Use of bacterial spores in monitoring water quality and treatment. Journal of Water and Health, 16(4), 491–500. https://doi.org/10.2166/wh.2018.013
Su, Y., Gao, R., Huang, F., Liang, B., Guo, J., Fan, L., Wang, A., & Gao, S. (2024). Occurrence, transmission and risks assessment of pathogens in aquatic environments accessible to humans. Journal of Environmental Management, 354, 120331. https://doi.org/10.1016/j.jenvman.2024.120331
Suchodolski, J. S. (2013). Gastrointestinal microbiota. In Elsevier eBooks (pp. 32–41). https://doi.org/10.1016/b978-1-4160-3661-6.00002-x
Syuhadah, A. S. N., Ali, U., & Norazizah, M. (2020). A rare and fatal case of Terrisporobacter glycolicus bacteremia: Case report and review of literature. International Journal of Infectious Diseases, 101, 151. https://doi.org/10.1016/j.ijid.2020.09.410
Tortajada-Girbés, M. et al. (2021) 'Alimentary and Pharmaceutical Approach to Natural Antimicrobials against Clostridioides difficile Gastrointestinal Infection,' Foods, 10(5), p. 1124. https://doi.org/10.3390/foods10051124
Uzal, F. A., Vidal, J. E., McClane, B. A., & Gurjar, A. A. (2010). Clostridium perfringens toxins involved in mammalian veterinary diseases. PubMed Central (PMC). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917546/
Ventola, C.L. (2015) The Antibiotic Resistance Crisis: Part 1: Causes and threats. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378521/.
Wells CL, Wilkins TD. Clostridia: Sporeforming Anaerobic Bacilli. In: Baron S, editor. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 18. Available from: https://www.ncbi.nlm.nih.gov/books/NBK8219/
Wu, Y., Simmons, B. A., & Singer, S. W. (2015). MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics, 32(4), 605-607. https://doi.org/10.1093/bioinformatics/btv638
Zeng, X., Liu, B., Zhou, J., Dai, Y., Han, C., Wang, L., Wu, Y., & Zhang, J. (2021). Complete genomic sequence and analysis of β2 toxin gene mapping of Clostridium perfringens JXJA17 isolated from piglets in China. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-020-79333-8
Zhang, L., Chen, F., Zeng, Z., Xu, M., Sun, F., Yang, L., Bi, X., Lin, Y., Gao, Y., Hao, H., Yi, W., Li, M., & Xie, Y. (2021). Advances in metagenomics and its application in environmental microorganisms. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.766364
Zhang, X., Song, M., Lv, P., Hao, G., & Sun, S. (2022). Effects of Clostridium butyricum on intestinal environment and gut microbiome under Salmonella infection. Poultry Science, 101(11), 102077. https://doi.org/10.1016/j.psj.2022.102077
Zhang, Y., Xiao, L., Wang, S., & Liu, F. (2019). Stimulation of ferrihydrite nanorods on fermentative hydrogen production by Clostridium pasteurianum. Bioresource Technology, 283, 308-315. https://doi.org/10.1016/j.biortech.2019.03.088
Zhong, J. X., Zheng, H. R., Wang, Y. Y., Bai, L. L., Du, X. L., Wu, Y., & Lu, J. X. (2023). Molecular characteristics and phylogenetic analysis of Clostridium perfringens from different regions in China, from 2013 to 2021. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1195083
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/00053fc4-e4d6-41f4-81b1-506779c2cfb0/download
https://repository.urosario.edu.co/bitstreams/a593eef3-96df-4740-9ed3-075fdc756aef/download
https://repository.urosario.edu.co/bitstreams/5981d601-a597-4cfa-863c-ba7972daedce/download
https://repository.urosario.edu.co/bitstreams/90dcbb52-ff56-434c-b221-c19391875bf0/download
https://repository.urosario.edu.co/bitstreams/5a52a9f7-9e97-437a-8868-d3d6ad9dd799/download
bitstream.checksum.fl_str_mv 41ee0f8ce2a305487cf261dde9c45a84
b2825df9f458e9d5d96ee8b7cd74fde6
5643bfd9bcf29d560eeec56d584edaa9
cc90adc952dbf0f3544107cd57007005
ceff186ca841a584df9785bc943dd096
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167742594416640
spelling Muñoz Díaz, Marina11e33b66-c06e-405c-9a7d-cbb5b723fd32-1Grupo de Investigaciones Microbiológicas UR (GIMUR)Fernández Sánchez, Juan DiegoBiólogoPregradoFull timeb92085b3-b7eb-4485-8950-35e6d2351696-12024-09-03T20:58:06Z2024-09-03T20:58:06Z2024-08-22La clase Clostridia está compuesta por bacterias con diversos roles potenciales, contando con especies comensales y otras patógenos oportunistas. Estas bacterias son clasificadas como anaerobias y están presentes a nivel intestinal de humanos y animales; sin embargo, la alta resistencia de sus esporas al oxígeno les permite ampliar su rango de dispersión, siendo encontrados en muestras ambientales de suelos y aguas. La presencia de este tipo de microorganismos en cuerpos de agua puede ser un marcador de pérdida de su calidad. Zonas en las que es frecuente el contacto entre poblaciones humanas y cuerpos hídricos pueden ser propensas a contaminación de diferentes tipos, siendo una de ellas los microorganismos, muchos de los cuales son de importancia clínica por su potencial patógeno. Este estudio tuvo como objetivo detectar y caracterizar a nivel genómico bacterias Clostridiales aisladas de muestras de agua, tomadas entre septiembre del 2022 hasta marzo del 2023 del Río Pasto. Para el proceso de caracterización se ensamblaron Genomas Metagenómicos Ensamblados (MAGs) en los cuales se identificaron marcadores de resistencia a antimicrobianos y factores de virulencia, siendo esto tema relevante de salud pública. Se ensamblaron 33 MAGs de alta calidad y cuatro de calidad media, correspondientes a 11 especies clostridiales, estando entre estas Clostridium perfringens, Clostridium tetani, Clostridium botulinum y Clostridioides difficile, que son medicamente relevantes. Pymaiobacter missiliensis y Clostridium sulfidigenes también fueron detectadas en este estudio, siendo especies Clostridiales recientemente descritas y poco estudiadas, por lo que no es claro su impacto sobre hospederos. La búsqueda de factores de virulencia a partir de los MAGs mostró la presencia de genes nag, junto con otros genes de este tipo frecuentes en C. perfringens. Adicionalmente, se encontraron marcadores de resistencia a antibióticos, especialmente asociados a resistencia a fluoroquinolonas, aminoglucósidos, lincosamidas, péptidos y tetraciclinas, ampliamente distribuidos en los MAGs obtenidos. En este estudio se identificó la presencia de 11 especies Clostridiales en cuerpos de agua, las cuales transportan factores de virulencia y marcadores de resistencia, revelando un riesgo microbiológico en el río Pasto.The Clostridia class comprises bacteria with diverse roles, including commensal species and opportunistic pathogens. These bacteria are classified as anaerobic and are present in the gut of animals, including humans. Their spores are highly oxygen resistant, allowing them to expand their distribution in environmental samples such as soil and water. The presence of these bacteria in water bodies is an indicator of low quality, and areas of frequent contact between humans and water bodies are prone to multiple sources of contamination, including microorganisms. In particular, the presence of Clostridia in water is clinically relevant due to its pathogenic potential. This study aimed to detect Clostridial bacteria from water samples collected in the Pasto River between September 2022 and March 2023 and characterize them at the genomic level. We assembled Metagenome-Assembled Genomes (MAGs) in which we identified antimicrobial resistance markers and virulence factors, making this a relevant public health study. A total of 33 high-quality and four medium-quality MAGs were assembled, corresponding to 11 species of these bacteria, including Clostridium perfringens, Clostridium tetani, Clostridium botulinum, and Clostridioides difficile, which are medically relevant clostridial species. Notably, we detected the presence of the rarely reported species Pymaiobacter missiliensis and Clostridium sulfidigenes, both recently described Clostridial species that are poorly studied and for which there are no reported infections. Among the virulence factors identified were nag and related genes frequently found in strain 13 of C. perfringens. We also detected antibiotic-resistance markers associated with fluoroquinolones, aminoglycosides, lincosamides, peptides, and tetracyclines in the MAGs assembled. This study identified 11 Clostridial species in water bodies, which carry virulence factors and resistance markers, revealing a microbiological risk in the Pasto River.Facultad de Ciencias Naturales de la Universidad del RosarioSistema General de Regalías34 ppapplication/pdfhttps://repository.urosario.edu.co/handle/10336/43372spaUniversidad del RosarioFacultad de Ciencias NaturalesBiologíaAttribution-NonCommercial-ShareAlike 4.0 InternationalAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2Adams, J. J., Gregg, K., Bayer, E. A., Boraston, A. B., & Smith, S. P. (2008). Structural basis of Clostridium perfringens toxin complex formation. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12194–12199. https://doi.org/10.1073/pnas.0803154105Akhi, M. T., Asl, S. B., Pirzadeh, T., Naghili, B., Yeganeh, F., Memar, Y., & Mohammadzadeh, Y. (2015). Antibiotic Sensitivity of Clostridium perfringens Isolated From Faeces in Tabriz. Iran. Jundishapur Journal of Microbiology, 8(7). https://doi.org/10.5812/jjm.20863v2Alcock, B. P., Huynh, W., Chalil, R., Smith, K. W., Raphenya, A. R., Wlodarski, M. A., Edalatmand, A., Petkau, A., Syed, S. A., Tsang, K. K., Baker, S. J. C., Dave, M., McCarthy, M. C., Mukiri, K. M., Nasir, J. A., Golbon, B., Imtiaz, H., Jiang, X., Kaur, K., . . . McArthur, A. G. (2022). CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Research, 51(D1), D690-D699. https://doi.org/10.1093/nar/gkac920Alneberg, J., Bjarnason, B. S., De Bruijn, I., Schirmer, M., Quick, J., Ijaz, U. Z., Lahti, L., Loman, N. J., Andersson, A. F., & Quince, C. (2014). Binning metagenomic contigs by coverage and composition. Nature Methods, 11(11), 1144-1146. https://doi.org/10.1038/nmeth.3103Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Bien, J., Palagani, V., & Bozko, P. (2012). The intestinal microbiota dysbiosis andClostridium difficileinfection: is there a relationship with inflammatory bowel disease? Therapeutic Advances in Gastroenterology, 6(1), 53–68. https://doi.org/10.1177/1756283x12454590Bilen, M., Mbogning, M., Cadoret, F., Dubourg, G., Daoud, Z., Fournier, P., & Raoult, D. (2017). ‘Pygmaiobacter massiliensis’ sp. nov., a new bacterium isolated from the human gut of a Pygmy woman. New Microbes and New Infections, 16, 37–38. https://doi.org/10.1016/j.nmni.2016.12.015Böer, T., Bengelsdorf, F. R., Bömeke, M., Daniel, R., & Poehlein, A. (2023). Genome-based metabolic and phylogenomic analysis of three Terrisporobacter species. PloS One, 18(10), e0290128. https://doi.org/10.1371/journal.pone.0290128Botes, M., De Kwaadsteniet, M., & Cloete, T. E. (2012). Application of quantitative PCR for the detection of microorganisms in water. Analytical And Bioanalytical Chemistry/Analytical & Bioanalytical Chemistry, 405(1), 91-108. https://doi.org/10.1007/s00216-012-6399-3Cassir, N., Benamar, S., & La Scola, B. B. (2016). Clostridium butyricum : from beneficial to a new emerging pathogen. Clinical Microbiology and Infection, 22(1), 37–45. https://doi.org/10.1016/j.cmi.2015.10.014Cersosimo LM, Worley JN, Bry L. Approaching pathogenic Clostridia from a One Health perspective. bioRxiv [Preprint]. 2024 Jan 9:2024.01.08.574718. doi: 10.1101/2024.01.08.574718. Update in: Anaerobe. 2024 Jun;87:102839. doi: 10.1016/j.anaerobe.2024.102839. PMID: 38260382; PMCID: PMC10802438.Chaumeil, P., Mussig, A. J., Hugenholtz, P., & Parks, D. H. (2019). GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics, 36(6), 1925-1927. https://doi.org/10.1093/bioinformatics/btz848Chapeton-Montes, D., Plourde, L., Bouchier, C., Ma, L., Diancourt, L., Criscuolo, A., Popoff, M. R., & Brüggemann, H. (2019). The population structure of Clostridium tetani deduced from its pan-genome. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-47551-4Chopra, I., & Roberts, M. (2001). Tetracycline Antibiotics: Mode of action, applications, molecular biology, and Epidemiology of Bacterial resistance. Microbiology and Molecular Biology Reviews, 65(2), 232–260. https://doi.org/10.1128/mmbr.65.2.232- 260.2001Chukamnerd, A., Jeenkeawpiam, K., Chusri, S., Pomwised, R., Singkhamanan, K., & Surachat, K. (2023). BACSEQ: a User-Friendly automated pipeline for Whole-Genome sequence analysis of bacterial genomes. Microorganisms, 11(7), 1769. https://doi.org/10.3390/microorganisms11071769Cohen, J. E., Wang, R., Shen, R., Wu, W. W., & Keller, J. E. (2017). Comparative pathogenomics of Clostridium tetani. PloS One, 12(8), e0182909. https://doi.org/10.1371/journal.pone.0182909Corporación Autónoma Regional del Nariño. (2019). Elaboración del plan de ordenación y manejo de la cuenca hidrográfica del río Juanambú. http://repositorio.gestiondelriesgo.gov.co/handle/20.500.11762/32553Cross, A. S. (2008). What is a virulence factor? Critical Care, 12(6), 197. https://doi.org/10.1186/cc7127Dall’Agnol, R., Sahoo, P. K., Salomão, G. N., De Araújo, A. D. M., Da Silva, M. S., Powell, M. A., Ferreira, J., Junior, Ramos, S. J., Martins, G. C., Da Costa, M. F., & Guilherme, L. R. G. (2022). Soil-sediment linkage and trace element contamination in forested/deforested areas of the Itacaiúnas River Watershed, Brazil: To what extent land-use change plays a role? Science of the Total Environment, 828, 154327. https://doi.org/10.1016/j.scitotenv.2022.154327Dingle, K. E., Elliott, B., Robinson, E., Griffiths, D., Eyre, D. W., Stoesser, N., Vaughan, A., Golubchik, T., Fawley, W. N., Wilcox, M. H., Peto, T. E., Walker, A. S., Riley, T. V., Crook, D. W., & Didelot, X. (2013). Evolutionary History of the Clostridium difficile Pathogenicity Locus. Genome Biology and Evolution, 6(1), 36–52. https://doi.org/10.1093/gbe/evt204Dridi, L., Tankovic, J., & Petit, J. (2004). CdeA of Clostridium difficile, a New Multidrug Efflux Transporter of the MATE Family. Microbial Drug Resistance, 10(3), 191–196. https://doi.org/10.1089/mdr.2004.10.191Du P, Cao B, Wang J, Li W, Jia H, Zhang W, Lu J, Li Z, Yu H, Chen C, Cheng Y. Sequence variation in tcdA and tcdB of Clostridium difficile: ST37 with truncated tcdA is a potential epidemic strain in China. J Clin Microbiol. 2014 Sep;52(9):3264-70. doi: 10.1128/JCM.03487-13. Epub 2014 Jun 23. PMID: 24958798; PMCID: PMC4313148.Espelund, M., & Klaveness, D. (2014). Botulism outbreaks in natural environments – an update. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00287Freier, L., Zacharias, N., Gemein, S., Gebel, J., Engelhart, S., Exner, M., & Mutters, N. T. (2023). Environmental Contamination and Persistence of Clostridioides difficile in Hospital Wastewater Systems. Applied and Environmental Microbiology, 89(5). https://doi.org/10.1128/aem.00014-23German Center for Infection Research (2024). Resistance gene https://www.dzif.de/en/glossary/resistance-gene.Gupta, A., Gupta, R., & Singh, R. L. (2016). Microbes and Environment. En Springer eBooks (pp. 43-84). https://doi.org/10.1007/978-981-10-1866-4_3Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S. K., Cook, H., Mende, D. R., Letunic, I., Rattei, T., Jensen, L. J., Von Mering, C., & Bork, P. (2018). eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research, 47(D1), D309-D314. https://doi.org/10.1093/nar/gky1085Jaime Huerta-Cepas, Damian Szklarczyk, Davide Heller, Ana Hernández-Plaza, Sofia K Forslund, Helen Cook, Daniel R Mende, Ivica Letunic, Thomas Rattei, Lars J Jensen, Christian von Mering, Peer Bork Nucleic Acids Res. 2019 Jan 8; 47(Database issue): D309–D314. doi: 10.1093/nar/gky1085Janezic, S., Potocnik, M., Zidaric, V., & Rupnik, M. (2016). Highly Divergent Clostridium difficile Strains Isolated from the Environment. PloS One, 11(11), e0167101. https://doi.org/10.1371/journal.pone.0167101Játiva, C. L. (2009). El Río Pasto como elemento conector de la ciudad (Parque Central Pasto). Recuperado de: http://hdl.handle.net/10554/4001.Johnson, B. B., & Heuck, A. P. (2014). Perfringolysin O Structure and mechanism of pore formation as a paradigm for Cholesterol-Dependent cytolysins. In Sub-cellular biochemistry/Subcellular biochemistry (pp. 63–81). https://doi.org/10.1007/978-94-017- 8881-6_5Kang, D., Li, F., Kirton, E. S., Thomas, A., Egan, R. S., An, H., & Wang, Z. (2019). MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ, 7, e7359. https://doi.org/10.7717/peerj.7359Kator, H., & Rhodes, M. (2003). Detection, enumeration and identification of environmental microorganisms of public health significance. En Elsevier eBooks (pp. 113-144). https://doi.org/10.1016/b978-012470100-7/50009-1Kellenberger, E. (2001). Exploring the unknown. EMBO Reports, 2(1), 5-7. https://doi.org/10.1093/embo-reports/kve014Kim, N., Ma, J., Kim, W., Kim, J., Belenky, P., & Lee, I. (2024). Genome-resolved metagenomics: a game changer for microbiome medicine. Experimental & Molecular Medicine, 56(7), 1501–1512. https://doi.org/10.1038/s12276-024-01262-7Knight, D. R., & Riley, T. V. (2019). Genomic Delineation of Zoonotic Origins of Clostridium difficile. Frontiers in Public Health, 7. https://doi.org/10.3389/fpubh.2019.00164Langmead, B., Trapnell, C., Pop, M. et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25 (2009). https://doi.org/10.1186/gb-2009-10-3-r25León, D. F. (2023). Diagnóstico sobre la gestión en torno a la calidad del agua en el río Pasto. Recuperado de: http://hdl.handle.net/10554/64260.Li, M., Wang, Y., Hou, B., Chen, Y., Hu, M., Zhao, X., Zhang, Q., Li, L., Luo, Y., Liu, Y., & Cai, Y. (2024). Toxin gene detection and antibiotic resistance of Clostridium perfringens from aquatic sources. International Journal of Food Microbiology, 110642. https://doi.org/10.1016/j.ijfoodmicro.2024.110642Lin, C., Wade, T., & Hilborn, E. (2015). Flooding and Clostridium difficile Infection: A Case-Crossover Analysis. International Journal of Environmental  Research and Public Health/International Journal of Environmental Research and Public Health, 12(6), 6948–6964. https://doi.org/10.3390/ijerph120606948Liu, B., Zheng, D., Zhou, S., Chen, L., & Yang, J. (2021). VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Research, 50(D1), D912-D917. https://doi.org/10.1093/nar/gkab1107Lugli, G. A., Milani, C., Mancabelli, L., Turroni, F., Ferrario, C., Duranti, S., Van Sinderen, D., & Ventura, M. (2017). Ancient bacteria of the Ötzi’s microbiome: a genomic tale from the Copper Age. Microbiome, 5(1). https://doi.org/10.1186/s40168-016-0221-yLugli, G. A., Milani, C., Mancabelli, L., Turroni, F., Ferrario, C., Duranti, S., Van Sinderen, D., & Ventura, M. (2017). Ancient bacteria of the Ötzi’s microbiome: a genomic tale from the Copper Age. Microbiome, 5(1). https://doi.org/10.1186/s40168-016-0221-yMazzoli, R., Pescarolo, S., Gilli, G., Gilardi, G., & Valetti, F. (2024). Hydrogen production pathways in Clostridia and their improvement by metabolic engineering. Biotechnology Advances, 73, 108379. https://doi.org/10.1016/j.biotechadv.2024.108379Moreno LF. Gestión Integral del Agua en la Cuenca Alta del Río Pasto (2013). Mediante un Esquema de Pago por Servicios Ambientales. Universidad de Nariño [Internet].. Disponible en: https://core.ac.uk/download/pdf/147429716.pdfMueller-Spitz, S. R., Stewart, L. B., Klump, J. V., & McLellan, S. L. (2010). Freshwater Suspended Sediments and Sewage Are Reservoirs for Enterotoxin-Positive Clostridium perfringens. Applied and Environmental Microbiology, 76(16), 5556–5562. https://doi.org/10.1128/aem.01702-09Muñoz, M., Restrepo-Montoya, D., Kumar, N., Iraola, G., Herrera, G., Ríos-Chaparro, D. I., Díaz-Arévalo, D., Patarroyo, M. A., Lawley, T. D., & Ramírez, J. D. (2019). Comparative genomics identifies potential virulence factors in Clostridium tertium and C. paraputrificum. Virulence, 10(1), 657–676. https://doi.org/10.1080/21505594.2019.1637699Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res (2017) May;27(5):824-834. doi: 10.1101/gr.213959.116. Epub 2017 Mar 15. PMID: 28298430; PMCID: PMC5411777.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., & Tyson, G. W. (2015). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 25(7), 1043-1055. https://doi.org/10.1101/gr.186072.114Peterson, J. W. (1996). Bacterial pathogenesis. Medical Microbiology - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK8526/Philip Ewels, Måns Magnusson, Sverker Lundin, Max Käller, MultiQC: summarize analysis results for multiple tools and samples in a single report, Bioinformatics, Volume 32, Issue 19, October 2016, Pages 3047–3048, https://doi.org/10.1093/bioinformatics/btw354Schloss, P. D., & Handelsman, J. (2004). Status of the Microbial Census. Microbiology And Molecular Biology Reviews, 68(4), 686-691. https://doi.org/10.1128/mmbr.68.4.686-691.2004Schmeisser, C., Steele, H., & Streit, W. R. (2007). Metagenomics, biotechnology with non-culturable microbes. Applied Microbiology and Biotechnology, 75(5), 955–962. https://doi.org/10.1007/s00253-007-0945-5Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068-2069. https://doi.org/10.1093/bioinformatics/btu153Seemann, T. (2016). ABRicate: mass screening of contigs for antiobiotic resistance genes. https://github.com/tseemann/abricateSetlow, P. (2014). Spore resistance properties. Microbiology Spectrum, 2(5). https://doi.org/10.1128/microbiolspec.tbs-0003-2012Setubal, J. C. (2021). Metagenome-assembled genomes: concepts, analogies, and challenges. Biophysical Reviews, 13(6), 905–909. https://doi.org/10.1007/s12551-021-00865-yShalaby, M., Catenazzi, A., Smith, M., Farrow, R., & Farcy, D. (2023). 157 an assessment of the prevalence of clostridium tetani in the environment. Annals of Emergency Medicine, 82(4), S68. https://doi.org/10.1016/j.annemergmed.2023.08.179Shimizu, T., Ohtani, K., Hirakawa, H., Ohshima, K., Yamashita, A., Shiba, T., Ogasawara, N., Hattori, M., Kuhara, S., & Hayashi, H. (2002). Complete genome sequence of Clostridium perfringens , an anaerobic flesh-eater. Proceedings of the National Academy of Sciences of the United States of America, 99(2), 996–1001. https://doi.org/10.1073/pnas.022493799Sieber, C. M. K., Probst, A. J., Sharrar, A., Thomas, B. C., Hess, M., Tringe, S. G., & Banfield, J. F. (2018). Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nature Microbiology, 3(7), 836-843. https://doi.org/10.1038/s41564-018-0171-1Sloan, J., McMurry, L. M., Lyras, D., Levy, S. B., & Rood, J. I. (1994). The Clostridium perfringens Tet P determinant comprises two overlapping genes: tetA(P), which mediates active tetracycline efflux, and tetB(P), which is related to the ribosomal protection family of tetracycline‐resistance determinants. Molecular Microbiology, 11(2), 403–415. https://doi.org/10.1111/j.1365-2958.1994.tb00320.xStelma, G. N. (2018). Use of bacterial spores in monitoring water quality and treatment. Journal of Water and Health, 16(4), 491–500. https://doi.org/10.2166/wh.2018.013Su, Y., Gao, R., Huang, F., Liang, B., Guo, J., Fan, L., Wang, A., & Gao, S. (2024). Occurrence, transmission and risks assessment of pathogens in aquatic environments accessible to humans. Journal of Environmental Management, 354, 120331. https://doi.org/10.1016/j.jenvman.2024.120331Suchodolski, J. S. (2013). Gastrointestinal microbiota. In Elsevier eBooks (pp. 32–41). https://doi.org/10.1016/b978-1-4160-3661-6.00002-xSyuhadah, A. S. N., Ali, U., & Norazizah, M. (2020). A rare and fatal case of Terrisporobacter glycolicus bacteremia: Case report and review of literature. International Journal of Infectious Diseases, 101, 151. https://doi.org/10.1016/j.ijid.2020.09.410Tortajada-Girbés, M. et al. (2021) 'Alimentary and Pharmaceutical Approach to Natural Antimicrobials against Clostridioides difficile Gastrointestinal Infection,' Foods, 10(5), p. 1124. https://doi.org/10.3390/foods10051124Uzal, F. A., Vidal, J. E., McClane, B. A., & Gurjar, A. A. (2010). Clostridium perfringens toxins involved in mammalian veterinary diseases. PubMed Central (PMC). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917546/Ventola, C.L. (2015) The Antibiotic Resistance Crisis: Part 1: Causes and threats. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4378521/.Wells CL, Wilkins TD. Clostridia: Sporeforming Anaerobic Bacilli. In: Baron S, editor. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 18. Available from: https://www.ncbi.nlm.nih.gov/books/NBK8219/Wu, Y., Simmons, B. A., & Singer, S. W. (2015). MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics, 32(4), 605-607. https://doi.org/10.1093/bioinformatics/btv638Zeng, X., Liu, B., Zhou, J., Dai, Y., Han, C., Wang, L., Wu, Y., & Zhang, J. (2021). Complete genomic sequence and analysis of β2 toxin gene mapping of Clostridium perfringens JXJA17 isolated from piglets in China. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-020-79333-8Zhang, L., Chen, F., Zeng, Z., Xu, M., Sun, F., Yang, L., Bi, X., Lin, Y., Gao, Y., Hao, H., Yi, W., Li, M., & Xie, Y. (2021). Advances in metagenomics and its application in environmental microorganisms. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.766364Zhang, X., Song, M., Lv, P., Hao, G., & Sun, S. (2022). Effects of Clostridium butyricum on intestinal environment and gut microbiome under Salmonella infection. Poultry Science, 101(11), 102077. https://doi.org/10.1016/j.psj.2022.102077Zhang, Y., Xiao, L., Wang, S., & Liu, F. (2019). Stimulation of ferrihydrite nanorods on fermentative hydrogen production by Clostridium pasteurianum. Bioresource Technology, 283, 308-315. https://doi.org/10.1016/j.biortech.2019.03.088Zhong, J. X., Zheng, H. R., Wang, Y. Y., Bai, L. L., Du, X. L., Wu, Y., & Lu, J. X. (2023). Molecular characteristics and phylogenetic analysis of Clostridium perfringens from different regions in China, from 2013 to 2021. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1195083instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURClostridialesPatógenosMarcadores de resistencia microbianaFactores de VirulenciaClostridialsPathogensAntimicrobial Resistance MarkersVirulence FactorsCaracterización genómica de especies de Clostridiales Circulantes en el río PastoGenomic Characterization of Circulating Clostridial Species in the Pasto RiverbachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fFacultad de Ciencias NaturalesBogotáORIGINALCaracterizacion_genomica_de_especies_de_Clostridiales_Circulantes_en_el_rio_PastoFernandezSanchez-JuanDiego-2024.pdfCaracterizacion_genomica_de_especies_de_Clostridiales_Circulantes_en_el_rio_PastoFernandezSanchez-JuanDiego-2024.pdfapplication/pdf879674https://repository.urosario.edu.co/bitstreams/00053fc4-e4d6-41f4-81b1-506779c2cfb0/download41ee0f8ce2a305487cf261dde9c45a84MD54LICENSElicense.txtlicense.txttext/plain1483https://repository.urosario.edu.co/bitstreams/a593eef3-96df-4740-9ed3-075fdc756aef/downloadb2825df9f458e9d5d96ee8b7cd74fde6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://repository.urosario.edu.co/bitstreams/5981d601-a597-4cfa-863c-ba7972daedce/download5643bfd9bcf29d560eeec56d584edaa9MD53TEXTCaracterizacion_genomica_de_especies_de_Clostridiales_Circulantes_en_el_rio_PastoFernandezSanchez-JuanDiego-2024.pdf.txtCaracterizacion_genomica_de_especies_de_Clostridiales_Circulantes_en_el_rio_PastoFernandezSanchez-JuanDiego-2024.pdf.txtExtracted texttext/plain73236https://repository.urosario.edu.co/bitstreams/90dcbb52-ff56-434c-b221-c19391875bf0/downloadcc90adc952dbf0f3544107cd57007005MD55THUMBNAILCaracterizacion_genomica_de_especies_de_Clostridiales_Circulantes_en_el_rio_PastoFernandezSanchez-JuanDiego-2024.pdf.jpgCaracterizacion_genomica_de_especies_de_Clostridiales_Circulantes_en_el_rio_PastoFernandezSanchez-JuanDiego-2024.pdf.jpgGenerated Thumbnailimage/jpeg2597https://repository.urosario.edu.co/bitstreams/5a52a9f7-9e97-437a-8868-d3d6ad9dd799/downloadceff186ca841a584df9785bc943dd096MD5610336/43372oai:repository.urosario.edu.co:10336/433722024-09-04 03:04:10.758http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KPGJyLz4KUEFSQUdSQUZPOiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KPGhyLz4KRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCg==