Markovian approximations for a grid computing network with a ring structure
Optical grid networks allow many computing sites to share their resources by connecting them through high-speed links, providing a more efficient use of the resources and a timely response for incoming jobs. These jobs originate from users connected to each of the sites and, in contrast to tradition...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2010
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/28113
- Acceso en línea:
- https://doi.org/10.1080/15326349.2010.498315
https://repository.urosario.edu.co/handle/10336/28113
- Palabra clave:
- Markov chains
Optical grids
Queueing networks
- Rights
- License
- Restringido (Acceso a grupos específicos)
Summary: | Optical grid networks allow many computing sites to share their resources by connecting them through high-speed links, providing a more efficient use of the resources and a timely response for incoming jobs. These jobs originate from users connected to each of the sites and, in contrast to traditional queueing networks, a particular job does not have to be processed in a predefined site. Furthermore, a job is always processed locally if there is an available local server. In this paper we propose two different methods to approximate the performance of an optical grid network with a ring topology. The first method is based on approximating the inter-overflow time process, while the second separately characterizes the periods where jobs are overflowed and the periods where they are served locally. Both approaches rely on a marked Markovian representation of the overflow process at each station and on reducing this representation by moment-matching methods. The results show that the methods accurately approximate the rate of locally processed jobs, one of the main performance measures. |
---|