A Precise Computational Measure of Impulsivity that Signals Relevant Outcomes in Opioid Addiction Treatment
Computational models of impulsive decision-making, like temporal discounting, are widely used to study addiction. However, clinically validating a marker supposes developing methods that provide high accuracy and reliability. We first show that a modified model of temporal discounting incorporating...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/28517
- Acceso en línea:
- https://repository.urosario.edu.co/handle/10336/28517
- Palabra clave:
- Impulsivity
Opioid Addiction
Computational Psychiatry
Decision Making
Risky Decision-Making
Delay Discounting
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_c5103b19cf8652a782136cdf38b02901 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/28517 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
528667196002020-08-28T15:49:15Z2020-08-28T15:49:15Z2017-01-01Computational models of impulsive decision-making, like temporal discounting, are widely used to study addiction. However, clinically validating a marker supposes developing methods that provide high accuracy and reliability. We first show that a modified model of temporal discounting incorporating individual-specific risk sensitivity - provides a more precise, unbiased, and reliable measure of impulsivity than the standard approach. Using this tool, and given the current opioid epidemic, we set out to investigate longitudinally whether discounting would signal relevant negative outcomes like drug use, relapse and dropout in patients undergoing treatment for opioid addiction. We found that changes in discount rates were related to increased drug use in patients, indicating a vulnerability to full relapse and treatment failure.application/pdfISBN: 979-846-6800https://repository.urosario.edu.co/handle/10336/28517engCognitive Computational NeuroscienceCognitive Computational NeuroscienceCognitive Computational Neuroscience, ISBN:979-846-6800 (2017); 2pp.https://www2.securecms.com/CCNeuro/docs-0/5928d9b768ed3f824e8a257d.pdfAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Cognitive Computational Neuroscienceinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURImpulsivityOpioid AddictionComputational PsychiatryDecision MakingRisky Decision-MakingDelay DiscountingA Precise Computational Measure of Impulsivity that Signals Relevant Outcomes in Opioid Addiction TreatmentUna medida computacional precisa de la impulsividad que señala resultados relevantes en el tratamiento de la adicción a los opiáceosbookPartParte de librohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248López Guzmán, Silvia10336/28517oai:repository.urosario.edu.co:10336/285172020-08-28 10:49:15.779https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
A Precise Computational Measure of Impulsivity that Signals Relevant Outcomes in Opioid Addiction Treatment |
dc.title.TranslatedTitle.spa.fl_str_mv |
Una medida computacional precisa de la impulsividad que señala resultados relevantes en el tratamiento de la adicción a los opiáceos |
title |
A Precise Computational Measure of Impulsivity that Signals Relevant Outcomes in Opioid Addiction Treatment |
spellingShingle |
A Precise Computational Measure of Impulsivity that Signals Relevant Outcomes in Opioid Addiction Treatment Impulsivity Opioid Addiction Computational Psychiatry Decision Making Risky Decision-Making Delay Discounting |
title_short |
A Precise Computational Measure of Impulsivity that Signals Relevant Outcomes in Opioid Addiction Treatment |
title_full |
A Precise Computational Measure of Impulsivity that Signals Relevant Outcomes in Opioid Addiction Treatment |
title_fullStr |
A Precise Computational Measure of Impulsivity that Signals Relevant Outcomes in Opioid Addiction Treatment |
title_full_unstemmed |
A Precise Computational Measure of Impulsivity that Signals Relevant Outcomes in Opioid Addiction Treatment |
title_sort |
A Precise Computational Measure of Impulsivity that Signals Relevant Outcomes in Opioid Addiction Treatment |
dc.subject.keyword.spa.fl_str_mv |
Impulsivity Opioid Addiction Computational Psychiatry Decision Making Risky Decision-Making Delay Discounting |
topic |
Impulsivity Opioid Addiction Computational Psychiatry Decision Making Risky Decision-Making Delay Discounting |
description |
Computational models of impulsive decision-making, like temporal discounting, are widely used to study addiction. However, clinically validating a marker supposes developing methods that provide high accuracy and reliability. We first show that a modified model of temporal discounting incorporating individual-specific risk sensitivity - provides a more precise, unbiased, and reliable measure of impulsivity than the standard approach. Using this tool, and given the current opioid epidemic, we set out to investigate longitudinally whether discounting would signal relevant negative outcomes like drug use, relapse and dropout in patients undergoing treatment for opioid addiction. We found that changes in discount rates were related to increased drug use in patients, indicating a vulnerability to full relapse and treatment failure. |
publishDate |
2017 |
dc.date.created.spa.fl_str_mv |
2017-01-01 |
dc.date.accessioned.none.fl_str_mv |
2020-08-28T15:49:15Z |
dc.date.available.none.fl_str_mv |
2020-08-28T15:49:15Z |
dc.type.eng.fl_str_mv |
bookPart |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.spa.spa.fl_str_mv |
Parte de libro |
dc.identifier.issn.none.fl_str_mv |
ISBN: 979-846-6800 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/28517 |
identifier_str_mv |
ISBN: 979-846-6800 |
url |
https://repository.urosario.edu.co/handle/10336/28517 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationTitle.none.fl_str_mv |
Cognitive Computational Neuroscience |
dc.relation.ispartof.spa.fl_str_mv |
Cognitive Computational Neuroscience, ISBN:979-846-6800 (2017); 2pp. |
dc.relation.uri.spa.fl_str_mv |
https://www2.securecms.com/CCNeuro/docs-0/5928d9b768ed3f824e8a257d.pdf |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Cognitive Computational Neuroscience |
dc.source.spa.fl_str_mv |
Cognitive Computational Neuroscience |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1828160686951235584 |