Encapsulación de puntos de carbono en un hidrogel basado en alginato: Prueba de concepto de liberación controlada de fármacos

Los sistemas de administración de fármacos buscan suministrar una cantidad terapéutica de una molécula o compuesto con un fin biológico o biomédico al organismo. Estos sistemas se clasifican en tradicionales, liberación modificada y controlada. Los sistemas tradicionales no presentan diseño de formulac...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
spa
OAI Identifier:
oai:repository.urosario.edu.co:10336/31581
Acceso en línea:
https://doi.org/10.48713/10336_31581
https://repository.urosario.edu.co/handle/10336/31581
Palabra clave:
Sistemas de administración de fármacos encapsulados en puntos de carbono en un hidrogel basado en alginato
Sistemas de administración de fármacos basados en hidrogel
Liberación controlada de fármacos
Sistema de liberación controlada de medicamentos basado en un hidrogel electroresponsivo
Farmacología & terapéutica
Drug delivery systems encapsulated at carbon points in an alginate-based hydrogel
Hydrogel-based drug delivery systems
Controlled drug release
Controlled drug release system based on an electroresponsive hydrogel
Rights
License
Abierto (Texto Completo)
id EDOCUR2_c22e573767d50850008f01e654269872
oai_identifier_str oai:repository.urosario.edu.co:10336/31581
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.spa.fl_str_mv Encapsulación de puntos de carbono en un hidrogel basado en alginato: Prueba de concepto de liberación controlada de fármacos
dc.title.TranslatedTitle.spa.fl_str_mv Encapsulation of carbon dots in an alginate-based hydrogel: Proof of concept of controlled drug delivery
Encapsulation of Carbon Points in an Alginate-Based Hydrogel: Proof of Concept for Controlled Drug Release
title Encapsulación de puntos de carbono en un hidrogel basado en alginato: Prueba de concepto de liberación controlada de fármacos
spellingShingle Encapsulación de puntos de carbono en un hidrogel basado en alginato: Prueba de concepto de liberación controlada de fármacos
Sistemas de administración de fármacos encapsulados en puntos de carbono en un hidrogel basado en alginato
Sistemas de administración de fármacos basados en hidrogel
Liberación controlada de fármacos
Sistema de liberación controlada de medicamentos basado en un hidrogel electroresponsivo
Farmacología & terapéutica
Drug delivery systems encapsulated at carbon points in an alginate-based hydrogel
Hydrogel-based drug delivery systems
Controlled drug release
Controlled drug release system based on an electroresponsive hydrogel
title_short Encapsulación de puntos de carbono en un hidrogel basado en alginato: Prueba de concepto de liberación controlada de fármacos
title_full Encapsulación de puntos de carbono en un hidrogel basado en alginato: Prueba de concepto de liberación controlada de fármacos
title_fullStr Encapsulación de puntos de carbono en un hidrogel basado en alginato: Prueba de concepto de liberación controlada de fármacos
title_full_unstemmed Encapsulación de puntos de carbono en un hidrogel basado en alginato: Prueba de concepto de liberación controlada de fármacos
title_sort Encapsulación de puntos de carbono en un hidrogel basado en alginato: Prueba de concepto de liberación controlada de fármacos
dc.contributor.advisor.none.fl_str_mv Rodríguez Burbano, Diana Consuelo
Múnera Ramirez, Marcela Cristina
dc.subject.spa.fl_str_mv Sistemas de administración de fármacos encapsulados en puntos de carbono en un hidrogel basado en alginato
Sistemas de administración de fármacos basados en hidrogel
Liberación controlada de fármacos
Sistema de liberación controlada de medicamentos basado en un hidrogel electroresponsivo
topic Sistemas de administración de fármacos encapsulados en puntos de carbono en un hidrogel basado en alginato
Sistemas de administración de fármacos basados en hidrogel
Liberación controlada de fármacos
Sistema de liberación controlada de medicamentos basado en un hidrogel electroresponsivo
Farmacología & terapéutica
Drug delivery systems encapsulated at carbon points in an alginate-based hydrogel
Hydrogel-based drug delivery systems
Controlled drug release
Controlled drug release system based on an electroresponsive hydrogel
dc.subject.ddc.spa.fl_str_mv Farmacología & terapéutica
dc.subject.keyword.spa.fl_str_mv Drug delivery systems encapsulated at carbon points in an alginate-based hydrogel
Hydrogel-based drug delivery systems
Controlled drug release
Controlled drug release system based on an electroresponsive hydrogel
description Los sistemas de administración de fármacos buscan suministrar una cantidad terapéutica de una molécula o compuesto con un fin biológico o biomédico al organismo. Estos sistemas se clasifican en tradicionales, liberación modificada y controlada. Los sistemas tradicionales no presentan diseño de formulación que permita orientar el medicamento a un sitio especifico controlar la tasa de su liberación. Por el contrario, los sistemas de liberación controlada poseen un diseño de formulación que les permite controlar la velocidad de liberación y/o presentan una configuración que facilita la identificación de un área específica para su acción. Así, estos últimos ofrecen ventajas sobre los sistemas tradicionales tales como simplificar la posología, disminución de efectos adversos y el aumento de la eficacia de los tratamientos farmacoterapéuticos. Los puntos de carbono (CDs, por sus siglas en inglés) son nanopartículas que presentan alta solubilidad en medio acuoso, buena biocompatibilidad y naturaleza no citotóxica. Estas partículas han sido propuestas como nanoportadores para la administración de fármacos con fin de liberación controlada, ya que presentan emisión fluorescente en la región visible del espectro electromagnético, aumentan la biodistribución y la estabilidad de agentes terapéuticos los órganos diana. Por otro lado, los hidrogeles se han utilizado como vehículos en los sistemas de liberación modificada. Los hidrogeles son redes poliméricas, biocompatibles, que pueden absorber hasta mil veces su peso en agua o fluidos de base acuosa, poseen propiedades viscoelásticas similares la de los tejidos humanos y permiten la encapsulación de diferentes especies tales como fármacos o moléculas de interés biomédico. El presente trabajo de grado propone un sistema de liberación, en donde se encapsula puntos de carbono en un hidrogel basado en alginato y se realiza una prueba de concepto de liberación controlada. Este trabajo está vinculado al proyecto marco ‘Desarrollo de los componentes de un sistema de liberación controlada de medicamentos basado en un hidrogel electroresponsivo integrado por puntos de carbono funcionalizados con curcumina’ financiado por Fondos Concursables UR-Capital Semilla. Este proceso de elaboración del sistema se centrará en cuatro etapas de desarrollo: (i) sínte- sis de puntos de carbono mediante el método microondas con ácido cítrico, N,N-dimetilformamida etanol como materiales de partida buscando variar la temperatura de reacción, la caracteri- zación de propiedades ópticas en pro de determinar que puntos de carbono presentan mejores propiedades para la utilización como molécula ha encapsular. (ii) El desarrollo del hidrogel de alginato y la evaluación de su degradación en respuesta a pH para el diseño de sistemas de administración de fármacos. (iii) La encapsulación de los puntos de carbono en el hidrogel y su respectiva prueba de liberación controlada. (iv) Adicionalmente, se desarrolla una revisión literaria de protocolos de síntesis de hidrogeles electroresponsivos. En este proyecto se presentan los resultados de cada etapa, los puntos de carbono sintetiza- dos evidenció un ancho de banda de absorción en la región UV (200–320 nm) y de fluorescencia en la región azul al cian (427-520 nm). Los puntos de carbono a 200°C evidenciaron mayor emisión a longitudes de excitación de 360/380 nm en comparación con los puntos de carbono 100°C, 125°C, 150°C y 175°C. En la síntesis del hidrogel de alginato, la relación del polímero reticulante (CaCl2 – NaCl) presentó un papel importante en la velocidad de degradación del hidrogel en medio acuoso con características de pH ácido (pH = 3.2) y básico (pH = 8.5). Además, la degradación de los hidrogeles con relación alginato y reticulante (1:1.5) se completo a la mitad del tiempo en comparación a la relación (1:1). Los perfiles de liberación de los puntos de carbono embebido en los hidrogeles en medio ácido-básico no presentaron tendencias descritas en los modelos matemáticos para determinar la cinética de liberación. Por consiguiente, se realizó una linealización para obtener un comportamiento lineal. También, se evidenció una mayor fluorescencia en el medio acuoso con pH básico en comparación al medio ácido. De la revisión literaria se encontró que las técnicas para sintetizar los polímeros con- ductivos utilizados en los hidrogeles electroresponsivos son polimerización química oxidativa, electroquímica o por irradiación. La polianilina (PAni), el polipirrol (PPy) y el PEDOT son los polímeros conductivos más empleados debido a su biocompatibilidad y buenas propie- dades eléctricas y electroquímicas. La polimerización química oxidativa es la técnica más utilizada para sintetizar estos polímeros, debido a la cantidad de producción final obtenida ya que presenta polimerización homogénea. Sin embargo, esta técnica presenta limitaciones para controlar los procesos y los reactivos implícitos como oxidante, la temperatura, el disolvente.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-04T20:12:54Z
dc.date.available.none.fl_str_mv 2021-06-04T20:12:54Z
dc.date.created.none.fl_str_mv 2021-05-27
dc.type.eng.fl_str_mv bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.document.spa.fl_str_mv Monografía
dc.type.spa.spa.fl_str_mv Trabajo de grado
dc.identifier.doi.none.fl_str_mv https://doi.org/10.48713/10336_31581
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/31581
url https://doi.org/10.48713/10336_31581
https://repository.urosario.edu.co/handle/10336/31581
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 84 pp.
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad del Rosario
dc.publisher.department.spa.fl_str_mv Escuela de Medicina y Ciencias de la Salud
dc.publisher.program.spa.fl_str_mv Ingeniería Biomédica
institution Universidad del Rosario
dc.source.bibliographicCitation.none.fl_str_mv (1991) Constitución Política de Colombia. Vol. Gaceta Constitucional No. 116 de 20 de julio de 1991 (1991) Constitución Política de Colombia. Vol. Gaceta Constitucional No. 116 de 20 de julio de 1991 (1991) Constitución Política de Colombia. Vol. Gaceta Constitucional No. 116 de 20 de julio de 1991;
Cabrera, Álvaro (2020) Louise Brown, la primera bebé probeta: “Es triste que la fecundación in vitro siga siendo un tema tabú”. En: El País. Málafa Disponible en: https://elpais.com/elpais/2020/03/06/mamas_papas/1583486018_035212.html. Ansari, Mojtaba (2019) Bone tissue regeneration: biology, strategies and interface studies. En:Progress in Biomaterials; Vol. 8; No. 4; pp. 223 - 237; Springer Berlin Heidelberg; 4020401900125; Disponible en: https://doi.org/10.1007/s40204-019-00125-z. Disponible en: 10.1007/s40204-019-00125-z. Qu, Songnan; Wang, Xiaoyun; Lu, Qipeng; Liu, Xingyuan; Wang, Lijun (2012) A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots. En:Angewandte Chemie; Vol. 124; No. 49; pp. 12381 - 12384; Wiley; Disponible en: http://doi.wiley.com/10.1002/ange.201206791. Disponible en: 10.1002/ange.201206791.
Santamaría, Luis (2000) Aspectos bioéticos de la reproducción asitida. pp. Pg 39 Disponible en: http://aebioetica.org/revistas/2000/1/41/37.pdf. Arvidson, K; Abdallah, B M; Applegate, L A; Baldini, N; Cenni, E; Gomez-Barrena, E; Granchi, D; Kassem, M; Konttinen, Y T; Mustafa, K; Pioletti, D P; Sillat, T; Finne-Wistrand, A (2011) Bone regeneration and stem cells. En:Journal of cellular and molecular medicine; Vol. 15; No. 4; pp. 718 - 746; Disponible en: 10.1111/j.1582-4934.2010.01224.x. Mihic, Anton; Cui, Zhi; Wu, Jun; Vlacic, Goran; Miyagi, Yasuo; Li, Shu Hong; Lu, Sun; Sung, Hsing Wen; Weisel, Richard D.; Li, Ren Ke (2015) A conductive polymer hydrogel supports cell electrical signaling and improves cardiac function after implantation into myocardial infarct. En:Circulation; Vol. 132; No. 8; pp. 772 - 784; Lippincott Williams and Wilkins; Disponible en: http://circ.ahajournals.org. Disponible en: 10.1161/CIRCULATIONAHA.114.014937.
Santamaría, Luis (2000) Aspectos bioéticos de la reproducción asitida. pp. Pg 37 Disponible en: http://aebioetica.org/revistas/2000/1/41/37.pdf. Orciani, Monia; Fini, Milena; Di Primio, Roberto; Mattioli-Belmonte, Monica (2017) Biofabrication and Bone Tissue Regeneration: Cell Source, Approaches, and Challenges. En:Frontiers in Bioengineering and Biotechnology; Vol. 5; pp. 17 - 17; Disponible en: https://www.frontiersin.org/article/10.3389/fbioe.2017.00017. Disponible en: 10.3389/fbioe.2017.00017. Hu, Shengliang; Wei, Zhijia; Chang, Qing; Trinchi, Adrian; Yang, Jinlong (2016) A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity. En:Applied Surface Science; Vol. 378; pp. 402 - 407; Elsevier B.V.; Disponible en: 10.1016/j.apsusc.2016.04.038.
Flores, Lucerito (2007) Reflexión ético jurídica sobre las técnicas de reproducción asistida. En: IUS: Revista del Instituto de Ciencias Jurídicas de Puebla. pp. 102 Wang, Wenhao; Yeung, Kelvin W.K. (2017) Bone grafts and biomaterials substitutes for bone defect repair: A review. En:Bioactive Materials; Vol. 2; No. 4; pp. 224 - 247; Elsevier Ltd; Disponible en: https://doi.org/10.1016/j.bioactmat.2017.05.007. Disponible en: 10.1016/j.bioactmat.2017.05.007. Lin, Jianming; Tang, Qunwei; Wu, Jihuai; Li, Qinghua (2010) A multifunctional hydrogel with high-conductivity, pH-responsive, and release properties from polyacrylate/polyptrrole. En:Journal of Applied Polymer Science; Vol. 116; No. 3; pp. 1376 - 1383; Wiley Periodicals, Inc; Disponible en: http://doi.wiley.com/10.1002/app.31642. Disponible en: 10.1002/app.31642.
Kushner, Luis (2010) La fertilización in vitro: Beneficios, riesgos y futuro. En: Revista científica ciencia médica. pp. 1 González-Rodríguez, Gil; Colubi, Ana; Gil, María Ángeles (2012) Fuzzy data treated as functional data: A one-way ANOVA test approach. En:Computational Statistics and Data Analysis; Vol. 56; No. 4; pp. 943 - 955; Elsevier B.V.; Disponible en: http://dx.doi.org/10.1016/j.csda.2010.06.013. Disponible en: 10.1016/j.csda.2010.06.013. Atoufi, Zhale; Zarrintaj, Payam; Motlagh, Ghodratollah Hashemi; Amiri, Anahita; Bagher, Zohreh; Kamrava, Seyed Kamran (2017) A novel bio electro active alginate-aniline tetramer/ agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study. En:Journal of Biomaterials Science, Polymer Edition; Vol. 28; No. 15; pp. 1617 - 1638; Taylor and Francis Inc.; Disponible en: https://www.tandfonline.com/doi/abs/10.1080/09205063.2017.1340044. Disponible en: 10.1080/09205063.2017.1340044.
Bernal, María Camila (2015) La filiación materna en el alquier de vientre en Colombia. Bogotá D.C, Colombia: Universidad de los Andes; Akash, M; Rehman, K (2020) Molecular Emission Spectroscopy. En:Essentials of pharmaceutical analysis; Ferreira, Natália Noronha; Perez, Taciane Alvarenga; Pedreiro, Liliane Neves; Prezotti, Fabíola Garavello; Boni, Fernanda Isadora; Cardoso, Valéria Maria de Oliveira; Venâncio, Tiago; Gremião, Maria Palmira Daflon (2017) A novel pH-responsive hydrogel-based on calcium alginate engineered by the previous formation of polyelectrolyte complexes (PECs) intended to vaginal administration. En:Drug Development and Industrial Pharmacy; Vol. 43; No. 10; pp. 1656 - 1668; Taylor and Francis Ltd.; Disponible en: https://pubmed.ncbi.nlm.nih.gov/28489424/. Disponible en: 10.1080/03639045.2017.1328434.
Rosero Ceballos, Jhon (2018) Naturaleza jurídica del alquiler de vientre: Impacto y consecuencias en el ámbito del derecho laboral. Bogotá D.C, Colombia: Pontificia Universidad Javeriana; Disponible en: https://repository.javeriana.edu.co/bitstream/handle/10554/38941/Carta%20de%20autorizacion.pdf?sequence=2&isAllowed=n. Erdal, Nejla B.; Hakkarainen, Minna (2018) Construction of Bioactive and Reinforced Bioresorbable Nanocomposites by Reduced Nano-Graphene Oxide Carbon Dots. En:Biomacromolecules; Vol. 19; No. 3; pp. 1074 - 1081; Disponible en: 10.1021/acs.biomac.8b00207. Zhi, Hui; Fei, Xu; Tian, Jing; Jing, Muzi; Xu, Longquan; Wang, Xiuying; Liu, Dongmei; Wang, Yi; Liu, Jingyun (2017) A novel transparent luminous hydrogel with self-healing property. En:Journal of Materials Chemistry B; Vol. 5; No. 29; pp. 5738 - 5744; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2017/tb/c7tb00975e; https://pubs.rsc.org/en/content/articlelanding/2017/tb/c7tb00975e. Disponible en: 10.1039/c7tb00975e.
Gafo, Javier (1993) 10 palabras clave en bioética. España: Estella, Navarra : Verbo Divino; Disponible en: https://dialnet.unirioja.es/servlet/libro?codigo=95003. Sarkar, Chandrani; Chowdhuri, Angshuman Ray; Kumar, Amit; Laha, Dipranjan; Garai, Subhadra; Chakraborty, Jui; Sahu, Sumanta Kumar (2018) One pot synthesis of carbon dots decorated carboxymethyl cellulose- hydroxyapatite nanocomposite for drug delivery, tissue engineering and Fe3+ ion sensing. En:Carbohydrate Polymers; Vol. 181; pp. 710 - 718; Disponible en: https://www.sciencedirect.com/science/article/pii/S0144861717313772. Disponible en: https://doi.org/10.1016/j.carbpol.2017.11.091. Tsai, Tong-Sheng; Pillay, Viness; Choonara, Yahya E.; Du Toit, Lisa C.; Modi, Girish; Naidoo, Dinesh; Kumar, Pradeep (2011) A Polyvinyl Alcohol-Polyaniline Based Electro-Conductive Hydrogel for Controlled Stimuli-Actuable Release of Indomethacin. En:Polymers; Vol. 3; No. 1; pp. 150 - 172; Molecular Diversity Preservation International; Disponible en: http://www.mdpi.com/2073-4360/3/1/150. Disponible en: 10.3390/polym3010150.
Méndez, Victor (2006) Las relaciones entre la bioética y el derecho. En: Publicación Trimestral del Máster en Bioética y Derecho. Revista de Bioética y Derecho. pp. 1 - 2; Disponible en: http://diposit.ub.edu/dspace/bitstream/2445/11420/3/Mendez_Bioetica_Derecho.pdf. Gil, Carmen J; Tomov, Martin L; Theus, Andrea S; Cetnar, Alexander; Mahmoudi, Morteza; Serpooshan, Vahid (2019) In Vivo Tracking of Tissue Engineered Constructs. En:Micromachines; Vol. 10; No. 7; Disponible en: 10.3390/mi10070474. Zuo, Pengli; Lu, Xiuhua; Sun, Zhigang; Guo, Yuhan; He, Hua (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. En:Microchimica Acta; Vol. 183; No. 2; pp. 519 - 542; Springer-Verlag Wien; Disponible en: https://link.springer.com/article/10.1007/s00604-015-1705-3. Disponible en: 10.1007/s00604-015-1705-3.
Montes, German (2004) Bioética y Tecnicas de Reproducción asistida. En: Revistas de Ciencias Administrativas y Financieras de la Seguridad Social. Disponible en: https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-12592004000100008. Szcześ, Aleksandra; Hołysz, Lucyna; Chibowski, Emil (2017) Synthesis of hydroxyapatite for biomedical applications. En:Advances in Colloid and Interface Science; Vol. 249; No. April; pp. 321 - 330; Disponible en: 10.1016/j.cis.2017.04.007. Wu, Qian; Wei, Junjie; Xu, Bing; Liu, Xinhua; Wang, Hongbo; Wang, Wei; Wang, Qigang; Liu, Wenguang (2017) A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability. En:Scientific Reports; Vol. 7; No. 1; pp. 1 - 11; Nature Publishing Group; Disponible en: www.nature.com/scientificreports. Disponible en: 10.1038/srep41566.
(1886) Constitución Política de Colombia. Disponible en: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=7153. McMahon, Rebecca E.; Wang, Lina; Skoracki, Roman; Mathur, Anshu B. (2013) Development of nanomaterials for bone repair and regeneration. En:Journal of Biomedical Materials Research; Vol. 101 B; No. 2; pp. 387 - 397; Disponible en: 10.1002/jbm.b.32823. Li, Yi; Yang, Hong Yu; Lee, Doo Sung (2021) Advances in biodegradable and injectable hydrogels for biomedical applications. En:Journal of Controlled Release; Vol. 330; pp. 151 - 160; Elsevier B.V.; Disponible en: 10.1016/j.jconrel.2020.12.008.
(2021) CECOLFES. En: Centro Colombiano de Fertilidad Medicina Preventiva y Regenerativa. Disponible en: https://www.cecolfes.com. Peng, Han; Wang, Jiexin; Lv, Shanshan; Wen, Jian; Chen, Jian-Feng (2015) Synthesis and characterization of hydroxyapatite nanoparticles prepared by a high-gravity precipitation method. En:Ceramics International; Vol. 41; No. 10, Part B; pp. 14340 - 14349; Disponible en: https://www.sciencedirect.com/science/article/pii/S0272884215013577. Disponible en: https://doi.org/10.1016/j.ceramint.2015.07.067. Nahar, Kamrun; Hossain, Md Kamal; Khan, Tanveer Ahmed (2017) Alginate and its versatile application in drug delivery. En:Journal of Pharmaceutical Sciences and Research; Vol. 9; No. 5; pp. 606 - 617;
Garcés, M.T. (1991) Proyecto de acto reformatorio de la Constitución Política de Colombia No. 13. Ampliación de la democracia. pp. 10 - 19; Wang, Yanqin; Xue, Yanan; Wang, Jinghui; Zhu, Yaping; Wang, Xin; Zhang, Xuehui; Zhu, Yu; Liao, Jingwen; Li, Xiaona; Wu, Xiaogang; Chen, Weiyi (2019) Biocompatible and photoluminescent carbon dots/hydroxyapatite/PVA dual-network composite hydrogel scaffold and their properties. En:Journal of Polymer Research; Vol. 26; No. 11; pp. 6 - 11; Journal of Polymer Research; Disponible en: http://dx.doi.org/10.1007/s10965-019-1907-1. Disponible en: 10.1007/s10965-019-1907-1. Agüero, Lissette; Zaldivar-Silva, Dionisio; Peña, Luis; Dias, Marcos (2017) Alginate microparticles as oral colon drug delivery device: A review. En:Carbohydrate Polymers; Vol. 168; pp. 32 - 43; Elsevier Ltd; Disponible en: 10.1016/j.carbpol.2017.03.033.
Benitez, Jaime (1991) Derechos de la Familia, el niño, el joven, la mujer y la tercera edad. pp. 2 - 6; Zhang, H; Mao, X; Du, Z; Jiang, W; Han, X; Zhao, D; Han, D; Li, Q (2016) Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model. En:Science and Technology of Advanced Materials; Vol. 17; No. 1; pp. 136 - 148; Hasnain, Md Saquib; Jameel, Ehtesham; Mohanta, Bulu; Dhara, Amal Kumar; Alkahtani, Saad; Nayak, Amit Kumar (2020) Alginates: sources, structure, and properties. En:Alginates in Drug Delivery; pp. 1 - 17; Elsevier; Disponible en: 10.1016/b978-0-12-817640-5.00001-7.
(2015) Ley 1751 de 2015. Vol. Diario Oficial No. 49.427; Ley 1751 de 2015; Disponible en: http://www.secretariasenado.gov.co/senado/basedoc/ley_1751_2015.html. Petricca, S; Marra, K; Kumta, P (2006) Chemical synthesis of poly(-lactic-co-glycolic acid)/hydroxyapatite composites for orthopaedic applications. En:Acta Biomaterialia; Vol. 2; No. 3; pp. 277 - 286; Tong, Gangsheng; Wang, Jingxia; Wang, Ruibin; Guo, Xinqiu; He, Lin; Qiu, Feng; Wang, Ge; Zhu, Bangshang; Zhu, Xinyuan; Liu, Tao (2015) Amorphous carbon dots with high two-photon fluorescence for cellular imaging passivated by hyperbranched poly(amino amine). En:Journal of Materials Chemistry B; Vol. 3; No. 4; pp. 700 - 706; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2015/tb/c4tb01643b; https://pubs.rsc.org/en/content/articlelanding/2015/tb/c4tb01643b. Disponible en: 10.1039/c4tb01643b.
Ortiz, Gloria Stella (2020) Sentencia de Unificación. : Corte Constitucional Colombiana; Disponible en: https://www.corteconstitucional.gov.co/relatoria/2020/su074-20.htm. Pavón Palacio, Juan Jose; Pesquet, Alice; Echeverry Rendon, Monica; Robledo Restrepo, Sara Maria (2014) Processing, biological characterization and test to natural and synthetic polymer scaffolds for bone and cartilaginous tissue engineering. En:Revista politécnica; Hamd-Ghadareh, Somayeh; Salimi, Abdollah; Fathi, Fardin; Bahrami, Saman (2017) An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imaging and sensing. En:Biosensors and Bioelectronics; Vol. 96; pp. 308 - 316; Elsevier Ltd; Disponible en: 10.1016/j.bios.2017.05.003.
Solarte, Arturo (2013) Sentencia de Casación. : Corte Suprema de Justicia, Sala de Casación Civil; Disponible en: https://www.icbf.gov.co/cargues/avance/docs/csj_scc_s-_28-02-2013_[1100131100022006-00537-01]_2013.htm. Arifvianto, Budi; Zhou, Jie (2014) Fabrication of Metallic Biomedical Scaffolds with the Space Holder Method: A Review. En:Materials (Basel, Switzerland); Vol. 7; No. 5; pp. 3588 - 3622; Disponible en: 10.3390/ma7053588. Liu, Ruili; Wu, Dongqing; Liu, Shuhua; Koynov, Kaloian; Knoll, Wolfgang; Li, Qin (2009) An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. En:Angewandte Chemie; Vol. 48; No. 25; pp. 4598 - 4601; John Wiley & Sons, Ltd; Disponible en: http://doi.wiley.com/10.1002/anie.200900652. Disponible en: 10.1002/anie.200900652.
Angarita, Jorge (1994) Lecciones de derecho civil. pp. 34 Oliveira, J; Rodriguez, M; Silva, S; Malafaya, P; Gomez, M; Viegas, C; Dias, I; Azevedo, J; Mano, J; Reis, R (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue enngineering applications. En:Biomaterials; Vol. 27; No. 36; pp. 6123 - 6137; Xiao, Yinghong; He, Lei; Che, Jianfei (2012) An effective approach for the fabrication of reinforced composite hydrogel engineered with SWNTs, polypyrrole and PEGDA hydrogel. En:Journal of Materials Chemistry; Vol. 22; No. 16; pp. 8076 - 8082; The Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2012/jm/c2jm30601h; https://pubs.rsc.org/en/content/articlelanding/2012/jm/c2jm30601h. Disponible en: 10.1039/c2jm30601h.
(2006) Ley 1098 de 2006. Vol. Diario Oficial No. 46.446; Disponible en: https://www.icbf.gov.co/cargues/avance/docs/ley_1098_2006.htm. Moore, Drew D.; Haydon, Rex C. (2014) Orthopaedic Oncology Completed. En:Cancer Treatment and Research; pp. 31 - 63; 978-3-319-07322-4; Disponible en: papers3://publication/uuid/FBEEE3E8-B240-41FA-A4CC-0A9C57D87078. Disponible en: 10.1007/978-3-319-07323-1. Nikzamir, Mohammad; Akbarzadeh, Abolfazl; Panahi, Yunes (2021) An overview on nanoparticles used in biomedicine and their cytotoxicity. En:Journal of Drug Delivery Science and Technology; Vol. 61; pp. 102316 - 102316; Editions de Sante; Disponible en: 10.1016/j.jddst.2020.102316.
Jímenez, María Jesús (2005) El Debilitamiento de los Efectos de la Filiación. En: Revista de la Facultad de Derecho de la Universidad de Granada. pp. 395 - 396; Disponible en: https://dialnet.unirioja.es/servlet/autor?codigo=73526. Barbosa, Jéssica S.; Mendes, Ricardo F.; Figueira, Flávio; Gaspar, Vítor M.; Mano, João F.; Braga, Susana S.; Rocha, João; Almeida Paz, Filipe A. (2020) Bone Tissue Disorders: Healing Through Coordination Chemistry. En:Chemistry; Vol. 26; No. 67; pp. 15416 - 15437; Disponible en: 10.1002/chem.202004529. Stejskal, Jaroslav; Trchová, Miroslava (2012) Aniline oligomers versus polyaniline. En:Polymer International; Vol. 61; No. 2; pp. 240 - 251; John Wiley & Sons, Ltd; Disponible en: http://doi.wiley.com/10.1002/pi.3179. Disponible en: 10.1002/pi.3179.
(2006) Ley 1060 de 2006. Vol. Diario Oficial No. 46.341; Ley 1060 de 2006; Disponible en: https://www.icbf.gov.co/cargues/avance/docs/ley_1060_2006.htm. Zhang, S; Cui, F; Liao, S; Zhu, Y; Han, L (2003) Synthesis and biocompatibility of porous nanohydroxyapatite/collagen/alginate composite. En:J Mater Sci Mater Med; Vol. 14; No. 7; pp. 641 - 645; Zhao, Xin; Li, Peng; Guo, Baolin; Ma, Peter X. (2015) Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. En:Acta Biomaterialia; Vol. 26; pp. 236 - 248; Elsevier Ltd; Disponible en: https://pubmed.ncbi.nlm.nih.gov/26272777/. Disponible en: 10.1016/j.actbio.2015.08.006.
(2001) Ley 721 de 2001. Vol. Diario Oficial No 44.661; Ley 721 de 2001; Disponible en: https://www.icbf.gov.co/cargues/avance/docs/ley_0721_2001.htm. Kikuchi, M; Itoh, S; Ichinose, S; Shinomiya, K; Tanaka, J (2001) Self-organization mechanism in bone like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. En:Biomaterials; Vol. 22; No. 13; pp. 1705 - 1711; Huang, Gangliang; Huang, Hualiang (2018) Application of dextran as nanoscale drug carriers. En:Nanomedicine; Vol. 13; No. 24; pp. 3149 - 3158; Future Medicine Ltd.; Disponible en: https://pubmed-ncbi-nlm-nih-gov.ez.urosario.edu.co/30516091/. Disponible en: 10.2217/nnm-2018-0331.
(1887) Código Civil. Vol. Diario Oficial No. 7.019; Ley 57 de 1887; Disponible en: https://www.icbf.gov.co/cargues/avance/docs/ley_0057_1887.htm. Gao, Dong; Liu, Xiaolu; Jiang, Dongli; Zhao, Huan; Zhu, Yuda; Chen, Xiaoqin; Luo, Hongrong; Fan, Hongsong; Zhang, Xingdong (2018) Exploring of multicolor emissive carbon dots with novel double emission mechanism. En:Sensors and Actuators, B: Chemical; Vol. 277; No. September; pp. 373 - 380; Elsevier; Disponible en: https://doi.org/10.1016/j.snb.2018.09.031. Disponible en: 10.1016/j.snb.2018.09.031. Huang, Chun Lin; Huang, Chih Ching; Mai, Fu Der; Yen, Chia Liang; Tzing, Shin Hwa; Hsieh, Hsiao Ting; Ling, Yong Chien; Chang, Jia Yaw (2015) Application of paramagnetic graphene quantum dots as a platform for simultaneous dual-modality bioimaging and tumor-targeted drug delivery. En:Journal of Materials Chemistry B; Vol. 3; No. 4; pp. 651 - 664; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2015/tb/c4tb01650e; https://pubs.rsc.org/en/content/articlelanding/2015/tb/c4tb01650e. Disponible en: 10.1039/c4tb01650e.
Arango, Jorge (1995) Sentencia. : Corte Constitucional Colombiana; Disponible en: https://www.corteconstitucional.gov.co/RELATORIA/1995/C-591-95.htm. Manioudakis, John; Victoria, Florence; Thompson, Christine A.; Brown, Liam; Movsum, Michael; Lucifero, Roberto; Naccache, Rafik (2019) Effects of nitrogen-doping on the photophysical properties of carbon dots. En:Journal of Materials Chemistry C; Vol. 7; No. 4; pp. 853 - 862; Royal Society of Chemistry; Disponible en: 10.1039/c8tc04821e. Arora, Neha; Sharma, N. N. (2014) Arc discharge synthesis of carbon nanotubes: Comprehensive review. En:Diamond and Related Materials; Vol. 50; pp. 135 - 150; Elsevier Ltd; Disponible en: 10.1016/j.diamond.2014.10.001.
Corte Interamericana de Derechos Humanos (2012) Artavia Murillo y otros (“Fecundación in vitro”) vs. Costa Rica. : Corte Interamericana de Derechos Humanos; Disponible en: https://www.corteidh.or.cr/docs/casos/articulos/seriec_257_esp.pdf. Spectroscopy, Electronic; Factor, Frank Condon (2020) Electronic Spectroscopy : Interpretation. pp. 1 - 8; Arora, Neha; Sharma, N. N. (2014) Arc discharge synthesis of carbon nanotubes: Comprehensive review. En:Diamond and Related Materials; Vol. 50; pp. 135 - 150; Elsevier Ltd; Disponible en: 10.1016/j.diamond.2014.10.001.
(2013) Reproducción Medicamente Asistida. Vol. Ley 26.862; Disponible en: http://www.psi.uba.ar/academica/carrerasdegrado/psicologia/sitios_catedras/obligatorias/723_etica2/material/normativas/ley_26862_y_reglamentacion.pdf. Riss, Terry L; Moravec, Richard A; Niles, Andrew L; Duellman, Sarah; Benink, Hélène A; Worzella, racy J; Minor, Lisa (2013) Cell Viability Assays. En:Assay Guidence Manual; Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK144065/. Zhu, Shoujun; Zhao, Xiaohuan; Song, Yubin; Lu, Siyu; Yang, Bai (2016) Beyond bottom-up carbon nanodots: Citric-acid derived organic molecules. En:Nano Today; Vol. 11; No. 2; pp. 128 - 132; Elsevier B.V.; Disponible en: 10.1016/j.nantod.2015.09.002.
(2014) Código civil y comercial Argentino. Ley 26.994; Disponible en: http://servicios.infoleg.gob.ar/infolegInternet/anexos/235000-239999/235975/norma.htm. Xiao, Qi; Liang, Yu; Zhu, Fawei; Lu, Shuangyan; Huang, Shan (2017) Microwave-assisted one-pot synthesis of highly luminescent N-doped carbon dots for cellular imaging and multi-ion probing. En:Microchimica Acta; Vol. 184; No. 7; pp. 2429 - 2438; Microchimica Acta; Disponible en: 10.1007/s00604-017-2242-z. Shi, Qiang; Liu, Hao; Tang, Deding; Li, Yuhui; Li, Xiu Jun; Xu, Feng (2019) Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications. En:NPG Asia Materials; Vol. 11; No. 1; pp. 1 - 21; Nature Research; Disponible en: https://doi.org/10.1038/s41427-019-0165-3. Disponible en: 10.1038/s41427-019-0165-3.
Suárez, Roberto (1998) Derecho de familia. Vol. 1; Santa Fé de Bogotá: Temis; Kumar, Pawan; Dehiya, Brijnandan S.; Sindhu, Anil (2019) Synthesis and characterization of nHA-PEG and nBG-PEG scaffolds for hard tissue engineering applications. En:Ceramics International; Vol. 45; No. 7; pp. 8370 - 8379; Elsevier Ltd and Techna Group S.r.l.; Disponible en: https://doi.org/10.1016/j.ceramint.2019.01.145. Disponible en: 10.1016/j.ceramint.2019.01.145. Qu, Jin; Liang, Yongping; Shi, Mengting; Guo, Baolin; Gao, Yanzheng; Yin, Zhanhai (2019) Biocompatible conductive hydrogels based on dextran and aniline trimer as electro-responsive drug delivery system for localized drug release. En:International Journal of Biological Macromolecules; Vol. 140; pp. 255 - 264; Elsevier B.V.; Disponible en: 10.1016/j.ijbiomac.2019.08.120.
Rico, Luis Alonso (2017) Sentencia. : Corte Suprema de Justicia Sala de Casación Civil; Chen, Zetao; Bachhuka, Akash; Han, Shengwei; Wei, Fei; Lu, Shifeier; Visalakshan, Rahul Madathiparambil; Vasilev, Krasimir; Xiao, Yin (2019) Tuning Chemistry and Topography of Nanoengineered Surfaces to Manipulate Immune Response for Bone Regeneration Applications. En:American chemical society; Vol. 13; No. 3; pp. 37 - 39; Xu, Chao; Guan, Shui; Wang, Shuping; Gong, Weitao; Liu, Tianqing; Ma, Xuehu; Sun, Changkai (2018) Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering. En:Materials Science and Engineering C; Vol. 84; pp. 32 - 43; Elsevier Ltd; Disponible en: 10.1016/j.msec.2017.11.032.
Sánchez, Patricia; Martínez, Nerea; Fernández, Eloisa (2017) Fecundación in vitro postmortem. En: Cultura de los Cuidados. Disponible en: https://rua.ua.es/dspace/bitstream/10045/75355/1/CultCuid_50_16.pdf. Dai, Xiaohan; Wei, Yan; Zhang, Xuehui; Meng, Song; Mo, Xiaoju; Liu, Xing; Deng, Xuliang; Zhang, Li; Deng, Xuming (2015) Attenuating Immune Response of Macrophage by Enhancing Hydrophilicity of Ti Surface. En:Journal of Nanomaterials; Vol. 3; Disponible en: 10.1155/2015/712810. Van Tomme, Sophie R.; Hennink, Wim E. (2007) Biodegradable dextran hydrogels for protein delivery applications. En:Expert Review of Medical Devices; Vol. 4; No. 2; pp. 147 - 164; Expert Rev Med Devices; Disponible en: https://pubmed-ncbi-nlm-nih-gov.ez.urosario.edu.co/17359222/. Disponible en: 10.1586/17434440.4.2.147.
Cañón, Pedro (1995) Derecho Civil Familia. En: 2. Vol. 1; pp. 335 Santa Fé de Bogotá: Presencia LTDA; Pujari-Palmer, Shiuli; Chen, Song; Rubino, Stefano; Weng, Hong; Xia, Wei; Engqvist, Håkan; Tang, Liping; Ott, Marjam Karlsson (2016) In vivo and in vitro evaluation of hydroxyapatite nanoparticle morphology on the acute inflammatory response. En:Biomaterials; Vol. 90; pp. 1 - 11; Disponible en: https://www.sciencedirect.com/science/article/pii/S0142961216001617. Disponible en: https://doi.org/10.1016/j.biomaterials.2016.02.039. Dong, Yongqiang; Shao, Jingwei; Chen, Congqiang; Li, Hao; Wang, Ruixue; Chi, Yuwu; Lin, Xiaomei; Chen, Guonan (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. En:Carbon; Vol. 50; No. 12; pp. 4738 - 4743; Pergamon; Disponible en: 10.1016/j.carbon.2012.06.002.
Rbich, W.T. (1978) Encyclopedia of bioethics. New York, USA.: Thomson Gale; Zadpoor, Amir A (2015) Bone tissue regeneration: the role of scaffold geometry. En:Biomater. Sci.; Vol. 3; No. 2; pp. 231 - 245; The Royal Society of Chemistry; Disponible en: http://dx.doi.org/10.1039/C4BM00291A. Disponible en: 10.1039/C4BM00291A. Sadhanala, Hari Krishna; Nanda, Karuna Kar (2016) Boron-doped carbon nanoparticles: Size-independent color tunability from red to blue and bioimaging applications. En:Carbon; Vol. 96; pp. 166 - 173; Elsevier Ltd; Disponible en: 10.1016/j.carbon.2015.08.096.
Salinas, Carlos (2013) Los concordatos celebrados entre la Santa Sede y los países latinoamericanos durante el siglo XIX. En: Revista de Estudios Historico-Jurídicos. Disponible en: https://scielo.conicyt.cl/pdf/rehj/n35/a08.pdf. Aboudzadeh, Neda; Imani, Mohammad; Shokrgozar, Mohammad Ali; Khavandi, Alireza; Javadpour, Jafar; Shafieyan, Yousef; Farokhi, Mehdi (2010) Fabrication and characterization of poly(D,L-lactide-co-glycolide)/ hydroxyapatite nanocomposite scaffolds for bone tissue regeneration. En:Journal of Biomedical Materials Research; Vol. 94; No. 1; pp. 137 - 145; Disponible en: 10.1002/jbm.a.32673. Dai, Ting yang; Tang, Rong; Yue, Xiao xiao; Xu, Liang; Lu, Yun (2015) Capacitance performances of supramolecular hydrogels based on conducting polymers. En:Chinese Journal of Polymer Science (English Edition); Vol. 33; No. 7; pp. 1018 - 1027; Springer Verlag; Disponible en: https://link-springer-com.ez.urosario.edu.co/article/10.1007/s10118-015-1647-6. Disponible en: 10.1007/s10118-015-1647-6.
Monterrosa, Alvaro (1990) Técnicas de Reproducción Asistida. En: Revista Colombiana de obstetricia y ginecología. Vol. XLI; Disponible en: https://revista.fecolsog.org/index.php/rcog/article/view/976/1121. He, Jianhua; Chen, Guobao; Liu, Mengying; Xu, Zhiling; Chen, Hua; Yang, Li; Lv, Yonggang (2020) Scaffold strategies for modulating immune microenvironment during bone regeneration. En:Materials Science and Engineering: C; Vol. 108; pp. 110411 - 110411; Disponible en: https://www.sciencedirect.com/science/article/pii/S0928493118304314. Disponible en: https://doi.org/10.1016/j.msec.2019.110411. Liu, Jia Hui; Cao, Li; LeCroy, Gregory E.; Wang, Ping; Meziani, Mohammed J.; Dong, Yiyang; Liu, Yuanfang; Luo, Pengju G.; Sun, Ya Ping (2015) Carbon "Quantum" Dots for Fluorescence Labeling of Cells. En:ACS Applied Materials and Interfaces; Vol. 7; No. 34; pp. 19439 - 19445; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/acsami.5b05665. Disponible en: 10.1021/acsami.5b05665.
Serrano, Leonor (2003) Por la cual se regula el contrato de técnicas de reproducción humana asistida y se dictan otras disposiciones. En: Gaceta 380/03. Proyecto de ley 046 de 2003; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. Zhang, Hangyu; Park, Jaehyung; Jiang, Yonghou; Woodrow, Kim A (2017) Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds. En:Acta Biomaterialia; Vol. 55; pp. 183 - 193; Disponible en: https://www.sciencedirect.com/science/article/pii/S1742706117302143. Disponible en: https://doi.org/10.1016/j.actbio.2017.03.041. Fong, Jessica F.Y.; Ng, Yann H.; Ng, Sing M. (2018) Carbon dots as a new class of light emitters for biomedical diagnostics and therapeutic applications. En:Fullerenes, Graphenes and Nanotubes: A Pharmaceutical Approach; pp. 227 - 295; Elsevier; 9780128136911; Disponible en: 10.1016/B978-0-12-813691-1.00007-5.
Clopatofsky, Jairo Rául (2006) Por medio de la cual se reglamentan las técnicas de reproducción humana asistida, la investigación con células madre y se dictan otras disposiciones. En: Gaceta 512/06. Proyecto de Ley 172 de 2006; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. McHale, MK; Bergmann, NM; West, JL (2019) Histogenesis in three dimensional scaffolds. En:Principles of regenerative medicine 3rd ed; pp. 661 - 674; Tan, Xian Wen; Romainor, Ain Nadirah Binti; Chin, Suk Fun; Ng, Sing Muk (2014) Carbon dots production via pyrolysis of sago waste as potential probe for metal ions sensing. En:Journal of Analytical and Applied Pyrolysis; Vol. 105; pp. 157 - 165; Elsevier B.V.; Disponible en: 10.1016/j.jaap.2013.11.001.
Morales, Jorge Ignacio (2008) Por medio del cual se reglamenta en todo el territorio nacional la práctica de la gestación sustitutiva mediante las técnicas de reproducción humana asistida y se dictan otras disposiciones. En: Gaceta 771/08. Proyecto de Ley 196 de 2008; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. Ramesh, Niranjan; Moratti, Stephen C.; Dias, George J. (2018) Hydroxyapatite–polymer biocomposites for bone regeneration: A review of current trends. En:Journal of Biomedical Materials Research; Vol. 106; No. 5; pp. 2046 - 2057; Disponible en: 10.1002/jbm.b.33950. Mishra, Vijay; Patil, Akshay; Thakur, Sourav; Kesharwani, Prashant (2018) Carbon dots: emerging theranostic nanoarchitectures. En:Drug Discovery Today; Vol. 23; No. 6; pp. 1219 - 1232; Elsevier Ltd; Disponible en: 10.1016/j.drudis.2018.01.006.
Morales, Jorge Ignacio (2009) Por medio del cual se establecen procedimientos para permitir en todo el territorio nacional la práctica de la gestación sustitutiva en desarrollo de las técnicas de reproducción asistida y se dictan otras disposiciones. En: Gaceta 609/09. Proyecto de Ley 037 de 2009; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. Tripathy, Nirmalya; Perumal, Elumalai; Ahmad, Rafiq; Song, Jeong Eun; Khang, Gilson (2019) Hybrid Composite Biomaterials. En:Principles of regenerative medicine 3rd ed; pp. 695 - 714; Sagbas, Selin; Sahiner, Nurettin (2018) Carbon dots: Preparation, properties, and application. En:Nanocarbon and its Composites: Preparation, Properties and Applications; pp. 651 - 676; Elsevier; 9780081025093; Disponible en: 10.1016/B978-0-08-102509-3.00022-5.
Acuña, Laureano Augusto (2013) Por medio del cual se reconoce la infertilidad como enfermedad y se establecen criterios para su cobertura médico asistencial por parte del Sistema de Salud del Estado. En: Gaceta 779/13. Proyecto de Ley 109 de 2013; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. Croisier, F; Jérome, C (2013) Chitosan based biomaterials for tissue engineering. En:Eur Polym J; Vol. 49; pp. 780 - 792; Date, Pranjali; Tanwar, Archana; Ladage, Priyanka; Kodam, Kisan M.; Ottoor, Divya (2020) Carbon dots-incorporated pH-responsive agarose-PVA hydrogel nanocomposites for the controlled release of norfloxacin drug. En:Polymer Bulletin; Vol. 77; No. 10; pp. 5323 - 5344; Springer; Disponible en: https://doi.org/10.1007/s00289-019-03015-3. Disponible en: 10.1007/s00289-019-03015-3.
Guerra, María del Rosario (2016) Por medio del cual se prohíbe la práctica de la maternidad subrogada al ser una categoría de trata de personas y una explotación de la mujer con fines reproductivos. En: Gaceta 086/16. Proyecto de Ley 202 de 2016; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. Kulanthaivel, Senthilguru; Rathnam, V S Sharan; Agarwal, Tarun; Pradhan, Susanta; Pal, Kunal; Giri, Supratim; Maiti, Tapas; Banerjee, Indranil (2017) Gum tragacanth. En:J. Mater. Chem. B; Vol. 5; Disponible en: 10.1039/C7TB00390K. Cui, Fangchao; Sun, Jiadi; Ji, Jian; Yang, Xingxing; Wei, Kaimin; Xu, Hongwen; Gu, Qingyin; Zhang, Yinzhi; Sun, Xiulan (2021) Carbon dots-releasing hydrogels with antibacterial activity, high biocompatibility, and fluorescence performance as candidate materials for wound healing. En:Journal of Hazardous Materials; Vol. 406; pp. 124330 - 124330; Elsevier B.V.; Disponible en: 10.1016/j.jhazmat.2020.124330.
Guerra, María del Rosario (2016) Por medio del cual se prohíbe la práctica de alquiler de vientres en Colombia por ser una categoría de trata de personas y una explotación de la mujer con fines reproductivos. En: Gaceta 554/16. Proyecto de Ley 026 de 2016; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. Hacker, Michael C.; Krieghoff, Jan; Mikos, Antonios G. (2019) Synthetic polymers. En:Principles of regenerative medicine 3rd ed; pp. 559 - 590; Ehtesabi, Hamide; Roshani, Shabnam; Bagheri, Zeinab; Yaghoubi-Avini, Mohammad (2019) Carbon dots-Sodium alginate hydrogel: A novel tetracycline fluorescent sensor and adsorber. En:Journal of Environmental Chemical Engineering; Vol. 7; No. 5; pp. 103419 - 103419; Elsevier Ltd; Disponible en: 10.1016/j.jece.2019.103419.
Duque, Luis Fernando (2017) Por medio de la cual se reglamenta la reproducción humana asistida, la procreación con asistencia científica y se dictan otras disposiciones. En: Gaceta 713/17. Proyecto de Ley 88 de 2017; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. Maji, Kanchan; Dasgupta, Sudip; Pramanik, Krishna; Bissoyi, Akalabya (2018) Preparation and characterization of gelatin-chitosan-nanoβ-TCP based scaffold for orthopaedic application. En:Materials Science and Engineering: C; Vol. 86; Disponible en: 10.1016/j.msec.2018.02.001. Ray, Suprakas Sinha; Gusain, Rashi; Kumar, Neeraj (2020) Carbon nanomaterials: synthesis, functionalization, and properties. En:Carbon Nanomaterial-Based Adsorbents for Water Purification; pp. 137 - 179; Elsevier; Disponible en: 10.1016/b978-0-12-821959-1.00007-6.
Guerra, María del Rosario (2017) Por medio del cual se prohíbe la maternidad subrogada con fines lucrativos y se crean controles para prevenir esta práctica. En: Gaceta 1025/17. Proyecto de Ley 186 de 2017; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. Zhang, Haifeng; Mao, Xiyuan; Du, Zijing; Jiang, Wenbo; Han, Xiuguo; Zhao, Danyang; Han, Dong; Li, Qingfeng (2016) Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model. En:Science and Technology of Advanced Materials; Vol. 17; pp. 136 - 148; Disponible en: 10.1080/14686996.2016.1145532. Sarkar, Niladri; Sahoo, Gyanaranjan; Das, Rashmita; Prusty, Gyanaranjan; Swain, Sarat K. (2017) Carbon quantum dot tailored calcium alginate hydrogel for pH responsive controlled delivery of vancomycin. En:European Journal of Pharmaceutical Sciences; Vol. 109; pp. 359 - 371; Elsevier B.V.; Disponible en: 10.1016/j.ejps.2017.08.015.
Benedetti, Armando Alberto (2018) Por medio de la cual se reglamenta la reproducción humana asistida, la procreación con asistencia científica y se dictan otras disposiciones. En: Gaceta 543/18. Proyecto de Ley 019 de 2018; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. Zheng, Xin Ting; Ananthanarayanan, Arundithi; Luo, Kathy Qian; Chen, Peng (2015) Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. En:Small; Vol. 11; No. 14; pp. 1620 - 1636; Disponible en: 10.1002/smll.201402648. Argenta, Débora F; dos Santos, Talitha C; Campos, Angela M; Caon, Thiago (2019) Chapter 3. En:Nanocarriers for Drug Delivery; pp. 81 - 131; 978-0-12-814033-8; Disponible en: https://app.dimensions.ai/details/publication/pub.1107570734; http://www.sciencedirect.com/science/article/pii/B9780128140338000035; https://app.dimensions.ai/details/publication/pub.1107570734%0Ahttp://www.sciencedirect.com/science/article/pii/B97801281403.
Guerra, María del Rosario (2018) Por medio del cual se prohíbe la maternidad subrogada con fines de lucro en Colombia y se reglamenta en otros casos. En: Gaceta 576/18. Proyecto de Ley 70 de 2018; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. Gogoi, Satyabrat; Kumar, Manishekhar; Mandal, Biman B; Karak, Niranjan (2016) A renewable resource based carbon dot decorated hydroxyapatite nanohybrid and its fabrication with waterborne hyperbranched polyurethane for bone tissue engineering. En:RSC Adv.; Vol. 6; No. 31; pp. 26066 - 26076; The Royal Society of Chemistry; Disponible en: http://dx.doi.org/10.1039/C6RA02341J. Disponible en: 10.1039/C6RA02341J. Ganguly, Sayan; Das, Poushali; Das, Narayan Ch (2019) Characterization tools and techniques of hydrogels. En:Hydrogels Based on Natural Polymers; pp. 481 - 517; Elsevier; 9780128164211; Disponible en: 10.1016/B978-0-12-816421-1.00016-1.
Murcia, Humberto; G.J. T. CLII 2393 (1976) Sentencia de Casación. : Corte Suprema de Justicia; Disponible en: https://cortesuprema.gov.co/corte/wp-content/uploads/subpage/GJ/Gaceta%20Judicial/GJ%20CLII%20Parte%201%20n.%202393%20(1976).pdf. Galli, C; Passeri, G; MacAluso, G M (2010) Critical reviews in oral biology & medicine: Osteocytes and WNT: The mechanical control of bone formation. En:Journal of Dental Research; Vol. 89; No. 4; pp. 331 - 343; Disponible en: 10.1177/0022034510363963. Castro, Leonardo Enrique Valencia; Martínez, Cinthia Jhovanna Pérez; Del Castillo Castro, Teresa; Ortega, María Mónica Castillo; Encinas, José Carmelo (2015) Chemical polymerization of pyrrole in the presence of L-serine or L-glutamic acid: Electrically controlled amoxicillin release from composite hydrogel. En:Journal of Applied Polymer Science; Vol. 132; No. 15; pp. n/a - n/a; John Wiley and Sons Inc; Disponible en: http://doi.wiley.com/10.1002/app.41804. Disponible en: 10.1002/app.41804.
Villaverde, Maria Silvia (2015) Providencia. : Departamento judicial de Lomas de Zamora; Atala, Anthony; Lanza, Robert; Mikos G, Antonios; Nerem, Robert (2019) Preclinical bone repair models in regenerative medicine. En:Principles of regenerative medicine 3rd ed; pp. 761 - 767; Aswathy, S. H.; Narendrakumar, U.; Manjubala, I. (2020) Commercial hydrogels for biomedical applications. En:Heliyon; Vol. 6; No. 4; pp. e03719 - e03719; Elsevier Ltd; Disponible en: 10.1016/j.heliyon.2020.e03719.
Naranjo, Gloria Patricia (1997) La ley colombiana ante la reproducción asistida. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=5617409. Carson, Joshua S; Bostrom, Mathias P G (2007) Synthetic bone scaffolds and fracture repair. En:Injury; Vol. 38; No. SUPPL. 1; Disponible en: 10.1016/j.injury.2007.02.008. Stejskal, Jaroslav (2017) Conducting polymer hydrogels. En:Chemical Papers; Vol. 71; No. 2; pp. 269 - 291; De Gruyter Open Ltd; Disponible en: https://link-springer-com.ez.urosario.edu.co/article/10.1007/s11696-016-0072-9. Disponible en: 10.1007/s11696-016-0072-9.
Vidal, Jaime (2019) Acerca de la regulación de las técnicas de reproducción humana asistida. En: Actualidad Jurídica Iberomericana. Vol. No 10 Bis; pp. 478 - 513; 2386; Disponible en: https://idibe.org/wp-content/uploads/2019/08/478-513.pdf. Zhu, Y; Wagner, W (2019) Design principles in biomaterials and scaffols. En:Principles of regenerative medicine 3rd ed; pp. 505 - 522; Sharma, Kashma; Kumar, Vijay; Kaith, B. S.; Kalia, Susheel; Swart, Hendrik C. (2017) Conducting Polymer Hydrogels and Their Applications. En:Conducting Polymer Hybrids; pp. 193 - 221; Springer, Cham; Disponible en: https://link-springer-com.ez.urosario.edu.co/chapter/10.1007/978-3-319-46458-9_7. Disponible en: 10.1007/978-3-319-46458-9_7.
Casado, María (1997) Reproducción humana asistida: los problemas que suscita desde la bioética y el derecho. En: Universidad Autónoma de Barcelona. Vol. 53; Lee, S J; Lim, G J; Lee, J W; Atala, A; Yoo, J J (2006) In vitro evaluation of a poly(lactide-co-glycolide)/collagen composite scaffold for bone regeneration. En:Biomaterials; Vol. 27; pp. 3466 - 3472; Bansal, Mahima; Dravid, Anusha; Aqrawe, Zaid; Montgomery, Johanna; Wu, Zimei; Svirskis, Darren (2020) Conducting polymer hydrogels for electrically responsive drug delivery. En:Journal of Controlled Release; Vol. 328; pp. 192 - 209; Elsevier B.V.; Disponible en: 10.1016/j.jconrel.2020.08.051.
Dimitriou, R; Jones, E; McGonagle, D; Giannoudis, P (2011) Bone regeneration: current concepts and future directions. En:BMC Med; Vol. 9; No. 66; Del Agua, Isabel; Marina, Sara; Pitsalidis, Charalampos; Mantione, Daniele; Ferro, Magali; Iandolo, Donata; Sanchez-Sanchez, Ana; Malliaras, George G.; Owens, Róisín M.; Mecerreyes, David (2018) Conducting Polymer Scaffolds Based on Poly(3,4-ethylenedioxythiophene) and Xanthan Gum for Live-Cell Monitoring. En:ACS Omega; Vol. 3; No. 7; pp. 7424 - 7431; American Chemical Society; Disponible en: https://pubs.acs.org/sharingguidelines. Disponible en: 10.1021/acsomega.8b00458.
Liu, X; Liao, X; Luo, E; Chen, W; Bao, C; Xu, H H K (2014) Mesenchymal stem cells systematically injected into femoral marrow of dogs home to mandibular defects to enhance new bone formation. En:Tissue Eng Part A; Vol. 20; No. 3-4; pp. 883 - 892; Sahiner, Nurettin; Demirci, Sahin (2016) Conducting semi-interpenetrating polymeric composites via the preparation of poly(aniline), poly(thiophene), and poly(pyrrole) polymers within superporous poly(acrylic acid) cryogels. En:Reactive and Functional Polymers; Vol. 105; pp. 60 - 65; Elsevier B.V.; Disponible en: 10.1016/j.reactfunctpolym.2016.05.017.
Herforf, A; Stoffella, E; Stanford, C (2014) Bone grafts and bone substitute materials. En:Principles and practice of single implant and restorations; pp. 75 - 86; Zamora-Sequeira, Roy; Ardao, Inés; Starbird, Ricardo; García-González, Carlos A. (2018) Conductive nanostructured materials based on poly-(3,4-ethylenedioxythiophene) (PEDOT) and starch/κ-carrageenan for biomedical applications. En:Carbohydrate Polymers; Vol. 189; pp. 304 - 312; Elsevier Ltd; Disponible en: 10.1016/j.carbpol.2018.02.040.
Burr, David B; Akkus, Ozan (2013) Bone Morphology and Organization. En:Basic and Applied Bone Biology; pp. 3 - 25; Elsevier Inc.; 9780124160156; Disponible en: http://dx.doi.org/10.1016/B978-0-12-416015-6.00001-0. Disponible en: 10.1016/B978-0-12-416015-6.00001-0. Mawad, Damia; Lauto, Antonio; Wallace, Gordon G. (2016) Conductive Polymer Hydrogels. En:Polymeric Hydrogels as Smart Biomaterials; pp. 19 - 44; Springer, Cham; Disponible en: https://link-springer-com.ez.urosario.edu.co/chapter/10.1007/978-3-319-25322-0_2. Disponible en: 10.1007/978-3-319-25322-0_2.
Eivazzadeh-Keihan, Reza; Maleki, Ali; de la Guardia, Miguel; Bani, Milad Salimi; Chenab, Karim Khanmohammadi; Pashazadeh-Panahi, Paria; Baradaran, Behzad; Mokhtarzadeh, Ahad; Hamblin, Michael R (2019) Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. En:Journal of Advanced Research; Vol. 18; No. March; pp. 185 - 201; Cairo University; Disponible en: https://doi.org/10.1016/j.jare.2019.03.011. Disponible en: 10.1016/j.jare.2019.03.011. Tang, Xinhua; Li, Haoran; Du, Zhuwei; Wang, Weida; Ng, How Yong (2015) Conductive polypyrrole hydrogels and carbon nanotubes composite as an anode for microbial fuel cells. En:RSC Advances; Vol. 5; No. 63; pp. 50968 - 50974; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2015/ra/c5ra06064h; https://pubs.rsc.org/en/content/articlelanding/2015/ra/c5ra06064h. Disponible en: 10.1039/c5ra06064h.
Abramoff, Benjamin; Caldera, Franklin E (2020) Osteoarthritis: Pathology, Diagnosis, and Treatment Options. En:Medical Clinics of North America; Vol. 104; No. 2; pp. 293 - 311; Disponible en: https://www.sciencedirect.com/science/article/pii/S0025712519301130. Disponible en: https://doi.org/10.1016/j.mcna.2019.10.007. Effati, Elham; Pourabbas, Behzad; Zakerhamidi, Mohammad Sadegh (2019) Continuous microfluidic fabrication of polypyrrole nanoparticles. En:RSC Advances; Vol. 9; No. 30; pp. 16977 - 16988; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2019/ra/c9ra00946a; https://pubs.rsc.org/en/content/articlelanding/2019/ra/c9ra00946a. Disponible en: 10.1039/c9ra00946a.
Liu, Yanpeng; Yu, Peng; Peng, Xu; Huang, Qin; Ding, Mingming; Chen, Yantao; Jin, Ruitao; Xie, Jing; Zhao, Changsheng; Li, Jianshu (2019) Hexapeptide-conjugated calcitonin for targeted therapy of osteoporosis. En:Journal of Controlled Release; Vol. 304; pp. 39 - 50; Disponible en: https://www.sciencedirect.com/science/article/pii/S0168365919302457. Disponible en: https://doi.org/10.1016/j.jconrel.2019.04.042. Weiser, Jennifer R.; Saltzman, W. Mark (2014) Controlled release for local delivery of drugs: Barriers and models. En:Journal of Controlled Release; Vol. 190; pp. 664 - 673; Elsevier B.V.; Disponible en: 10.1016/j.jconrel.2014.04.048.
Mora-Raimundo, Patricia; Lozano, Daniel; Manzano, Miguel; Vallet-Regí, María (2019) Nanoparticles to Knockdown Osteoporosis-Related Gene and Promote Osteogenic Marker Expression for Osteoporosis Treatment. En:ACS Nano; Disponible en: 10.1021/acsnano.9b00241. Shin, Bom Yi; Kim, Jaeyun (2015) Controlled Remodeling of Hydrogel Networks and Subsequent Crosslinking: A Strategy for Preparation of Alginate Hydrogels with Ultrahigh Density and Enhanced Mechanical Properties. En:Macromolecular Chemistry and Physics; Vol. 216; No. 8; pp. 914 - 921; Wiley-VCH Verlag; Disponible en: http://doi.wiley.com/10.1002/macp.201400503. Disponible en: 10.1002/macp.201400503.
Encyclopaedia Britannica (2020) Osteoarthritis. En:Encyclopedia Britannica; Lee, Kuen Yong; Rowley, Jon A.; Eiselt, Petra; Moy, Erick M.; Bouhadir, Kamal H.; Mooney, David J. (2000) Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. En:Macromolecules; Vol. 33; No. 11; pp. 4291 - 4294; ACS; Disponible en: https://hanyang.elsevierpure.com/en/publications/controlling-mechanical-and-swelling-properties-of-alginate-hydrog. Disponible en: 10.1021/ma9921347.
Franz, Sandra; Rammelt, Stefan; Scharnweber, Dieter; Simon, Jan C (2011) Immune responses to implants – A review of the implications for the design of immunomodulatory biomaterials. En:Biomaterials; Vol. 32; No. 28; pp. 6692 - 6709; Disponible en: https://www.sciencedirect.com/science/article/pii/S0142961211006491. Disponible en: https://doi.org/10.1016/j.biomaterials.2011.05.078. Friedli, Andrienne C.; Schlager, Inge R.; Wright, Stephen W. (2005) Demonstrating encapsulation and release: A new take on alginate complexation and the nylon rope trick. En:Journal of Chemical Education; Vol. 82; No. 7; pp. 1017 - 1020; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/ed082p1017. Disponible en: 10.1021/ed082p1017.
Shin, Jae-Won; Mooney, David J (2016) Improving Stem Cell Therapeutics with Mechanobiology. En:Cell Stem Cell; Vol. 18; No. 1; pp. 16 - 19; Disponible en: https://www.sciencedirect.com/science/article/pii/S1934590915005524. Disponible en: https://doi.org/10.1016/j.stem.2015.12.007. Li, Jianyu; Mooney, David J. (2016) Designing hydrogels for controlled drug delivery. En:Nature Reviews Materials; Vol. 1; No. 12; Nature Publishing Group; Disponible en: /pmc/articles/PMC5898614/; /pmc/articles/PMC5898614/?report=abstract; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898614/. Disponible en: 10.1038/natrevmats.2016.71.
Capes, J S; Ando, H Y; Cameron, R E (2005) Fabrication of polymeric scaffolds. En:Journal of material schience:materials in medicine; Vol. 16; pp. 1069 - 1075; Heo, Dong Nyoung; Lee, Se Jun; Timsina, Raju; Qiu, Xiangyun; Castro, Nathan J.; Zhang, Lijie Grace (2019) Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. En:Materials Science and Engineering C; Vol. 99; pp. 582 - 590; Elsevier Ltd; Disponible en: 10.1016/j.msec.2019.02.008.
He, Jianhua; Chen, Guobao; Liu, Mengying; Xu, Zhiling; Chen, Hua; Yang, Li; Lv, Yonggang (2020) Scaffold strategies for modulating immune microenvironment during bone regeneration. En:Materials Science and Engineering C; Vol. 108; pp. 110 - 411; Elsevier; Disponible en: https://doi.org/10.1016/j.msec.2019.110411. Disponible en: 10.1016/j.msec.2019.110411. Ding, Han; Du, Feiyue; Liu, Pengchang; Chen, Zhijun; Shen, Jiacong (2015) DNA-carbon dots function as fluorescent vehicles for drug delivery. En:ACS Applied Materials and Interfaces; Vol. 7; No. 12; pp. 6889 - 6897; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/acsami.5b00628. Disponible en: 10.1021/acsami.5b00628.
Shuai, Cijun; Nie, Yi; Gao, Chengde; Feng, Pei; Zhuang, Jingyu; Zhou, Ying; Peng, Shuping (2013) The microstructure evolution of nanohydroxapatite powder sintered for bone tissue engineering. En:Journal of Experimental Nanoscience; Vol. 8; No. 5; pp. 762 - 773; Disponible en: 10.1080/17458080.2011.606507. Javanbakht, Siamak; Namazi, Hassan (2018) Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. En:Materials Science and Engineering C; Vol. 87; pp. 50 - 59; Elsevier Ltd; Disponible en: 10.1016/j.msec.2018.02.010.
Menéndez-Bueyes, Luis R; del Carmen Soler Fernández, María (2017) Paget's Disease of Bone: Approach to Its Historical Origins. En:Reumatología Clínica (English Edition); Vol. 13; No. 2; pp. 66 - 72; Disponible en: https://www.sciencedirect.com/science/article/pii/S2173574317300011. Disponible en: https://doi.org/10.1016/j.reumae.2016.02.009. Wen, Hong; Jung, Huijeong; Li, Xuhong (2015) Drug Delivery Approaches in Addressing Clinical Pharmacology-Related Issues: Opportunities and Challenges. En:AAPS Journal; Vol. 17; No. 6; pp. 1327 - 1340; Springer New York LLC; Disponible en: https://link.springer.com/article/10.1208/s12248-015-9814-9. Disponible en: 10.1208/s12248-015-9814-9.
Campana, V; Milano, G; Pagano, E; Barba, M; Cicione, C; Salonna, G; Lattanzi, W; Logroscino, G (2014) Bone substitutes in orthopaedic surgery: from basic science to clinical practice. En:J Mater Sci Mater Med; Vol. 25; pp. 2445 - 2461; Shakesheff, Kevin M. (2011) Drug delivery systems. En:Handbook of Biodegradable Polymers: Isolation, Synthesis, Characterization and Applications; pp. 363 - 378; 9783527324415; Disponible en: https://www.nibib.nih.gov/science-education/science-topics/drug-delivery-systems-getting-drugs-their-targets-controlled-manner. Disponible en: 10.1002/9783527635818.ch15.
Lowe, Baboucarr; Hardy, John G; Walsh, Laurence J (2019) Optimizing Nanohydroxyapatite Nanocomposites for Bone Tissue Engineering. En:ACS Omega; Vol. 5; No. 1; pp. 1 - 9; Kohrs, Nicholas J.; Liyanage, Thilanga; Venkatesan, Nandakumar; Najarzadeh, Amir; Puleo, David A. (2019) Drug delivery systems and controlled release. En:Encyclopedia of Biomedical Engineering; Vol. 1-3; pp. 316 - 329; Elsevier; 9780128051443; Disponible en: 10.1016/B978-0-12-801238-3.11037-2.
Roberts, Timothy; Rosenbaum, Andrew (2012) Bone grafts, bone substitutes and orthobiologics: The bridge between basic science and clinical advancements in fracture healing. En:Organogenesis; Vol. 8; pp. 114 - 124; Puiggalí-Jou, Anna; del Valle, Luis J.; Alemán, Carlos (2019) Drug delivery systems based on intrinsically conducting polymers. En:Journal of Controlled Release; Vol. 309; pp. 244 - 264; Elsevier B.V.; Disponible en: 10.1016/j.jconrel.2019.07.035.
Ghassemi, Toktam; al, Et (2018) Current Concepts in Scaffolding for Bone Tissue Engineering. En:The archives of bone and joint surgery; Vol. 6; No. 2; pp. 90 - 99; Fu, Yao; Kao, Weiyuan John (2010) Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. En:Expert Opinion on Drug Delivery; Vol. 7; No. 4; pp. 429 - 444; Expert Opin Drug Deliv; Disponible en: https://pubmed.ncbi.nlm.nih.gov/20331353/. Disponible en: 10.1517/17425241003602259.
Gestarsalud (2020) La osteoporosis en Colombia amerita un programa prioritario en salud pública | Gestarsalud. En:Gestarsalud; Disponible en: https://gestarsalud.com/2020/10/20/la-osteoporosis-en-; colombia-amerita-un-programa-prioritario-en-salud-; publica/. Distler, Thomas; Polley, Christian; Shi, Fukun; Schneidereit, Dominik; Ashton, Mark. D.; Friedrich, Oliver; Kolb, Jürgen F.; Hardy, John G.; Detsch, Rainer; Seitz, Hermann; Boccaccini, Aldo R. (2021) Electrically Conductive and 3D-Printable Oxidized Alginate-Gelatin Polypyrrole:PSS Hydrogels for Tissue Engineering. En:Advanced Healthcare Materials; pp. 2001876 - 2001876; John Wiley and Sons Inc; Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/adhm.202001876. Disponible en: 10.1002/adhm.202001876.
Nair, Arun K; Gautieri, Alfonso; Chang, Shu-Wei; Buehler, Markus J (2013) Molecular mechanics of mineralized collagen fibrils in bone. En:Nature Communications volume; Vol. 4; No. 1724; Disponible en: https://doi.org/10.1038/ncomms2720. Paradee, Nophawan; Sirivat, Anuvat (2014) Electrically controlled release of benzoic acid from poly(3,4- ethylenedioxythiophene)/alginate matrix: Effect of conductive poly(3,4-ethylenedioxythiophene) morphology. En:Journal of Physical Chemistry B; Vol. 118; No. 31; pp. 9263 - 9271; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/jp502674f. Disponible en: 10.1021/jp502674f.
Sheikh, Faheem A; Ju, Hyung Woo; Moon, Bo Mi; Lee, Ok Joo; Kim, Jung-Ho; Park, Hyun Jung; Kim, Dong Wook; Kim, Dong-Kyu; Jang, Ji Eun; Khang, Gilson; Park, Chan Hum (2015) Hybrid scaffolds based on PLGA and silk for bone tissue engineering. En:J Tissue Eng Regen Med; Vol. 10; No. 3; pp. 209 - 221; 1932-6254; Disponible en: http://dx.doi.org/10.1016/j.trsl.2010.06.007. Disponible en: 10.1002/term. Zhang, Danying; Di, Feng; Zhu, Yinyan; Xiao, Yinghong; Che, Jianfei (2015) Electroactive hybrid hydrogel: Toward a smart coating for neural electrodes. En:Journal of Bioactive and Compatible Polymers; Vol. 30; No. 6; pp. 600 - 616; SAGE Publications Ltd; Disponible en: http://journals.sagepub.com/doi/10.1177/0883911515591647. Disponible en: 10.1177/0883911515591647.
Shao, Dan; Lu, Mengmeng; Xu, Duo; Zheng, Xiao; Pan, Yue; Song, Yubin; Xu, Jinying; Li, Mingqiang; Zhang, Ming; Li, Jing; Chi, Guangfan; Chen, Li; Yang, Bai (2017) Carbon dots for tracking and promoting the osteogenic differentiation of mesenchymal stem cells. En:Biomaterials Science; Vol. 5; No. 9; pp. 1820 - 1827; Royal Society of Chemistry; Disponible en: 10.1039/c7bm00358g. Kleber, Carolin; Lienkamp, Karen; Rühe, Jürgen; Asplund, Maria (2019) Electrochemically Controlled Drug Release from a Conducting Polymer Hydrogel (PDMAAp/PEDOT) for Local Therapy and Bioelectronics. En:Advanced Healthcare Materials; Vol. 8; No. 10; pp. 1801488 - 1801488; Wiley-VCH Verlag; Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201801488. Disponible en: 10.1002/adhm.201801488.
Turnbull, Gareth; Clarke, Jon; Picard, Frédéric; Riches, Philip; Jia, Luanluan; Han, Fengxuan; Li, Bin; Shu, Wenmiao (2018) 3D bioactive composite scaffolds for bone tissue engineering. En:Bioactive Materials; Vol. 3; No. 3; pp. 278 - 314; Disponible en: 10.1016/j.bioactmat.2017.10.001. Spencer, Andrew R.; Primbetova, Asel; Koppes, Abigail N.; Koppes, Ryan A.; Fenniri, Hicham; Annabi, Nasim (2018) Electroconductive Gelatin Methacryloyl-PEDOT:PSS Composite Hydrogels: Design, Synthesis, and Properties. En:ACS Biomaterials Science and Engineering; Vol. 4; No. 5; pp. 1558 - 1567; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/acsbiomaterials.8b00135. Disponible en: 10.1021/acsbiomaterials.8b00135.
Maia, F; Correlo, V; Oliveira, J; Reis, R (2019) Natural origin materials for bone tissue engineering: Properties, processing, and performance. En:Principles of Regenerative Medicine; pp. 535 - 558; 9780128098806; Disponible en: 10.1016/c2015-0-02433-9. Guiseppi-Elie, Anthony (2010) Electroconductive hydrogels: Synthesis, characterization and biomedical applications. En:Biomaterials; Vol. 31; No. 10; pp. 2701 - 2716; Elsevier; Disponible en: 10.1016/j.biomaterials.2009.12.052.
Wenisch, S; Stahl, J P; Horas, U; Heiss, C; Kilian, O; Trinkaus, K; Hild, A; Schnettler, R (2003) In vivo mechanisms of hydroxyapatite ceramic degradation by osteoclasts: Fine structural microscopy. En:Journal of Biomedical Materials Research; Vol. 67; No. 3; pp. 713 - 718; Disponible en: 10.1002/jbm.a.10091. Shi, Xingwei; Hu, Yanli; Tu, Kai; Zhang, Lina; Wang, Hao; Xu, Jian; Zhang, Hongming; Li, Ji; Wang, Xianhong; Xu, Min (2013) Electromechanical polyaniline-cellulose hydrogels with high compressive strength. En:Soft Matter; Vol. 9; No. 42; pp. 10129 - 10134; The Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2013/sm/c3sm51490k; https://pubs.rsc.org/en/content/articlelanding/2013/sm/c3sm51490k. Disponible en: 10.1039/c3sm51490k.
Meng Bao, Chao Le; Y.L., Erin; S.K., Mark; Liu, Yuchun; Choolani, Mahesh; K.Y., Jerry (2013) Advances in Bone Tissue Engineering. En:Regenerative Medicine and Tissue Engineering; pp. 1 - 27; Disponible en: 10.5772/55916. Seyfoddin, Ali; Dezfooli, Seyedehsara Masoomi; Greene, Carol Ann (2019) Engineering drug delivery systems. En:Engineering Drug Delivery Systems; pp. 1 - 238; Elsevier; 9780081025482; Disponible en: 10.1016/C2017-0-01844-X.
Smrke, Dragica; Roman, Primo; Veselko, Matja; Gubi, Borut (2013) Treatment of Bone Defects — Allogenic Platelet Gel and Autologous Bone Technique. En:Regenerative Medicine and Tissue Engineering; Disponible en: 10.5772/55987. Liu, Yamin; Wang, Ping; Shiral Fernando, K. A.; Lecroy, Gregory E.; Maimaiti, Halidan; Harruff-Miller, Barbara A.; Lewis, William K.; Bunker, Christopher E.; Hou, Zhi Ling; Sun, Ya Ping (2016) Enhanced fluorescence properties of carbon dots in polymer films. En:Journal of Materials Chemistry C; Vol. 4; No. 29; pp. 6967 - 6974; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2016/tc/c6tc01932c; https://pubs.rsc.org/en/content/articlelanding/2016/tc/c6tc01932c. Disponible en: 10.1039/c6tc01932c.
Rambina, K (2019) Biomineralization and bone regeneration. En:Principles of regenerative medicine 3rd ed; pp. 853 - 866; Chandrawati, Rona (2016) Enzyme-responsive polymer hydrogels for therapeutic delivery. En:Experimental Biology and Medicine; Vol. 241; No. 9; pp. 972 - 979; SAGE Publications Inc.; Disponible en: https://pubmed.ncbi.nlm.nih.gov/27188515/. Disponible en: 10.1177/1535370216647186.
Pereira, H; Cengiz, I; Silva, F; Reis, R; Oliveira, J (2020) Scaffolds and coatings for bone regeneration. En:J Mater Sci Mater Med; Vol. 31; No. 27; Xiao, J; Liu, P; Wang, C. X.; Yang, G. W. (2017) External field-assisted laser ablation in liquid: An efficient strategy for nanocrystal synthesis and nanostructure assembly. En:Progress in Materials Science; Vol. 87; pp. 140 - 220; Disponible en: https://www.sciencedirect.com/science/article/pii/S0079642517300269. Disponible en: 10.1016/j.pmatsci.2017.02.004.
Bilezikian, J P; Raisz, L G; Martin, T J (2008) Principles of bone biology. En:Academic press; pp. 3 - 28; Vinchhi, Preksha; Rawal, Shruti U.; Patel, Mayur M. (2021) External stimuli-responsive drug delivery systems. En:Drug Delivery Devices and Therapeutic Systems; pp. 267 - 288; Elsevier; Disponible en: 10.1016/b978-0-12-819838-4.00023-7.
Dilogo, Ismail Hadisoebroto; Rahmatika, Dina; Pawitan, Jeanne Adiwinata; Liem, Isabella Kurnia; Kurniawati, Tri; Kispa, Tera; Mujadid, Fajar (2020) Allogeneic umbilical cord-derived mesenchymal stem cells for treating critical-sized bone defects: a translational study. En:European Journal of Orthopaedic Surgery and Traumatology; No. 0123456789; Springer Paris; 0059002002765; Disponible en: https://doi.org/10.1007/s00590-020-02765-5. Disponible en: 10.1007/s00590-020-02765-5. Fuller, Eric G.; Sun, Hao; Dhavalikar, Rohan D.; Unni, Mythreyi; Scheutz, Georg M.; Sumerlin, Brent S.; Rinaldi, Carlos (2019) Externally Triggered Heat and Drug Release from Magnetically Controlled Nanocarriers. En:ACS Applied Polymer Materials; Vol. 1; No. 2; pp. 211 - 220; American Chemical Society (ACS); Disponible en: https://pubs.acs.org/doi/abs/10.1021/acsapm.8b00100. Disponible en: 10.1021/acsapm.8b00100.
Meskinfam, M; Bertoldi, S; Albanese, N; Cerri, A; Tanzi, M C; Imani, R; Baheiraei, N; Farokhi, M; Farè, S (2018) Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration. En:Materials Science and Engineering C; Vol. 82; No. July 2017; pp. 130 - 140; Elsevier; Disponible en: http://dx.doi.org/10.1016/j.msec.2017.08.064. Disponible en: 10.1016/j.msec.2017.08.064. Dong, Yongqiang; Zhou, Nana; Lin, Xiaomei; Lin, Jianpeng; Chi, Yuwu; Chen, Guonan (2010) Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. En:Chemistry of Materials; Vol. 22; No. 21; pp. 5895 - 5899; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/cm1018844. Disponible en: 10.1021/cm1018844.
Bauer, T; Muschler, G (2000) Bone graft materials: an overview of the basic science. En:Clin. Orthop. Relat. Res; Vol. 371; pp. 10 - 27; Uyen, Nguyen Thi Thanh; Hamid, Zuratul Ain Abdul; Tram, Nguyen Xuan Thanh; Ahmad, Nurazreena (2020) Fabrication of alginate microspheres for drug delivery: A review. En:International Journal of Biological Macromolecules; Vol. 153; pp. 1035 - 1046; Elsevier B.V.; Disponible en: 10.1016/j.ijbiomac.2019.10.233.
O´Brien, Fergal (2011) Biomaterials and scaffolds for tissue engineering. En:materials today; Vol. 14; No. 3; pp. 88 - 95; Huang, Hong; Xu, Yue; Tang, Chun Jing; Chen, Jian Rong; Wang, Ai Jun; Feng, Jiu Ju (2014) Facile and green synthesis of photoluminescent carbon nanoparticles for cellular imaging. En:New Journal of Chemistry; Vol. 38; No. 2; pp. 784 - 789; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2014/nj/c3nj01185b; https://pubs.rsc.org/en/content/articlelanding/2014/nj/c3nj01185b. Disponible en: 10.1039/c3nj01185b.
Tetteh, G; Khan, A S; Delaine-Smith, R M; Reilly, G C; Rehman, I U (2014) Electrospun polyurethane/hydroxyapatite bioactive Scaffolds for bone tissue engineering: The role of solvent and hydroxyapatite particles. En:Journal of the Mechanical Behavior of Biomedical Materials; Vol. 39; pp. 95 - 110; Elsevier; Disponible en: http://dx.doi.org/10.1016/j.jmbbm.2014.06.019. Disponible en: 10.1016/j.jmbbm.2014.06.019. Guo, Baolin; Finne-Wistrand, Anna; Albertsson, Ann Christine (2011) Facile synthesis of degradable and electrically conductive polysaccharide hydrogels. En:Biomacromolecules; Vol. 12; No. 7; pp. 2601 - 2609; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/bm200389t. Disponible en: 10.1021/bm200389t.
Waite, P D; Morawetz, R B; Zeiger, H E; Pincock, J L (1989) Reconstruction of cranial defects with porous hydroxyapatite block. En:Neurosurgery; Vol. 25; pp. 214 - 217; Liu, Ting; Li, Na; Dong, Jiang Xue; Luo, Hong Qun; Li, Nian Bing (2016) Fluorescence detection of mercury ions and cysteine based on magnesium and nitrogen co-doped carbon quantum dots and IMPLICATION logic gate operation. En:Sensors and Actuators, B: Chemical; Vol. 231; pp. 147 - 153; Elsevier B.V.; Disponible en: 10.1016/j.snb.2016.02.141.
Xie, Y; Zhang, L; Xiong, Q; Gao, Y; Ge, W; Tang, P (2019) Bench-to-bedside strategies for osteoporotic fracture: From osteoimmunology to mechanosensation. En:Bone res; Vol. 7; No. 25; Sun, Xiangcheng; Lei, Yu (2017) Fluorescent carbon dots and their sensing applications. En:TrAC; Vol. 89; pp. 163 - 180; Elsevier B.V.; Disponible en: 10.1016/j.trac.2017.02.001.
Amini, AR; Laurencin, CT; Nukavarapu, SP (2012) Bone tissue engineering: recent advances and challenges. En:Crit Rev Biomed Eng.; Vol. 40; pp. 363 - 408; Wang, Ziyi; Liao, Han; Wu, Hao; Wang, Beibei; Zhao, Haidong; Tan, Mingqian (2015) Fluorescent carbon dots from beer for breast cancer cell imaging and drug delivery. En:Analytical Methods; Vol. 7; No. 20; pp. 8911 - 8917; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2015/ay/c5ay01978h; https://pubs.rsc.org/en/content/articlelanding/2015/ay/c5ay01978h. Disponible en: 10.1039/c5ay01978h.
Morelli, Sabrina; Salerno, Simona; Holopainen, Jani; Ritala, Mikko; De Bartolo, Loredana (2015) Osteogenic and osteoclastogenic differentiation of co-cultured cells in polylactic acid-nanohydroxyapatite fiber scaffolds. En:Journal of Biotechnology; Vol. 204; pp. 53 - 62; Chen, Gengwen; Song, Fengling; Xiong, Xiaoqing; Peng, Xiaojun (2013) Fluorescent nanosensors based on fluorescence resonance energy transfer (FRET). En:Industrial and Engineering Chemistry Research; Vol. 52; No. 33; pp. 11228 - 11245; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/ie303485n. Disponible en: 10.1021/ie303485n.
Zhao, Yue; Li, Zuhao; Jiang, Yingnan; Liu, Hou; Wang, Zhonghan; Yang, Bai; Lin, Quan (2020) Bioinspired mineral hydrogels as nanocomposite scaffolds for the promotion of osteogenic marker expression and the induction of bone regeneration in osteoporosis. En:El sevier Acta Biomaterialia; pp. 614 - 626; Mohammadi, Somayeh; Salimi, Abdollah (2018) Fluorometric determination of microRNA-155 in cancer cells based on carbon dots and MnO2 nanosheets as a donor-acceptor pair. En:Microchimica Acta; Vol. 185; No. 8; Springer-Verlag Wien; Disponible en: 10.1007/s00604-018-2868-5.
Pavia, Donald L.; Lampman, Gary M.; Kriz, George S.; Vyvyan, James R. (2010) Introduction to spectroscopy. pp. 655 - 655; 9780495114789; Qu, Dan; Zheng, Min; Zhang, Ligong; Zhao, Haifeng; Xie, Zhigang; Jing, Xiabin; Haddad, Raid E.; Fan, Hongyou; Sun, Zaicheng (2014) Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. En:Scientific Reports; Vol. 4; No. 1; pp. 1 - 11; Nature Publishing Group; Disponible en: www.nature.com/scientificreports. Disponible en: 10.1038/srep05294.
Chen, Qiang; Chen, Hong; Zhu, Lin; Zheng, Jie (2015) Fundamentals of double network hydrogels. En:Journal of Materials Chemistry B; Vol. 3; No. 18; pp. 3654 - 3676; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2015/tb/c5tb00123d; https://pubs.rsc.org/en/content/articlelanding/2015/tb/c5tb00123d. Disponible en: 10.1039/c5tb00123d.
Tong, Meng Qi; Luo, Lan Zi; Xue, Peng Peng; Han, Yong Hui; Wang, Li Fen; Zhuge, De Li; Yao, Qing; Chen, Bin; Zhao, Ying Zheng; Xu, He Lin (2021) Glucose-responsive hydrogel enhances the preventive effect of insulin and liraglutide on diabetic nephropathy of rats. En:Acta Biomaterialia; Vol. 122; pp. 111 - 132; Acta Materialia Inc; Disponible en: 10.1016/j.actbio.2021.01.007.
Shen, Di; Yu, Haojie; Wang, Li; Chen, Xiang; Feng, Jingyi; Li, Chengjiang; Xiong, Wei; Zhang, Qian (2021) Glucose-responsive hydrogel-based microneedles containing phenylborate ester bonds and N-isopropylacrylamide moieties and their transdermal drug delivery properties. En:European Polymer Journal; Vol. 148; pp. 110348 - 110348; Elsevier Ltd; Disponible en: 10.1016/j.eurpolymj.2021.110348.
Martín, Cristina; Martín-Pacheco, Ana; Naranjo, Alicia; Criado, Alejandro; Merino, Sonia; Díez-Barra, Enrique; Herrero, M. Antonia; Vázquez, Ester (2019) Graphene hybrid materials? the role of graphene materials in the final structure of hydrogels. En:Nanoscale; Vol. 11; No. 11; pp. 4822 - 4830; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2019/nr/c8nr09728c; https://pubs.rsc.org/en/content/articlelanding/2019/nr/c8nr09728c. Disponible en: 10.1039/c8nr09728c.
Servant, Ania; Leon, Veronica; Jasim, Dhifaf; Methven, Laura; Limousin, Patricia; Fernandez-Pacheco, Ester Vazquez; Prato, Maurizio; Kostarelos, Kostas (2014) Graphene-Based Electroresponsive Scaffolds as Polymeric Implants for On-Demand Drug Delivery. En:Advanced Healthcare Materials; Vol. 3; No. 8; pp. 1334 - 1343; Wiley-VCH Verlag; Disponible en: http://doi.wiley.com/10.1002/adhm.201400016. Disponible en: 10.1002/adhm.201400016.
Liu, Wen; Diao, Haipeng; Chang, Honghong; Wang, Haojiang; Li, Tingting; Wei, Wenlong (2017) Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. En:Sensors and Actuators, B: Chemical; Vol. 241; pp. 190 - 198; Elsevier B.V.; Disponible en: 10.1016/j.snb.2016.10.068.
Kashi, Mana; Baghbani, Fatemeh; Moztarzadeh, Fathollah; Mobasheri, Hamid; Kowsari, Elaheh (2018) Green synthesis of degradable conductive thermosensitive oligopyrrole/chitosan hydrogel intended for cartilage tissue engineering. En:International Journal of Biological Macromolecules; Vol. 107; pp. 1567 - 1575; Elsevier B.V.; Disponible en: 10.1016/j.ijbiomac.2017.10.015.
Zhu, Shoujun; Meng, Qingnan; Wang, Lei; Zhang, Junhu; Song, Yubin; Jin, Han; Zhang, Kai; Sun, Hongchen; Wang, Haiyu; Yang, Bai (2013) Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging. En:Angewandte Chemie; Vol. 125; No. 14; pp. 4045 - 4049; Wiley; Disponible en: http://doi.wiley.com/10.1002/ange.201300519. Disponible en: 10.1002/ange.201300519.
Gutiérrez-Pineda, Eduart; Cáceres-Vélez, Paolin Rocio; Rodríguez-Presa, María José; Moya, Sergio E.; Gervasi, Claudio A.; Amalvy, Javier I. (2018) Hybrid Conducting Composite Films Based on Polypyrrole and Poly(2-(diethylamino)ethyl methacrylate) Hydrogel Nanoparticles for Electrochemically Controlled Drug Delivery. En:Advanced Materials Interfaces; Vol. 5; No. 21; pp. 1800968 - 1800968; Wiley-VCH Verlag; Disponible en: http://doi.wiley.com/10.1002/admi.201800968. Disponible en: 10.1002/admi.201800968.
Song, Yang; Song, Jianan; Shang, Minjing; Xu, Wenhua; Liu, Saier; Wang, Baoyi; Lu, Qinghua; Su, Yuanhai (2018) Hydrodynamics and mass transfer performance during the chemical oxidative polymerization of aniline in microreactors. En:Chemical Engineering Journal; Vol. 353; pp. 769 - 780; Elsevier B.V.; Disponible en: 10.1016/j.cej.2018.07.166.
Yuk, Hyunwoo; Lu, Baoyang; Zhao, Xuanhe (2019) Hydrogel bioelectronics. En:Chemical Society Reviews; Vol. 48; No. 6; pp. 1642 - 1667; Royal Society of Chemistry; Disponible en: http://zhao.mit.edu/. Disponible en: 10.1039/c8cs00595h.
Conte, Raffaele; De Luise, Adriana; Valentino, Anna; Di Cristo, Francesca; Petillo, Orsolina; Riccitiello, Francesco; Di Salle, Anna; Calarco, Anna; Peluso, Gianfranco (2019) Hydrogel Nanocomposite Systems. En:Nanocarriers for Drug Delivery; pp. 319 - 349; Elsevier; Disponible en: 10.1016/b978-0-12-814033-8.00010-2.
El-Sherbiny, Ibrahim M.; Yacoub, Magdi H. (2013) Hydrogel scaffolds for tissue engineering: Progress and challenges. En:Global Cardiology Science and Practice; Vol. 2013; No. 3; pp. 38 - 38; Hamad bin Khalifa University Press (HBKU Press); Disponible en: https://www.qscience.com/content/journals/10.5339/gcsp.2013.38. Disponible en: 10.5339/gcsp.2013.38.
Holback, H.; Yeo, Y.; Park, K. (2011) Hydrogel swelling behavior and its biomedical applications. En:Biomedical Hydrogels; pp. 3 - 24; Elsevier; Disponible en: 10.1533/9780857091383.1.3.
Ahmed, Enas M. (2015) Hydrogel: Preparation, characterization, and applications: A review. En:Journal of Advanced Research; Vol. 6; No. 2; pp. 105 - 121; Elsevier B.V.; Disponible en: 10.1016/j.jare.2013.07.006.
Sudhakar, Kalvatala; Mishra, Vijay; Riyaz, Bushra; Jain, Ankush; Charyulu, R. Narayana; Jain, Sanjay (2019) Hydrogel-Based Drug Delivery for Lung Cancer. En:Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer; pp. 293 - 310; Elsevier; Disponible en: 10.1016/b978-0-12-815720-6.00012-5.
Peppas, Nicholas A.; Hoffman, Allan S. (2020) Hydrogels. En:Biomaterials Science; pp. 153 - 166; Elsevier; Disponible en: https://linkinghub.elsevier.com/retrieve/pii/B9780128161371000143. Disponible en: 10.1016/B978-0-12-816137-1.00014-3.
Wang, Wenda; Narain, Ravin; Zeng, Hongbo (2020) Hydrogels. En:Polymer Science and Nanotechnology; pp. 203 - 244; Elsevier; Disponible en: https://linkinghub.elsevier.com/retrieve/pii/B9780128168066000108. Disponible en: 10.1016/B978-0-12-816806-6.00010-8.
Mahinroosta, Mostafa; Jomeh Farsangi, Zohreh; Allahverdi, Ali; Shakoori, Zahra (2018) Hydrogels as intelligent materials: A brief review of synthesis, properties and applications. En:Materials Today Chemistry; Vol. 8; pp. 42 - 55; Elsevier Ltd; Disponible en: 10.1016/j.mtchem.2018.02.004.
Onaciu, Anca; Munteanu, Raluca Andrada; Moldovan, Alin Iulian; Moldovan, Cristian Silviu; Berindan-Neagoe, Ioana (2019) Hydrogels based drug delivery synthesis, characterization and administration. En:Pharmaceutics; Vol. 11; No. 9; pp. 432 - 432; MDPI AG; Disponible en: www.mdpi.com/journal/pharmaceutics. Disponible en: 10.3390/pharmaceutics11090432.
Gupta, Piyush; Vermani, Kavita; Garg, Sanjay (2002) Hydrogels: From controlled release to pH-responsive drug delivery. En:Drug Discovery Today; Vol. 7; No. 10; pp. 569 - 579; Elsevier Current Trends; Disponible en: 10.1016/S1359-6446(02)02255-9.
Prabhakar, Reetu; Kumar, D. (2016) Influence of Dopant Ions on the Properties of Conducting Polyacrylamide/Polyaniline Hydrogels. En:Polymer; Vol. 55; No. 1; pp. 46 - 53; Taylor and Francis Inc.; Disponible en: http://www.tandfonline.com/doi/full/10.1080/03602559.2015.1055501. Disponible en: 10.1080/03602559.2015.1055501.
Reckmeier, Claas J.; Wang, Yu; Zboril, Radek; Rogach, Andrey L. (2016) Influence of Doping and Temperature on Solvatochromic Shifts in Optical Spectra of Carbon Dots. En:Journal of Physical Chemistry C; Vol. 120; No. 19; pp. 10591 - 10604; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.5b12294. Disponible en: 10.1021/acs.jpcc.5b12294.
Shah, Vinod P.; Gurbarg, Michael; Noory, Assad; Dighe, Shrikant; Skelly, Jerome P. (1992) Influence of higher rates of agitation on release patterns of immediate‐release drug products. En:Journal of Pharmaceutical Sciences; Vol. 81; No. 6; pp. 500 - 503; Elsevier; Disponible en: 10.1002/jps.2600810604.
Li, Longchao; Ge, Juan; Ma, Peter X.; Guo, Baolin (2015) Injectable conducting interpenetrating polymer network hydrogels from gelatin-graft-polyaniline and oxidized dextran with enhanced mechanical properties. En:RSC Advances; Vol. 5; No. 112; pp. 92490 - 92498; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2015/ra/c5ra19467a; https://pubs.rsc.org/en/content/articlelanding/2015/ra/c5ra19467a. Disponible en: 10.1039/c5ra19467a.
Li, Longchao; Ge, Juan; Ma, Peter X.; Guo, Baolin (2015) Injectable conducting interpenetrating polymer network hydrogels from gelatin-graft-polyaniline and oxidized dextran with enhanced mechanical properties. En:RSC Advances; Vol. 5; No. 112; pp. 92490 - 92498; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2015/ra/c5ra19467a; https://pubs.rsc.org/en/content/articlelanding/2015/ra/c5ra19467a. Disponible en: 10.1039/c5ra19467a.
Talebian, Sepehr; Foroughi, Javad (2019) Intelligent drug delivery systems. En:Engineering Drug Delivery Systems; pp. 163 - 184; Elsevier; 9780081025482; Disponible en: 10.1016/B978-0-08-102548-2.00007-X.
Lajunen, Tatu; Viitala, Lauri; Kontturi, Leena Stiina; Laaksonen, Timo; Liang, Huamin; Vuorimaa-Laukkanen, Elina; Viitala, Tapani; Le Guével, Xavier; Yliperttula, Marjo; Murtomäki, Lasse; Urtti, Arto (2015) Light induced cytosolic drug delivery from liposomes with gold nanoparticles. En:Journal of Controlled Release; Vol. 203; pp. 85 - 98; Elsevier B.V.; Disponible en: 10.1016/j.jconrel.2015.02.028.
Pattnaik, Satyanarayan; Swain, Kalpana; Singh, Satya Prakash; Sirbaiya, Anup Kumar (2020) Lipid vesicles: Potentials as drug delivery systems. En:Nanoengineered Biomaterials for Advanced Drug Delivery; pp. 163 - 180; Elsevier; Disponible en: 10.1016/b978-0-08-102985-5.00008-5.
Rahman, Mahfoozur; Alam, Kainat; Beg, Sarwar; Anwar, Firoz; Kumar, Vikas (2019) Liposomes as topical drug delivery systems: State of the arts. En:Biomedical Applications of Nanoparticles; pp. 149 - 161; Elsevier; Disponible en: 10.1016/b978-0-12-816506-5.00004-8.
Los sistemas de liberación modificada de fármacos | Boletín del Conicet. Disponible en: https://bahiablanca.conicet.gov.ar/boletin/boletin29/indexb452.html?option=com_content&view=article&id=400&Itemid=553.
Hu, Meng; Gu, Xiaoyu; Hu, Yang; Wang, Tao; Huang, Jian; Wang, Chaoyang (2016) Low Chemically Cross-Linked PAM/C-Dot Hydrogel with Robustness and Superstretchability in Both As-Prepared and Swelling Equilibrium States. En:Macromolecules; Vol. 49; No. 8; pp. 3174 - 3183; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/acs.macromol.5b02352. Disponible en: 10.1021/acs.macromol.5b02352.
Fang, Qingqing; Dong, Yongqiang; Chen, Yingmei; Lu, Chun Hua; Chi, Yuwu; Yang, Huang Hao; Yu, Ting (2017) Luminescence origin of carbon based dots obtained from citric acid and amino group-containing molecules. En:Carbon; Vol. 118; pp. 319 - 326; Elsevier Ltd; Disponible en: 10.1016/j.carbon.2017.03.061.
Vedadghavami, Armin; Minooei, Farnaz; Mohammadi, Mohammad Hossein; Khetani, Sultan; Rezaei Kolahchi, Ahmad; Mashayekhan, Shohreh; Sanati-Nezhad, Amir (2017) Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. En:Acta Biomaterialia; Vol. 62; pp. 42 - 63; Acta Materialia Inc; Disponible en: 10.1016/j.actbio.2017.07.028.
Bruschi Marcos Luciano (2015) Mathematical models of drug release. En:Strategies to Modify the Drug Release from Pharmaceutical Systems; pp. 63 - 86; Elsevier; Disponible en: 10.1016/b978-0-08-100092-2.00005-9.
Jahanmir, Ghodsiehsadat; Chau, Ying (2019) Mathematical models of drug release from degradable hydrogels. En:Biomedical Applications of Nanoparticles; pp. 233 - 269; Elsevier; Disponible en: 10.1016/b978-0-12-816506-5.00002-4.
Kishi, Ryoichi; Kubota, Kazuma; Miura, Toshiaki; Yamaguchi, Tomohiko; Okuzaki, Hidenori; Osada, Yoshihito (2014) Mechanically tough double-network hydrogels with high electronic conductivity. En:Journal of Materials Chemistry C; Vol. 2; No. 4; pp. 736 - 743; The Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2014/tc/c3tc31999g; https://pubs.rsc.org/en/content/articlelanding/2014/tc/c3tc31999g. Disponible en: 10.1039/c3tc31999g.
Mazutis, Linas; Vasiliauskas, Remigijus; Weitz, David A. (2015) Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and Release. En:Macromolecular Bioscience; Vol. 15; No. 12; pp. 1641 - 1646; Wiley-VCH Verlag; Disponible en: http://doi.wiley.com/10.1002/mabi.201500226. Disponible en: 10.1002/mabi.201500226.
Hu, Tianli; Wu, Yaobin; Zhao, Xin; Wang, Ling; Bi, Leyu; Ma, Peter X.; Guo, Baolin (2019) Micropatterned, electroactive, and biodegradable poly(glycerol sebacate)-aniline trimer elastomer for cardiac tissue engineering. En:Chemical Engineering Journal; Vol. 366; pp. 208 - 222; Elsevier B.V.; Disponible en: 10.1016/j.cej.2019.02.072.
He, Guili; Shu, Mengjun; Yang, Zhi; Ma, Yujie; Huang, Da; Xu, Shusheng; Wang, Yanfang; Hu, Nantao; Zhang, Yafei; Xu, Lin (2017) Microwave formation and photoluminescence mechanisms of multi-states nitrogen doped carbon dots. En:Applied Surface Science; Vol. 422; pp. 257 - 265; Elsevier B.V.; Disponible en: 10.1016/j.apsusc.2017.05.036.
Qin, Xiaoyun; Lu, Wenbo; Asiri, Abdullah M.; Al-Youbi, Abdulrahman O.; Sun, Xuping (2013) Microwave-assisted rapid green synthesis of photoluminescent carbon nanodots from flour and their applications for sensitive and selective detection of mercury(II) ions. En:Sensors and Actuators, B: Chemical; Vol. 184; pp. 156 - 162; Elsevier; Disponible en: 10.1016/j.snb.2013.04.079.
Qi, Yunlong; Cao, Yue; Meng, Xiaotong; Yu, Kecheng; Si, Weimeng; Lei, Wu; Hao, Qingli; Li, Jiao; Wang, Fagang (2018) Microwave-Assisted Synthesis of a Polypyrrole/Graphene Composite Using a Pyrrole-Induced Graphene Oxide Hydrogel for the Selective Determination of Dihydroxybenzenes. En:ChemistrySelect; Vol. 3; No. 27; pp. 7713 - 7717; Wiley-Blackwell; Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/slct.201801306. Disponible en: 10.1002/slct.201801306.
Costa, P.; Sousa Lobo, J. M. (2001) Modeling and comparison of dissolution profiles. En:European Journal of Pharmaceutical Sciences; Vol. 13; No. 2; pp. 123 - 133; Elsevier; Disponible en: 10.1016/S0928-0987(01)00095-1.
Juric, Dajan; Rohner, Nathan A.; von Recum, Horst A. (2019) Molecular Imprinting of Cyclodextrin Supramolecular Hydrogels Improves Drug Loading and Delivery. En:Macromolecular Bioscience; Vol. 19; No. 1; pp. 1800246 - 1800246; Wiley-VCH Verlag; Disponible en: http://doi.wiley.com/10.1002/mabi.201800246. Disponible en: 10.1002/mabi.201800246.
Youssef, A. M.; Abdel-Aziz, M. E.; El-Sayed, E. S.A.; Abdel-Aziz, M. S.; Abd El-Hakim, A. A.; Kamel, S.; Turky, G. (2018) Morphological, electrical & antibacterial properties of trilayered Cs/PAA/PPy bionanocomposites hydrogel based on Fe3O4-NPs. En:Carbohydrate Polymers; Vol. 196; pp. 483 - 493; Elsevier Ltd; Disponible en: 10.1016/j.carbpol.2018.05.065.
Wei, Siqi; Yin, Xinghang; Li, Haoyi; Du, Xiaoyu; Zhang, Limei; Yang, Qiang; Yang, Rui (2020) Multi-Color Fluorescent Carbon Dots: Graphitized sp2 Conjugated Domains and Surface State Energy Level Co-Modulate Band Gap Rather Than Size Effects. En:Chemistry; Vol. 26; No. 36; pp. 8129 - 8136; Wiley-VCH Verlag; Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.202000763. Disponible en: 10.1002/chem.202000763.
Wei, Siqi; Yin, Xinghang; Li, Haoyi; Du, Xiaoyu; Zhang, Limei; Yang, Qiang; Yang, Rui (2020) Multi-Color Fluorescent Carbon Dots: Graphitized sp2 Conjugated Domains and Surface State Energy Level Co-Modulate Band Gap Rather Than Size Effects. En:Chemistry; Vol. 26; No. 36; pp. 8129 - 8136; Wiley-VCH Verlag; Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.202000763. Disponible en: 10.1002/chem.202000763.
Batool, Syeda Rubab; Nazeer, Muhammad Anwaar; Ekinci, Duygu; Sahin, Afsun; Kizilel, Seda (2020) Multifunctional alginate-based hydrogel with reversible crosslinking for controlled therapeutics delivery. En:International Journal of Biological Macromolecules; Vol. 150; pp. 315 - 325; Elsevier B.V.; Disponible en: 10.1016/j.ijbiomac.2020.02.042.
Shi, Yongliang; Pramanik, Avijit; Tchounwou, Christine; Pedraza, Francisco; Crouch, Rebecca A.; Chavva, Suhash Reddy; Vangara, Aruna; Sinha, Sudarson Sekhar; Jones, Stacy; Sardar, Dhiraj; Hawker, Craig; Ray, Paresh Chandra (2015) Multifunctional Biocompatible Graphene Oxide Quantum Dots Decorated Magnetic Nanoplatform for Efficient Capture and Two-Photon Imaging of Rare Tumor Cells. En:ACS Applied Materials and Interfaces; Vol. 7; No. 20; pp. 10935 - 10943; American Chemical Society; Disponible en: https://pubmed.ncbi.nlm.nih.gov/25939643/. Disponible en: 10.1021/acsami.5b02199.
Wang, Yan Qin; Xue, Ya Nan; Li, Shuang Ran; Zhang, Xue Hui; Fei, Heng Xiao; Wu, Xiao Gang; Sang, Sheng Bo; Li, Xiao Na; Wei, Min; Chen, Wei Yi (2017) Nanocomposite carbon dots/PAM fluorescent hydrogels and their mechanical properties. En:Journal of Polymer Research; Vol. 24; No. 12; Disponible en: https://doi.org/10.1007/s10965-017-1389-y. Disponible en: 10.1007/s10965-017-1389-y.
Sui, Bowen; Li, Yunfeng; Yang, Bai (2020) Nanocomposite hydrogels based on carbon dots and polymers. En:Chinese Chemical Letters; Vol. 31; No. 6; pp. 1443 - 1447; Elsevier B.V.; Disponible en: 10.1016/j.cclet.2019.08.023.
Shi, Ye; Peng, Lele; Yu, Guihua (2015) Nanostructured conducting polymer hydrogels for energy storage applications. En:Nanoscale; Vol. 7; No. 30; pp. 12796 - 12806; Royal Society of Chemistry; Disponible en: 10.1039/c5nr03403e.
Shi, Ye; Pan, Lijia; Liu, Borui; Wang, Yaqun; Cui, Yi; Bao, Zhenan; Yu, Guihua (2014) Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. En:Journal of Materials Chemistry A; Vol. 2; No. 17; pp. 6086 - 6091; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2014/ta/c4ta00484a; https://pubs.rsc.org/en/content/articlelanding/2014/ta/c4ta00484a. Disponible en: 10.1039/c4ta00484a.
Nair, Akhila; Haponiuk, Jozef T.; Thomas, Sabu; Gopi, Sreeraj (2020) Natural carbon-based quantum dots and their applications in drug delivery: A review. En:Biomedicine and Pharmacotherapy; Vol. 132; pp. 110834 - 110834; Elsevier Masson s.r.l.; Disponible en: 10.1016/j.biopha.2020.110834.
Varghese, Sandhya Alice; Rangappa, Sanjay Mavinkere; Siengchin, Suchart; Parameswaranpillai, Jyotishkumar (2019) Natural polymers and the hydrogels prepared from them. En:Hydrogels Based on Natural Polymers; pp. 17 - 47; Elsevier; 9780128164211; Disponible en: 10.1016/B978-0-12-816421-1.00002-1.
Rong, Qinfeng; Han, Hongliang; Feng, Feng; Ma, Zhanfang (2015) Network nanostructured polypyrrole hydrogel/Au composites as enhanced electrochemical biosensing platform. En:Scientific Reports; Vol. 5; No. 1; pp. 1 - 8; Nature Publishing Group; Disponible en: www.nature.com/scientificreports/. Disponible en: 10.1038/srep11440.
Zhang, Lin; Li, Yan; Li, Longchao; Guo, Baolin; Ma, Peter X. (2014) Non-cytotoxic conductive carboxymethyl-chitosan/aniline pentamer hydrogels. En:Reactive and Functional Polymers; Vol. 82; pp. 81 - 88; Elsevier; Disponible en: 10.1016/j.reactfunctpolym.2014.06.003.
Hu, Meng; Yang, Yu; Gu, Xiaoyu; Hu, Yang; Du, Zhenshan; Wang, Chaoyang (2015) Novel Nanocomposite Hydrogels Consisting of C-Dots with Excellent Mechanical Properties. En:Macromolecular Materials and Engineering; Vol. 300; No. 11; pp. 1043 - 1048; Wiley-VCH Verlag; Disponible en: http://doi.wiley.com/10.1002/mame.201500141. Disponible en: 10.1002/mame.201500141.
Idumah, Christopher Igwe (2021) Novel trends in conductive polymeric nanocomposites, and bionanocomposites. En:Synthetic Metals; Vol. 273; pp. 116674 - 116674; Elsevier Ltd; Disponible en: 10.1016/j.synthmet.2020.116674.
Kang, Yan Fei; Fang, Yang Wu; Li, Yu Hao; Li, Wen; Yin, Xue Bo (2015) Nucleus-staining with biomolecule-mimicking nitrogen-doped carbon dots prepared by a fast neutralization heat strategy. En:Chemical Communications; Vol. 51; No. 95; pp. 16956 - 16959; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2015/cc/c5cc06304c; https://pubs.rsc.org/en/content/articlelanding/2015/cc/c5cc06304c. Disponible en: 10.1039/c5cc06304c.
Roshni, V.; Misra, Sweta; Santra, Manas Kumar; Ottoor, Divya (2019) One pot green synthesis of C-dots from groundnuts and its application as Cr(VI) sensor and in vitro bioimaging agent. En:Journal of Photochemistry and Photobiology A: Chemistry; Vol. 373; pp. 28 - 36; Elsevier B.V.; Disponible en: 10.1016/j.jphotochem.2018.12.028.
Kashi, Mana; Baghbani, Fatemeh; Moztarzadeh, Fathollah; Mobasheri, Hamid; Kowsari, Elaheh; Şarkaya, Koray; Yildirim, Mert; Alli, Abdulkadir; Castro, Leonardo Enrique Valencia; Martínez, Cinthia Jhovanna Pérez; Del Castillo Castro, Teresa; Ortega, María Mónica Castillo; Encinas, José Carmelo (2015) One-step preparation of poly(NIPAM-pyrrole) electroconductive composite hydrogel and its dielectric properties. En:Journal of Applied Polymer Science; Vol. 138; No. 22; pp. n/a - n/a; John Wiley and Sons Inc; Disponible en: http://doi.wiley.com/10.1002/app.41804; https://onlinelibrary.wiley.com/doi/10.1002/app.50527. Disponible en: 10.1002/app.41804.
Şarkaya, Koray; Yildirim, Mert; Alli, Abdulkadir (2021) One-step preparation of poly(NIPAM-pyrrole) electroconductive composite hydrogel and its dielectric properties. En:Journal of Applied Polymer Science; Vol. 138; No. 22; pp. 50527 - 50527; John Wiley and Sons Inc; Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/app.50527. Disponible en: 10.1002/app.50527.
Li, Naixin; Lei, Fang; Xu, Dandan; Li, Yong; Liu, Jinliang; Shi, Ying (2021) One-step synthesis of N, P Co-doped orange carbon quantum dots with novel optical properties for bio-imaging. En:Optical Materials; Vol. 111; pp. 110618 - 110618; Elsevier B.V.; Disponible en: 10.1016/j.optmat.2020.110618.
Wang, Runxia; Wang, Xiufang; Sun, Yimin (2017) One-step synthesis of self-doped carbon dots with highly photoluminescence as multifunctional biosensors for detection of iron ions and pH. En:Sensors and Actuators, B: Chemical; Vol. 241; pp. 73 - 79; Elsevier B.V.; Disponible en: 10.1016/j.snb.2016.10.043.
Shi, Xiangning; Zheng, Yudong; Wang, Guojie; Lin, Qinghua; Fan, Jinsheng (2014) PH- and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. En:RSC Advances; Vol. 4; No. 87; pp. 47056 - 47065; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2014/ra/c4ra09640a; https://pubs.rsc.org/en/content/articlelanding/2014/ra/c4ra09640a. Disponible en: 10.1039/c4ra09640a.
Yang, Mei; Li, Baoyan; Zhong, Kailiang; Lu, Yun (2018) Photoluminescence properties of N-doped carbon dots prepared in different solvents and applications in pH sensing. En:Journal of Materials Science; Vol. 53; No. 4; pp. 2424 - 2433; Springer New York LLC; Disponible en: https://link-springer-com.ez.urosario.edu.co/article/10.1007/s10853-017-1700-7. Disponible en: 10.1007/s10853-017-1700-7.
Ruiz-Palomero, Celia; Soriano, M. Laura; Benítez-Martínez, Sandra; Valcárcel, Miguel (2017) Photoluminescent sensing hydrogel platform based on the combination of nanocellulose and S,N-codoped graphene quantum dots. En:Sensors and Actuators, B: Chemical; Vol. 245; pp. 946 - 953; Elsevier B.V.; Disponible en: 10.1016/j.snb.2017.02.006.
Lima, Diego S.; Tenório-Neto, Ernandes T.; Lima-Tenório, Michele K.; Guilherme, Marcos R.; Scariot, Débora B.; Nakamura, Celso V.; Muniz, Edvani C.; Rubira, Adley F. (2018) pH-responsive alginate-based hydrogels for protein delivery. En:Journal of Molecular Liquids; Vol. 262; pp. 29 - 36; Elsevier B.V.; Disponible en: 10.1016/j.molliq.2018.04.002.
Meher, Mukesh Kumar; Poluri, Krishna Mohan (2020) pH-Sensitive Nanomaterials for Smart Release of Drugs. En:Intelligent Nanomaterials for Drug Delivery Applications; pp. 17 - 41; Elsevier; Disponible en: 10.1016/b978-0-12-817830-0.00002-3.
Abd El-Ghaffar, M. A.; Hashem, M. S.; El-Awady, M. K.; Rabie, A. M. (2012) PH-sensitive sodium alginate hydrogels for riboflavin controlled release. En:Carbohydrate Polymers; Vol. 89; No. 2; pp. 667 - 675; Elsevier; Disponible en: 10.1016/j.carbpol.2012.03.074.
Hua, Shuibo; Ma, Haizhen; Li, Xun; Yang, Huixia; Wang, Aiqin (2010) pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium. En:International Journal of Biological Macromolecules; Vol. 46; No. 5; pp. 517 - 523; Elsevier; Disponible en: 10.1016/j.ijbiomac.2010.03.004.
Montaser, A. S.; Rehan, Mohamed; El-Naggar, Mehrez E. (2019) pH-Thermosensitive hydrogel based on polyvinyl alcohol/sodium alginate/N-isopropyl acrylamide composite for treating re-infected wounds. En:International Journal of Biological Macromolecules; Vol. 124; pp. 1016 - 1024; Elsevier B.V.; Disponible en: https://pubmed.ncbi.nlm.nih.gov/30500494/. Disponible en: 10.1016/j.ijbiomac.2018.11.252.
Bhowmick, Biplab; Mollick, Md. Masud R.; Mondal, Dibyendu; Maity, Dipanwita; Bain, Mrinal K.; Bera, Nirmal K.; Rana, Dipak; Chattopadhyay, Sanatan; Chakraborty, Mukut; Chattopadhyay, Dipankar (2014) Poloxamer and gelatin gel guided polyaniline nanofibers: Synthesis and characterization. En:Polymer International; Vol. 63; No. 8; pp. 1505 - 1512; John Wiley and Sons Ltd; Disponible en: http://doi.wiley.com/10.1002/pi.4657. Disponible en: 10.1002/pi.4657.
Paris, Juan L.; Cabanas, M. Victoria; Manzano, Miguel; Vallet-Regí, María (2015) Polymer-Grafted Mesoporous Silica Nanoparticles as Ultrasound-Responsive Drug Carriers. En:ACS Nano; Vol. 9; No. 11; pp. 11023 - 11033; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/acsnano.5b04378. Disponible en: 10.1021/acsnano.5b04378.
Kapse, Anuja; Anup, Neelima; Patel, Vruti; Saraogi, Gaurav K.; Mishra, Dinesh Kumar; Tekade, Rakesh K. (2019) Polymeric micelles: A ray of hope among new drug delivery systems. En:Drug Delivery Systems; pp. 235 - 289; Elsevier; 9780128145081; Disponible en: 10.1016/B978-0-12-814487-9.00006-5.
Panigrahy, Sibasankar; Kandasubramanian, Balasubramanian (2020) Polymeric thermoelectric PEDOT: PSS & composites: Synthesis, progress, and applications. En:European Polymer Journal; Vol. 132; pp. 109726 - 109726; Elsevier Ltd; Disponible en: 10.1016/j.eurpolymj.2020.109726.
Yang, Sumi; Jang, LindyK.; Kim, Semin; Yang, Jongcheol; Yang, Kisuk; Cho, Seung Woo; Lee, Jae Young (2016) Polypyrrole/Alginate Hybrid Hydrogels: Electrically Conductive and Soft Biomaterials for Human Mesenchymal Stem Cell Culture and Potential Neural Tissue Engineering Applications. En:Macromolecular Bioscience; Vol. 16; No. 11; pp. 1653 - 1661; Wiley-VCH Verlag; Disponible en: http://doi.wiley.com/10.1002/mabi.201600148. Disponible en: 10.1002/mabi.201600148.
Yang, Jongcheol; Choe, Goeun; Yang, Sumi; Jo, Hyerim; Lee, Jae Young (2016) Polypyrrole-incorporated conductive hyaluronic acid hydrogels. En:Biomaterials Research; Vol. 20; No. 1; pp. 1 - 7; BioMed Central Ltd.; Disponible en: https://link.springer.com/articles/10.1186/s40824-016-0078-y; https://link.springer.com/article/10.1186/s40824-016-0078-y. Disponible en: 10.1186/s40824-016-0078-y.
Miyata, Takashi; Jikihara, Atsushi; Nakamae, Katsuhiko; Uragami, Tadashi; Hoffman, Allan S.; Kinomura, Keisuke; Okumura, Masakazu (1996) Preparation of Glucose-Sensitive Hydrogels by Entrapment or Copolymerization of Concanavalin a in a Glucosyloxyethyl Methacrylate Hydrogel. En:Advanced Biomaterials in Biomedical Engineering and Drug Delivery Systems; pp. 237 - 238; Springer Japan; Disponible en: https://link.springer.com/chapter/10.1007/978-4-431-65883-2_55. Disponible en: 10.1007/978-4-431-65883-2_55.
Langer, Michal; Paloncýová, Markéta; Medveď, Miroslav; Pykal, Martin; Nachtigallová, Dana; Shi, Baimei; Aquino, Adélia J.A.; Lischka, Hans; Otyepka, Michal (2021) Progress and challenges in understanding of photoluminescence properties of carbon dots based on theoretical computations. En:Applied Materials Today; Vol. 22; pp. 100924 - 100924; Elsevier Ltd; Disponible en: 10.1016/j.apmt.2020.100924.
Zare, Ehsan Nazarzadeh; Makvandi, Pooyan; Ashtari, Behnaz; Rossi, Filippo; Motahari, Ahmad; Perale, Giuseppe (2020) Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review. En:Journal of Medicinal Chemistry; Vol. 63; No. 1; pp. 1 - 22; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.9b00803. Disponible en: 10.1021/acs.jmedchem.9b00803.
Guo, Bin; Ma, Zhong; Pan, Lijia; Shi, Yi (2019) Properties of conductive polymer hydrogels and their application in sensors. En:Journal of Polymer Science, Part B: Polymer Physics; Vol. 57; No. 23; pp. 1606 - 1621; John Wiley and Sons Inc.; Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/polb.24899. Disponible en: 10.1002/polb.24899.
Campana, Patricia T.; Marletta, Alexandre; Piovesan, Erick; Francisco, Kelliton J. M.; Neto, Francisco V. R.; Petrini, Leandro; Silva, Thiago R.; Machado, Danilo; Basoli, Francesco; Oliveira, Osvaldo N.; Licoccia, Silvia; Traversa, Enrico (2019) Pulsatile Discharge from Polymeric Scaffolds: A Novel Method for Modulated Drug Release. En:Bulletin of the Chemical Society of Japan; Vol. 92; No. 7; pp. 1237 - 1244; Chemical Society of Japan; Disponible en: http://www.journal.csj.jp/doi/10.1246/bcsj.20180403. Disponible en: 10.1246/bcsj.20180403.
Ilaiyaraja, Nallamuthu; Fathima, Syeda J.; Khanum, Farhath (2018) Quantum dots: A novel fluorescent probe for bioimaging and drug delivery applications. En:Inorganic Frameworks as Smart Nanomedicines; pp. 529 - 563; William Andrew; 9780128136621; Disponible en: 10.1016/B978-0-12-813661-4.00012-2.
Sun, Ya Ping; Zhou, Bing; Lin, Yi; Wang, Wei; Fernando, K. A.Shiral; Pathak, Pankaj; Meziani, Mohammed Jaouad; Harruff, Barbara A.; Wang, Xin; Wang, Haifang; Luo, Pengju G.; Yang, Hua; Kose, Muhammet Erkan; Chen, Bailin; Veca, L. Monica; Xie, Su Yuan (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. En:Journal of the American Chemical Society; Vol. 128; No. 24; pp. 7756 - 7757; American Chemical Society; Disponible en: https://pubs.acs.org/doi/pdf/10.1021/ja062677d. Disponible en: 10.1021/ja062677d.
Sun, Ya Ping; Zhou, Bing; Lin, Yi; Wang, Wei; Fernando, K. A.Shiral; Pathak, Pankaj; Meziani, Mohammed Jaouad; Harruff, Barbara A.; Wang, Xin; Wang, Haifang; Luo, Pengju G.; Yang, Hua; Kose, Muhammet Erkan; Chen, Bailin; Veca, L. Monica; Xie, Su Yuan (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. En:Journal of the American Chemical Society; Vol. 128; No. 24; pp. 7756 - 7757; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/ja062677d. Disponible en: 10.1021/ja062677d.
Liu, Pengfei; Zhai, Maolin; Li, Jiuqiang; Peng, Jing; Wu, Jilan (2002) Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels. En:Radiation Physics and Chemistry; Vol. 63; No. 3-6; pp. 525 - 528; Pergamon; Disponible en: 10.1016/S0969-806X(01)00649-1.
Dou, Peng; Liu, Zhi; Cao, Zhenzhen; Zheng, Jiao; Wang, Chao; Xu, Xinhua (2016) Rapid synthesis of hierarchical nanostructured Polyaniline hydrogel for high power density energy storage application and three-dimensional multilayers printing. En:Journal of Materials Science; Vol. 51; No. 9; pp. 4274 - 4282; Springer New York LLC; Disponible en: https://link-springer-com.ez.urosario.edu.co/article/10.1007/s10853-016-9727-8. Disponible en: 10.1007/s10853-016-9727-8.
Li, Lanlan; Shi, Ye; Pan, Lijia; Shi, Yi; Yu, Guihua (2015) Rational design and applications of conducting polymer hydrogels as electrochemical biosensors. En:Journal of Materials Chemistry B; Vol. 3; No. 25; pp. 2920 - 2930; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2015/tb/c5tb00090d; https://pubs.rsc.org/en/content/articlelanding/2015/tb/c5tb00090d. Disponible en: 10.1039/c5tb00090d.
Kim, Byung Chul; Hong, Jin Yong; Wallace, Gordon G.; Park, Ho Seok (2015) Recent Progress in Flexible Electrochemical Capacitors: Electrode Materials, Device Configuration, and Functions. En:Advanced Energy Materials; Vol. 5; No. 22; pp. 1500959 - 1500959; Wiley-VCH Verlag; Disponible en: http://doi.wiley.com/10.1002/aenm.201500959. Disponible en: 10.1002/aenm.201500959.
Pinto León, Rodrigo Alexis; Coronel Maldonado, Felipe Santiago; Bueno Palomeque, Freddy Leonardo; Galán Mena, Jorge; Pinto León, Rodrigo Alexis; Coronel Maldonado, Felipe Santiago; Bueno Palomeque, Freddy Leonardo; Galán Mena, Jorge (2020) Reconocimiento de tres patrones básicos de movimiento de la mano utilizando electromiografía de superficie y algoritmos inteligentes. En:Revista Cubana de Investigaciones Biomédicas; Vol. 39; No. 2; 1999, Editorial Ciencias Médicas; Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03002020000200003&lng=es&nrm=iso&tlng=.
Ge, Jiechao; Jia, Qingyan; Liu, Weimin; Guo, Liang; Liu, Qingyun; Lan, Minhuan; Zhang, Hongyan; Meng, Xiangmin; Wang, Pengfei (2015) Red-Emissive Carbon Dots for Fluorescent, Photoacoustic, and Thermal Theranostics in Living Mice. En:Advanced Materials; Vol. 27; No. 28; pp. 4169 - 4177; Wiley-VCH Verlag; Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201500323; https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201500323; https://onlinelibrary.wiley.com/doi/10.1002/adma.201500323. Disponible en: 10.1002/adma.201500323.
Gupta, Aashu; Maheshwari, Rahul; Kuche, Kaushik; Hutcheon, Gillian A.; Tekade, Rakesh K. (2019) Regulatory assessment for controlled drug delivery products. En:Drug Delivery Systems; pp. 721 - 741; Elsevier; 9780128145081; Disponible en: 10.1016/B978-0-12-814487-9.00015-6.
Baby, Deepa K. (2019) Rheology of hydrogels. En:Rheology of Polymer Blends and Nanocomposites: Theory, Modelling and Applications; pp. 193 - 204; Elsevier; 9780128169575; Disponible en: 10.1016/B978-0-12-816957-5.00009-4.
Guo, Haitao; He, Weina; Lu, Yun; Zhang, Xuetong (2015) Self-crosslinked polyaniline hydrogel electrodes for electrochemical energy storage. En:Carbon; Vol. 92; pp. 133 - 141; Elsevier Ltd; Disponible en: 10.1016/j.carbon.2015.03.062.
Bagheri, Babak; Zarrintaj, Payam; Surwase, Sachin Subhash; Baheiraei, Nafiseh; Saeb, Mohammad Reza; Mozafari, Masoud; Kim, Yeu Chun; Park, O. Ok (2019) Self-gelling electroactive hydrogels based on chitosan–aniline oligomers/agarose for neural tissue engineering with on-demand drug release. En:Colloids and Surfaces B: Biointerfaces; Vol. 184; pp. 110549 - 110549; Elsevier B.V.; Disponible en: 10.1016/j.colsurfb.2019.110549.
Yuan, Fanglong; Li, Shuhua; Fan, Zetan; Meng, Xiangyue; Fan, Louzhen; Yang, Shihe (2016) Shining carbon dots: Synthesis and biomedical and optoelectronic applications. En:Nano Today; Vol. 11; No. 5; pp. 565 - 586; Elsevier B.V.; Disponible en: 10.1016/j.nantod.2016.08.006.
Hamd-Ghadareh, Somayeh; Salimi, Abdollah; Parsa, Sara; Fathi, Fardin (2018) Simultaneous biosensing of CA125 and CA15-3 tumor markers and imaging of OVCAR-3 and MCF-7 cells lines via bi-color FRET phenomenon using dual blue-green luminescent carbon dots with single excitation wavelength. En:International Journal of Biological Macromolecules; Vol. 118; pp. 617 - 628; Elsevier B.V.; Disponible en: 10.1016/j.ijbiomac.2018.06.116.
Barrera Holguin, Sttifany Marcela; Rodriguez Burbano, Diana Consuelo; Ramírez Clavijo, Sandra R. (2020) SÍNTESIS DE PUNTOS DE CARBONO Y REVISIÓN DE SU CITOTOXICIDAD EN TUMORES DE MAMA. pp. 13 - 14; Bogotá Disponible en: https://repository.urosario.edu.co/bitstream/handle/10336/24438/BarreraHolguín-SttifanyMArcela-2020.pdf?sequence=1&isAllowed=y.
ROJAS, MIRIAM CAROLINA BERMUDEZ (2016) Sintesis Y Caracterizacion De Polipirrol Dopado Con Poliestireno Sulfonato De Sodio. En:Repositorio Universidad Distrital Francisco José de Caldas; Vol. 147; pp. 67 - 67; Disponible en: https://repository.udistrital.edu.co/bitstream/handle/11349/3475/BermudezRojasMiriamCarolina2016.pdf?sequence=1&isAllowed=y.
Peña Blanque, Virginia; Peña Blanque, Virginia (2016) Sistemas de liberación controlada de medicamentos. Aplicaciones biomédicas.
Ebara, Mitsuhiro; Kotsuchibashi, Yohei; Uto, Koichiro; Aoyagi, Takao; Kim, Young-Jin; Narain, Ravin; Idota, Naokazu; Hoffman, John M. (2014) Smart Nanoassemblies and Nanoparticles. pp. 67 - 113; Springer, Tokyo; Disponible en: https://link.springer.com/chapter/10.1007/978-4-431-54400-5_3. Disponible en: 10.1007/978-4-431-54400-5_3.
Chaturvedi, Kiran; Ganguly, Kuntal; More, Uttam A.; Reddy, Kakarla Raghava; Dugge, Tanavi; Naik, Balaram; Aminabhavi, Tejraj M.; Noolvi, Malleshappa N. (2019) Sodium alginate in drug delivery and biomedical areas. En:Natural Polysaccharides in Drug Delivery and Biomedical Applications; pp. 59 - 100; Elsevier; 9780128170557; Disponible en: 10.1016/B978-0-12-817055-7.00003-0.
Parker, Graham C.; Anastassova-Kristeva, Marlene; Eisenberg, Leonard M.; Rao, Mahendra S.; Williams, Marc A.; Sanberg, Paul R.; English, Denis (2005) Stem cells: Shibboleths of development, part II: Toward a functional definition. En:Stem Cells and Development; Vol. 14; No. 5; pp. 463 - 469; Mary Ann Liebert, Inc. 2 Madison Avenue Larchmont, NY 10538 USA; Disponible en: https://www.liebertpub.com/doi/abs/10.1089/scd.2005.14.463. Disponible en: 10.1089/scd.2005.14.463.
Mohamed, Mohamed Alaa; Fallahi, Afsoon; El-Sokkary, Ahmed M.A.; Salehi, Sahar; Akl, Magda A.; Jafari, Amin; Tamayol, Ali; Fenniri, Hicham; Khademhosseini, Ali; Andreadis, Stelios T.; Cheng, Chong (2019) Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology. En:Progress in Polymer Science; Vol. 98; pp. 101147 - 101147; Elsevier Ltd; Disponible en: 10.1016/j.progpolymsci.2019.101147.
Soppimath, K. S.; Aminabhavi, T. M.; Dave, A. M.; Kumbar, S. G.; Rudzinski, W. E. (2002) Stimulus-responsive "smart" hydrogels as novel drug delivery systems. En:Drug Development and Industrial Pharmacy; Vol. 28; No. 8; pp. 957 - 974; Drug Dev Ind Pharm; Disponible en: https://pubmed.ncbi.nlm.nih.gov/12378965/. Disponible en: 10.1081/DDC-120006428.
Koetting, Michael C.; Peters, Jonathan T.; Steichen, Stephanie D.; Peppas, Nicholas A. (2015) Stimulus-responsive hydrogels: Theory, modern advances, and applications. En:Materials Science and Engineering R: Reports; Vol. 93; pp. 1 - 49; Elsevier Ltd; Disponible en: 10.1016/j.mser.2015.04.001.
Hao, Guang Ping; Hippauf, Felix; Oschatz, Martin; Wisser, Florian M.; Leifert, Annika; Nickel, Winfried; Mohamed-Noriega, Nasser; Zheng, Zhikun; Kaskel, Stefan (2014) Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors. En:ACS Nano; Vol. 8; No. 7; pp. 7138 - 7146; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/nn502065u. Disponible en: 10.1021/nn502065u.
Dai, Tingyang; Jia, Yujie (2011) Supramolecular hydrogels of polyaniline-poly(styrene sulfonate) prepared in concentrated solutions. En:Polymer; Vol. 52; No. 12; pp. 2550 - 2558; Elsevier Ltd; Disponible en: 10.1016/j.polymer.2011.04.006.
Omidian, H.; Park, K. (2008) Swelling agents and devices in oral drug delivery. En:Journal of Drug Delivery Science and Technology; Vol. 18; No. 2; pp. 83 - 93; Editions de Sante; Disponible en: 10.1016/S1773-2247(08)50016-5.
Haider, Sajjad; Park, Soo Young; Saeed, Khalid; Farmer, B. L. (2007) Swelling and electroresponsive characteristics of gelatin immobilized onto multi-walled carbon nanotubes. En:Sensors and Actuators, B: Chemical; Vol. 124; No. 2; pp. 517 - 528; Elsevier; Disponible en: 10.1016/j.snb.2007.01.024.
Lim, Byung Chul; Singu, Bal Sydulu; Hong, Sang Eun; Na, Yang Ho; Yoon, Kuk Ro (2016) Synthesis and characterization nanocomposite of polyacrylamide-rGO-Ag-PEDOT/PSS hydrogels by photo polymerization method. En:Polymers for Advanced Technologies; Vol. 27; No. 3; pp. 366 - 373; John Wiley and Sons Ltd; Disponible en: http://doi.wiley.com/10.1002/pat.3648. Disponible en: 10.1002/pat.3648.
Zhao, Sanping; Cao, Mengjie; Li, Han; Li, Liyan; Xu, Weilin (2010) Synthesis and characterization of thermo-sensitive semi-IPN hydrogels based on poly(ethylene glycol)-co-poly(ε-caprolactone) macromer, N-isopropylacrylamide, and sodium alginate. En:Carbohydrate Research; Vol. 345; No. 3; pp. 425 - 431; Carbohydr Res; Disponible en: https://pubmed-ncbi-nlm-nih-gov.ez.urosario.edu.co/20031120/. Disponible en: 10.1016/j.carres.2009.11.014.
Redaelli, F.; Sorbona, M.; Rossi, F. (2017) Synthesis and processing of hydrogels for medical applications. En:Bioresorbable Polymers for Biomedical Applications: From Fundamentals to Translational Medicine; pp. 205 - 228; Elsevier; 9780081002667; Disponible en: 10.1016/B978-0-08-100262-9.00010-0.
Ajji, Z.; Maarouf, M.; Khattab, A.; Ghazal, H. (2020) Synthesis of pH-responsive hydrogel based on PVP grafted with crotonic acid for controlled drug delivery. En:Radiation Physics and Chemistry; Vol. 170; pp. 108612 - 108612; Elsevier Ltd; Disponible en: 10.1016/j.radphyschem.2019.108612.
Kandra, Ranju; Bajpai, Sunil (2020) Synthesis, mechanical properties of fluorescent carbon dots loaded nanocomposites chitosan film for wound healing and drug delivery. En:Arabian Journal of Chemistry; Vol. 13; No. 4; pp. 4882 - 4894; Elsevier B.V.; Disponible en: 10.1016/j.arabjc.2019.12.010.
Li, Chunyan; Liu, Yi; Wu, Yongquan; Sun, Yun; Li, Fuyou (2013) The cellular uptake and localization of non-emissive iridium(III) complexes as cellular reaction-based luminescence probes. En:Biomaterials; Vol. 34; No. 4; pp. 1223 - 1234; Elsevier; Disponible en: 10.1016/j.biomaterials.2012.09.014.
Oh, Jung Kwon; Drumright, Ray; Siegwart, Daniel J.; Matyjaszewski, Krzysztof (2008) The development of microgels/nanogels for drug delivery applications. En:Progress in Polymer Science (Oxford); Vol. 33; No. 4; pp. 448 - 477; Elsevier Limited; Disponible en: https://utsouthwestern.pure.elsevier.com/en/publications/the-development-of-microgelsnanogels-for-drug-delivery-applicatio. Disponible en: 10.1016/j.progpolymsci.2008.01.002.
Hoffman, Allan S. (2008) The origins and evolution of "controlled" drug delivery systems. En:Journal of Controlled Release; Vol. 132; No. 3; pp. 153 - 163; Elsevier; Disponible en: 10.1016/j.jconrel.2008.08.012.
Kaczmarek, B.; Nadolna, K.; Owczarek, A. (2019) The physical and chemical properties of hydrogels based on natural polymers. En:Hydrogels Based on Natural Polymers; pp. 151 - 172; Elsevier; 9780128164211; Disponible en: 10.1016/B978-0-12-816421-1.00006-9.
Dong, Wei; Zhou, Siqi; Dong, Yan; Wang, Jingwen; Ge, Xin; Sui, Lili (2015) The preparation of ethylenediamine-modified fluorescent carbon dots and their use in imaging of cells. En:Luminescence; Vol. 30; No. 6; pp. 867 - 871; John Wiley and Sons Ltd; Disponible en: https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/full/10.1002/bio.2834; https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/bio.2834; https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/bio.2834. Disponible en: 10.1002/bio.2834.
Dong, Miheng; Chen, Yu (2019) The stimuli-responsive properties of hydrogels based on natural polymers. En:Hydrogels Based on Natural Polymers; pp. 173 - 222; Elsevier; 9780128164211; Disponible en: 10.1016/B978-0-12-816421-1.00007-0.
Zhou, Y.; Chu, J. S.; Li, J. X.; Wu, X. Y. (2010) Theoretical analysis of release kinetics of coated tablets containing constant and non-constant drug reservoirs. En:International Journal of Pharmaceutics; Vol. 385; No. 1-2; pp. 98 - 103; Disponible en: 10.1016/j.ijpharm.2009.10.039.
Huang, Haiqin; Qi, Xiaole; Chen, Yanhua; Wu, Zhenghong (2019) Thermo-sensitive hydrogels for delivering biotherapeutic molecules: A review. En:Saudi Pharmaceutical Journal; Vol. 27; No. 7; pp. 990 - 999; Elsevier B.V.; Disponible en: 10.1016/j.jsps.2019.08.001.
Cui, Xiaofeng; Wang, Jin; Liu, Bing; Ling, Shan; Long, Ran; Xiong, Yujie (2018) Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO 2 Reduction through Bridging Ligands. En:Journal of the American Chemical Society; Vol. 140; No. 48; pp. 16514 - 16520; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/jacs.8b06723. Disponible en: 10.1021/jacs.8b06723.
Sun, X M; Tang, Q W; Wu, J H; Xu, K Q; Zhong, X; Lin, J M; Huang, M L (2011) Two-step synthesis of superabsorbent conducting hydrogel based on poly(acrylamide-pyrrole) with interpenetrating network structure. En:Materials Research Innovations; Vol. 15; No. 1; pp. 70 - 74; Taylor & Francis; Disponible en: https://www.tandfonline.com/doi/full/10.1179/143307511X12922272564021. Disponible en: 10.1179/143307511X12922272564021.
Pavia, Donald L; Lampman, Gary M; Kriz, George S; Vyvyan, James R. (2010) ULTRAVIOLET SPECTROSCOPY. En:INTRODUCTION TO SPECTROSCOPY; pp. 381 - 383; Belmont: Brooks/Cole Cengage learning; 9780495114789;
Wei, Junhua; Qiu, Jingjing (2015) Unveil the Fluorescence of Carbon Quantum Dots. En:Advanced Engineering Materials; Vol. 17; No. 2; pp. 138 - 142; Wiley-VCH Verlag; Disponible en: http://doi.wiley.com/10.1002/adem.201400146. Disponible en: 10.1002/adem.201400146.
Lugao, Ademar B; Malmonge, Sônia Maria (2001) Use of radiation in the production of hydrogels. En:Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms; Vol. 185; No. 1-4; pp. 37 - 42; Disponible en: www.elsevier.com/locate/nimb. Disponible en: 10.1016/S0168-583X(01)00807-2.
H. Takahashi, Suelen; M. Lira, Luiz; I. Córdoba de Torresi, Susana (2012) Zero-Order Release Profiles from A Multistimuli Responsive Electro-Conductive Hydrogel. En:Journal of Biomaterials and Nanobiotechnology; Vol. 03; No. 02; pp. 262 - 268; Scientific Research Publishing, Inc,; Disponible en: http://dx.doi.org/10.4236/jbnb.2012.322032PublishedOnlineMay2012; http://www.scirp.org/journal/jbnb. Disponible en: 10.4236/jbnb.2012.322032.
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/3927a5b2-4773-4a95-993a-1487849aed64/download
https://repository.urosario.edu.co/bitstreams/71551781-01ca-4dd3-8861-30c4a14b603d/download
https://repository.urosario.edu.co/bitstreams/cbe6dfad-7b4f-41a3-bdc9-58719e2ad3df/download
https://repository.urosario.edu.co/bitstreams/2b5309e7-e555-4c7e-8d06-1d0987fd050d/download
https://repository.urosario.edu.co/bitstreams/f5029850-ad7a-41e3-b400-52ea409b2548/download
bitstream.checksum.fl_str_mv fab9d9ed61d64f6ac005dee3306ae77e
99900d5efc62072e5aec9721541bda63
9129d9c3d3368133e0bc4975553e8a3a
27764303242f6a2deb06f8f0699892d2
4b54cd3993f09e23482ab97a70a8441e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167736585027584
spelling Rodríguez Burbano, Diana Consuelo52994699600Múnera Ramirez, Marcela Cristina5696993b-4315-49f2-b8ca-139c129d4b75600Rojas Suarez, Karen LizethIngeniero BiomédicoFull time080bbe37-e17c-4ad8-af42-25a9fb49de5d6002021-06-04T20:12:54Z2021-06-04T20:12:54Z2021-05-27Los sistemas de administración de fármacos buscan suministrar una cantidad terapéutica de una molécula o compuesto con un fin biológico o biomédico al organismo. Estos sistemas se clasifican en tradicionales, liberación modificada y controlada. Los sistemas tradicionales no presentan diseño de formulación que permita orientar el medicamento a un sitio especifico controlar la tasa de su liberación. Por el contrario, los sistemas de liberación controlada poseen un diseño de formulación que les permite controlar la velocidad de liberación y/o presentan una configuración que facilita la identificación de un área específica para su acción. Así, estos últimos ofrecen ventajas sobre los sistemas tradicionales tales como simplificar la posología, disminución de efectos adversos y el aumento de la eficacia de los tratamientos farmacoterapéuticos. Los puntos de carbono (CDs, por sus siglas en inglés) son nanopartículas que presentan alta solubilidad en medio acuoso, buena biocompatibilidad y naturaleza no citotóxica. Estas partículas han sido propuestas como nanoportadores para la administración de fármacos con fin de liberación controlada, ya que presentan emisión fluorescente en la región visible del espectro electromagnético, aumentan la biodistribución y la estabilidad de agentes terapéuticos los órganos diana. Por otro lado, los hidrogeles se han utilizado como vehículos en los sistemas de liberación modificada. Los hidrogeles son redes poliméricas, biocompatibles, que pueden absorber hasta mil veces su peso en agua o fluidos de base acuosa, poseen propiedades viscoelásticas similares la de los tejidos humanos y permiten la encapsulación de diferentes especies tales como fármacos o moléculas de interés biomédico. El presente trabajo de grado propone un sistema de liberación, en donde se encapsula puntos de carbono en un hidrogel basado en alginato y se realiza una prueba de concepto de liberación controlada. Este trabajo está vinculado al proyecto marco ‘Desarrollo de los componentes de un sistema de liberación controlada de medicamentos basado en un hidrogel electroresponsivo integrado por puntos de carbono funcionalizados con curcumina’ financiado por Fondos Concursables UR-Capital Semilla. Este proceso de elaboración del sistema se centrará en cuatro etapas de desarrollo: (i) sínte- sis de puntos de carbono mediante el método microondas con ácido cítrico, N,N-dimetilformamida etanol como materiales de partida buscando variar la temperatura de reacción, la caracteri- zación de propiedades ópticas en pro de determinar que puntos de carbono presentan mejores propiedades para la utilización como molécula ha encapsular. (ii) El desarrollo del hidrogel de alginato y la evaluación de su degradación en respuesta a pH para el diseño de sistemas de administración de fármacos. (iii) La encapsulación de los puntos de carbono en el hidrogel y su respectiva prueba de liberación controlada. (iv) Adicionalmente, se desarrolla una revisión literaria de protocolos de síntesis de hidrogeles electroresponsivos. En este proyecto se presentan los resultados de cada etapa, los puntos de carbono sintetiza- dos evidenció un ancho de banda de absorción en la región UV (200–320 nm) y de fluorescencia en la región azul al cian (427-520 nm). Los puntos de carbono a 200°C evidenciaron mayor emisión a longitudes de excitación de 360/380 nm en comparación con los puntos de carbono 100°C, 125°C, 150°C y 175°C. En la síntesis del hidrogel de alginato, la relación del polímero reticulante (CaCl2 – NaCl) presentó un papel importante en la velocidad de degradación del hidrogel en medio acuoso con características de pH ácido (pH = 3.2) y básico (pH = 8.5). Además, la degradación de los hidrogeles con relación alginato y reticulante (1:1.5) se completo a la mitad del tiempo en comparación a la relación (1:1). Los perfiles de liberación de los puntos de carbono embebido en los hidrogeles en medio ácido-básico no presentaron tendencias descritas en los modelos matemáticos para determinar la cinética de liberación. Por consiguiente, se realizó una linealización para obtener un comportamiento lineal. También, se evidenció una mayor fluorescencia en el medio acuoso con pH básico en comparación al medio ácido. De la revisión literaria se encontró que las técnicas para sintetizar los polímeros con- ductivos utilizados en los hidrogeles electroresponsivos son polimerización química oxidativa, electroquímica o por irradiación. La polianilina (PAni), el polipirrol (PPy) y el PEDOT son los polímeros conductivos más empleados debido a su biocompatibilidad y buenas propie- dades eléctricas y electroquímicas. La polimerización química oxidativa es la técnica más utilizada para sintetizar estos polímeros, debido a la cantidad de producción final obtenida ya que presenta polimerización homogénea. Sin embargo, esta técnica presenta limitaciones para controlar los procesos y los reactivos implícitos como oxidante, la temperatura, el disolvente.Drug delivery systems seek to deliver a therapeutic amount of a molecule or compound with a biological or biomedical purpose to the body. These systems are classified into traditional, modified and controlled release. Traditional systems do not feature formulation design that allows targeting the drug to a specific site or controlling the rate of its release. In contrast, controlled release systems have a formulation design that allows them to control the rate of release and/or present a configuration that facilitates the identification of a specific area for its action. Thus, the latter offer advantages over traditional systems such as simplified dosing, reduced adverse effects and increased efficacy of pharmacotherapeutic treatments. Carbon dots (CDs) are nanoparticles that exhibit high solubility in aqueous media, good biocompatibility and non-cytotoxic nature. These particles have been proposed as nanocarriers for drug delivery for controlled release purposes, as they exhibit fluorescent emission in the visible region of the electromagnetic spectrum, increase biodistribution and stability of therapeutic agents to target organs. On the other hand, hydrogels have been used as vehicles in controlled release systems. Hydrogels are polymeric, biocompatible networks that can absorb up to a thousand times their weight in water or water-based fluids, possess viscoelastic properties similar to that of human tissues and allow the encapsulation of different species such as drugs or molecules of biomedical interest. The present work proposes a release system, where carbon dots are encapsulated in an alginate-based hydrogel and a proof of concept of controlled release is performed. This work is linked to the framework project 'Development of the components of a controlled drug release system based on an electroresponsive hydrogel integrated by carbon dots functionalized with curcumin' financed by Fondos Concursables UR-Capital Semilla. This system development process will focus on four stages of development: (i) synthesis of carbon dots by microwave method with citric acid, N,N-dimethylformamide ethanol as starting materials seeking to vary the reaction temperature, characterization of optical properties in order to determine which carbon dots have better properties for use as encapsulated molecule. (ii) The development of the alginate hydrogel and the evaluation of its degradation in response to pH for the design of drug delivery systems. (iii) The encapsulation of carbon dots in the hydrogel and their respective controlled release test. (iv) Additionally, a literature review of protocols for the synthesis of electroresponsive hydrogels is developed. In this project the results of each stage are presented, the synthesized carbon dots evidenced absorption bandwidth in the UV region (200-320 nm) and fluorescence in the blue to cyan region (427-520 nm). Carbon dots at 200°C evidenced higher emission at excitation lengths of 360/380 nm compared to carbon dots at 100°C, 125°C, 150°C and 175°C. In the synthesis of the alginate hydrogel, the ratio of polymer and crosslinker (CaCl2 - NaCl) presented an important role in the degradation rate of the hydrogel in aqueous medium with acidic (pH = 3.2) and basic (pH =8.5) pH characteristics. Moreover, the degradation of hydrogels with alginate and crosslinker ratio (1:1.5) was completed at half time compared to the ratio (1:1). The release profiles of the carbon dots embedded in the hydrogels in acid-base medium did not present trends described in the mathematical models to determine the release kinetics. Therefore, a linearization was performed to obtain a linear behavior. Also, a higher photoluminescence was evidenced in the aqueous medium with basic pH compared to the acidic medium. Literature review, it was found that the techniques to synthesize the conductive polymers used in electroresponsive hydrogels are chemical oxidative, electrochemical or irradiation polymerization. Polyaniline (PAni), polypyrrole (PPy) and PEDOT are the most commonly used conductive polymers due to their biocompatibility and good electrical and electrochemical properties. Oxidative chemical polymerization is the most widely used technique to synthesize these polymers, due to the amount of final production obtained since it presents homogeneous polymerization. However, this technique presents limitations to control the processes and the reagents involved such as oxidant, temperature, solvent.Capital Semilla84 pp.application/pdfhttps://doi.org/10.48713/10336_31581 https://repository.urosario.edu.co/handle/10336/31581spaUniversidad del RosarioEscuela de Medicina y Ciencias de la SaludIngeniería BiomédicaAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://purl.org/coar/access_right/c_abf2 (1991) Constitución Política de Colombia. Vol. Gaceta Constitucional No. 116 de 20 de julio de 1991 (1991) Constitución Política de Colombia. Vol. Gaceta Constitucional No. 116 de 20 de julio de 1991 (1991) Constitución Política de Colombia. Vol. Gaceta Constitucional No. 116 de 20 de julio de 1991;Cabrera, Álvaro (2020) Louise Brown, la primera bebé probeta: “Es triste que la fecundación in vitro siga siendo un tema tabú”. En: El País. Málafa Disponible en: https://elpais.com/elpais/2020/03/06/mamas_papas/1583486018_035212.html. Ansari, Mojtaba (2019) Bone tissue regeneration: biology, strategies and interface studies. En:Progress in Biomaterials; Vol. 8; No. 4; pp. 223 - 237; Springer Berlin Heidelberg; 4020401900125; Disponible en: https://doi.org/10.1007/s40204-019-00125-z. Disponible en: 10.1007/s40204-019-00125-z. Qu, Songnan; Wang, Xiaoyun; Lu, Qipeng; Liu, Xingyuan; Wang, Lijun (2012) A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots. En:Angewandte Chemie; Vol. 124; No. 49; pp. 12381 - 12384; Wiley; Disponible en: http://doi.wiley.com/10.1002/ange.201206791. Disponible en: 10.1002/ange.201206791.Santamaría, Luis (2000) Aspectos bioéticos de la reproducción asitida. pp. Pg 39 Disponible en: http://aebioetica.org/revistas/2000/1/41/37.pdf. Arvidson, K; Abdallah, B M; Applegate, L A; Baldini, N; Cenni, E; Gomez-Barrena, E; Granchi, D; Kassem, M; Konttinen, Y T; Mustafa, K; Pioletti, D P; Sillat, T; Finne-Wistrand, A (2011) Bone regeneration and stem cells. En:Journal of cellular and molecular medicine; Vol. 15; No. 4; pp. 718 - 746; Disponible en: 10.1111/j.1582-4934.2010.01224.x. Mihic, Anton; Cui, Zhi; Wu, Jun; Vlacic, Goran; Miyagi, Yasuo; Li, Shu Hong; Lu, Sun; Sung, Hsing Wen; Weisel, Richard D.; Li, Ren Ke (2015) A conductive polymer hydrogel supports cell electrical signaling and improves cardiac function after implantation into myocardial infarct. En:Circulation; Vol. 132; No. 8; pp. 772 - 784; Lippincott Williams and Wilkins; Disponible en: http://circ.ahajournals.org. Disponible en: 10.1161/CIRCULATIONAHA.114.014937.Santamaría, Luis (2000) Aspectos bioéticos de la reproducción asitida. pp. Pg 37 Disponible en: http://aebioetica.org/revistas/2000/1/41/37.pdf. Orciani, Monia; Fini, Milena; Di Primio, Roberto; Mattioli-Belmonte, Monica (2017) Biofabrication and Bone Tissue Regeneration: Cell Source, Approaches, and Challenges. En:Frontiers in Bioengineering and Biotechnology; Vol. 5; pp. 17 - 17; Disponible en: https://www.frontiersin.org/article/10.3389/fbioe.2017.00017. Disponible en: 10.3389/fbioe.2017.00017. Hu, Shengliang; Wei, Zhijia; Chang, Qing; Trinchi, Adrian; Yang, Jinlong (2016) A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity. En:Applied Surface Science; Vol. 378; pp. 402 - 407; Elsevier B.V.; Disponible en: 10.1016/j.apsusc.2016.04.038.Flores, Lucerito (2007) Reflexión ético jurídica sobre las técnicas de reproducción asistida. En: IUS: Revista del Instituto de Ciencias Jurídicas de Puebla. pp. 102 Wang, Wenhao; Yeung, Kelvin W.K. (2017) Bone grafts and biomaterials substitutes for bone defect repair: A review. En:Bioactive Materials; Vol. 2; No. 4; pp. 224 - 247; Elsevier Ltd; Disponible en: https://doi.org/10.1016/j.bioactmat.2017.05.007. Disponible en: 10.1016/j.bioactmat.2017.05.007. Lin, Jianming; Tang, Qunwei; Wu, Jihuai; Li, Qinghua (2010) A multifunctional hydrogel with high-conductivity, pH-responsive, and release properties from polyacrylate/polyptrrole. En:Journal of Applied Polymer Science; Vol. 116; No. 3; pp. 1376 - 1383; Wiley Periodicals, Inc; Disponible en: http://doi.wiley.com/10.1002/app.31642. Disponible en: 10.1002/app.31642.Kushner, Luis (2010) La fertilización in vitro: Beneficios, riesgos y futuro. En: Revista científica ciencia médica. pp. 1 González-Rodríguez, Gil; Colubi, Ana; Gil, María Ángeles (2012) Fuzzy data treated as functional data: A one-way ANOVA test approach. En:Computational Statistics and Data Analysis; Vol. 56; No. 4; pp. 943 - 955; Elsevier B.V.; Disponible en: http://dx.doi.org/10.1016/j.csda.2010.06.013. Disponible en: 10.1016/j.csda.2010.06.013. Atoufi, Zhale; Zarrintaj, Payam; Motlagh, Ghodratollah Hashemi; Amiri, Anahita; Bagher, Zohreh; Kamrava, Seyed Kamran (2017) A novel bio electro active alginate-aniline tetramer/ agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study. En:Journal of Biomaterials Science, Polymer Edition; Vol. 28; No. 15; pp. 1617 - 1638; Taylor and Francis Inc.; Disponible en: https://www.tandfonline.com/doi/abs/10.1080/09205063.2017.1340044. Disponible en: 10.1080/09205063.2017.1340044.Bernal, María Camila (2015) La filiación materna en el alquier de vientre en Colombia. Bogotá D.C, Colombia: Universidad de los Andes; Akash, M; Rehman, K (2020) Molecular Emission Spectroscopy. En:Essentials of pharmaceutical analysis; Ferreira, Natália Noronha; Perez, Taciane Alvarenga; Pedreiro, Liliane Neves; Prezotti, Fabíola Garavello; Boni, Fernanda Isadora; Cardoso, Valéria Maria de Oliveira; Venâncio, Tiago; Gremião, Maria Palmira Daflon (2017) A novel pH-responsive hydrogel-based on calcium alginate engineered by the previous formation of polyelectrolyte complexes (PECs) intended to vaginal administration. En:Drug Development and Industrial Pharmacy; Vol. 43; No. 10; pp. 1656 - 1668; Taylor and Francis Ltd.; Disponible en: https://pubmed.ncbi.nlm.nih.gov/28489424/. Disponible en: 10.1080/03639045.2017.1328434.Rosero Ceballos, Jhon (2018) Naturaleza jurídica del alquiler de vientre: Impacto y consecuencias en el ámbito del derecho laboral. Bogotá D.C, Colombia: Pontificia Universidad Javeriana; Disponible en: https://repository.javeriana.edu.co/bitstream/handle/10554/38941/Carta%20de%20autorizacion.pdf?sequence=2&isAllowed=n. Erdal, Nejla B.; Hakkarainen, Minna (2018) Construction of Bioactive and Reinforced Bioresorbable Nanocomposites by Reduced Nano-Graphene Oxide Carbon Dots. En:Biomacromolecules; Vol. 19; No. 3; pp. 1074 - 1081; Disponible en: 10.1021/acs.biomac.8b00207. Zhi, Hui; Fei, Xu; Tian, Jing; Jing, Muzi; Xu, Longquan; Wang, Xiuying; Liu, Dongmei; Wang, Yi; Liu, Jingyun (2017) A novel transparent luminous hydrogel with self-healing property. En:Journal of Materials Chemistry B; Vol. 5; No. 29; pp. 5738 - 5744; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2017/tb/c7tb00975e; https://pubs.rsc.org/en/content/articlelanding/2017/tb/c7tb00975e. Disponible en: 10.1039/c7tb00975e.Gafo, Javier (1993) 10 palabras clave en bioética. España: Estella, Navarra : Verbo Divino; Disponible en: https://dialnet.unirioja.es/servlet/libro?codigo=95003. Sarkar, Chandrani; Chowdhuri, Angshuman Ray; Kumar, Amit; Laha, Dipranjan; Garai, Subhadra; Chakraborty, Jui; Sahu, Sumanta Kumar (2018) One pot synthesis of carbon dots decorated carboxymethyl cellulose- hydroxyapatite nanocomposite for drug delivery, tissue engineering and Fe3+ ion sensing. En:Carbohydrate Polymers; Vol. 181; pp. 710 - 718; Disponible en: https://www.sciencedirect.com/science/article/pii/S0144861717313772. Disponible en: https://doi.org/10.1016/j.carbpol.2017.11.091. Tsai, Tong-Sheng; Pillay, Viness; Choonara, Yahya E.; Du Toit, Lisa C.; Modi, Girish; Naidoo, Dinesh; Kumar, Pradeep (2011) A Polyvinyl Alcohol-Polyaniline Based Electro-Conductive Hydrogel for Controlled Stimuli-Actuable Release of Indomethacin. En:Polymers; Vol. 3; No. 1; pp. 150 - 172; Molecular Diversity Preservation International; Disponible en: http://www.mdpi.com/2073-4360/3/1/150. Disponible en: 10.3390/polym3010150.Méndez, Victor (2006) Las relaciones entre la bioética y el derecho. En: Publicación Trimestral del Máster en Bioética y Derecho. Revista de Bioética y Derecho. pp. 1 - 2; Disponible en: http://diposit.ub.edu/dspace/bitstream/2445/11420/3/Mendez_Bioetica_Derecho.pdf. Gil, Carmen J; Tomov, Martin L; Theus, Andrea S; Cetnar, Alexander; Mahmoudi, Morteza; Serpooshan, Vahid (2019) In Vivo Tracking of Tissue Engineered Constructs. En:Micromachines; Vol. 10; No. 7; Disponible en: 10.3390/mi10070474. Zuo, Pengli; Lu, Xiuhua; Sun, Zhigang; Guo, Yuhan; He, Hua (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. En:Microchimica Acta; Vol. 183; No. 2; pp. 519 - 542; Springer-Verlag Wien; Disponible en: https://link.springer.com/article/10.1007/s00604-015-1705-3. Disponible en: 10.1007/s00604-015-1705-3.Montes, German (2004) Bioética y Tecnicas de Reproducción asistida. En: Revistas de Ciencias Administrativas y Financieras de la Seguridad Social. Disponible en: https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-12592004000100008. Szcześ, Aleksandra; Hołysz, Lucyna; Chibowski, Emil (2017) Synthesis of hydroxyapatite for biomedical applications. En:Advances in Colloid and Interface Science; Vol. 249; No. April; pp. 321 - 330; Disponible en: 10.1016/j.cis.2017.04.007. Wu, Qian; Wei, Junjie; Xu, Bing; Liu, Xinhua; Wang, Hongbo; Wang, Wei; Wang, Qigang; Liu, Wenguang (2017) A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability. En:Scientific Reports; Vol. 7; No. 1; pp. 1 - 11; Nature Publishing Group; Disponible en: www.nature.com/scientificreports. Disponible en: 10.1038/srep41566. (1886) Constitución Política de Colombia. Disponible en: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=7153. McMahon, Rebecca E.; Wang, Lina; Skoracki, Roman; Mathur, Anshu B. (2013) Development of nanomaterials for bone repair and regeneration. En:Journal of Biomedical Materials Research; Vol. 101 B; No. 2; pp. 387 - 397; Disponible en: 10.1002/jbm.b.32823. Li, Yi; Yang, Hong Yu; Lee, Doo Sung (2021) Advances in biodegradable and injectable hydrogels for biomedical applications. En:Journal of Controlled Release; Vol. 330; pp. 151 - 160; Elsevier B.V.; Disponible en: 10.1016/j.jconrel.2020.12.008. (2021) CECOLFES. En: Centro Colombiano de Fertilidad Medicina Preventiva y Regenerativa. Disponible en: https://www.cecolfes.com. Peng, Han; Wang, Jiexin; Lv, Shanshan; Wen, Jian; Chen, Jian-Feng (2015) Synthesis and characterization of hydroxyapatite nanoparticles prepared by a high-gravity precipitation method. En:Ceramics International; Vol. 41; No. 10, Part B; pp. 14340 - 14349; Disponible en: https://www.sciencedirect.com/science/article/pii/S0272884215013577. Disponible en: https://doi.org/10.1016/j.ceramint.2015.07.067. Nahar, Kamrun; Hossain, Md Kamal; Khan, Tanveer Ahmed (2017) Alginate and its versatile application in drug delivery. En:Journal of Pharmaceutical Sciences and Research; Vol. 9; No. 5; pp. 606 - 617;Garcés, M.T. (1991) Proyecto de acto reformatorio de la Constitución Política de Colombia No. 13. Ampliación de la democracia. pp. 10 - 19; Wang, Yanqin; Xue, Yanan; Wang, Jinghui; Zhu, Yaping; Wang, Xin; Zhang, Xuehui; Zhu, Yu; Liao, Jingwen; Li, Xiaona; Wu, Xiaogang; Chen, Weiyi (2019) Biocompatible and photoluminescent carbon dots/hydroxyapatite/PVA dual-network composite hydrogel scaffold and their properties. En:Journal of Polymer Research; Vol. 26; No. 11; pp. 6 - 11; Journal of Polymer Research; Disponible en: http://dx.doi.org/10.1007/s10965-019-1907-1. Disponible en: 10.1007/s10965-019-1907-1. Agüero, Lissette; Zaldivar-Silva, Dionisio; Peña, Luis; Dias, Marcos (2017) Alginate microparticles as oral colon drug delivery device: A review. En:Carbohydrate Polymers; Vol. 168; pp. 32 - 43; Elsevier Ltd; Disponible en: 10.1016/j.carbpol.2017.03.033.Benitez, Jaime (1991) Derechos de la Familia, el niño, el joven, la mujer y la tercera edad. pp. 2 - 6; Zhang, H; Mao, X; Du, Z; Jiang, W; Han, X; Zhao, D; Han, D; Li, Q (2016) Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model. En:Science and Technology of Advanced Materials; Vol. 17; No. 1; pp. 136 - 148; Hasnain, Md Saquib; Jameel, Ehtesham; Mohanta, Bulu; Dhara, Amal Kumar; Alkahtani, Saad; Nayak, Amit Kumar (2020) Alginates: sources, structure, and properties. En:Alginates in Drug Delivery; pp. 1 - 17; Elsevier; Disponible en: 10.1016/b978-0-12-817640-5.00001-7. (2015) Ley 1751 de 2015. Vol. Diario Oficial No. 49.427; Ley 1751 de 2015; Disponible en: http://www.secretariasenado.gov.co/senado/basedoc/ley_1751_2015.html. Petricca, S; Marra, K; Kumta, P (2006) Chemical synthesis of poly(-lactic-co-glycolic acid)/hydroxyapatite composites for orthopaedic applications. En:Acta Biomaterialia; Vol. 2; No. 3; pp. 277 - 286; Tong, Gangsheng; Wang, Jingxia; Wang, Ruibin; Guo, Xinqiu; He, Lin; Qiu, Feng; Wang, Ge; Zhu, Bangshang; Zhu, Xinyuan; Liu, Tao (2015) Amorphous carbon dots with high two-photon fluorescence for cellular imaging passivated by hyperbranched poly(amino amine). En:Journal of Materials Chemistry B; Vol. 3; No. 4; pp. 700 - 706; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2015/tb/c4tb01643b; https://pubs.rsc.org/en/content/articlelanding/2015/tb/c4tb01643b. Disponible en: 10.1039/c4tb01643b.Ortiz, Gloria Stella (2020) Sentencia de Unificación. : Corte Constitucional Colombiana; Disponible en: https://www.corteconstitucional.gov.co/relatoria/2020/su074-20.htm. Pavón Palacio, Juan Jose; Pesquet, Alice; Echeverry Rendon, Monica; Robledo Restrepo, Sara Maria (2014) Processing, biological characterization and test to natural and synthetic polymer scaffolds for bone and cartilaginous tissue engineering. En:Revista politécnica; Hamd-Ghadareh, Somayeh; Salimi, Abdollah; Fathi, Fardin; Bahrami, Saman (2017) An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imaging and sensing. En:Biosensors and Bioelectronics; Vol. 96; pp. 308 - 316; Elsevier Ltd; Disponible en: 10.1016/j.bios.2017.05.003.Solarte, Arturo (2013) Sentencia de Casación. : Corte Suprema de Justicia, Sala de Casación Civil; Disponible en: https://www.icbf.gov.co/cargues/avance/docs/csj_scc_s-_28-02-2013_[1100131100022006-00537-01]_2013.htm. Arifvianto, Budi; Zhou, Jie (2014) Fabrication of Metallic Biomedical Scaffolds with the Space Holder Method: A Review. En:Materials (Basel, Switzerland); Vol. 7; No. 5; pp. 3588 - 3622; Disponible en: 10.3390/ma7053588. Liu, Ruili; Wu, Dongqing; Liu, Shuhua; Koynov, Kaloian; Knoll, Wolfgang; Li, Qin (2009) An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. En:Angewandte Chemie; Vol. 48; No. 25; pp. 4598 - 4601; John Wiley & Sons, Ltd; Disponible en: http://doi.wiley.com/10.1002/anie.200900652. Disponible en: 10.1002/anie.200900652.Angarita, Jorge (1994) Lecciones de derecho civil. pp. 34 Oliveira, J; Rodriguez, M; Silva, S; Malafaya, P; Gomez, M; Viegas, C; Dias, I; Azevedo, J; Mano, J; Reis, R (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue enngineering applications. En:Biomaterials; Vol. 27; No. 36; pp. 6123 - 6137; Xiao, Yinghong; He, Lei; Che, Jianfei (2012) An effective approach for the fabrication of reinforced composite hydrogel engineered with SWNTs, polypyrrole and PEGDA hydrogel. En:Journal of Materials Chemistry; Vol. 22; No. 16; pp. 8076 - 8082; The Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2012/jm/c2jm30601h; https://pubs.rsc.org/en/content/articlelanding/2012/jm/c2jm30601h. Disponible en: 10.1039/c2jm30601h. (2006) Ley 1098 de 2006. Vol. Diario Oficial No. 46.446; Disponible en: https://www.icbf.gov.co/cargues/avance/docs/ley_1098_2006.htm. Moore, Drew D.; Haydon, Rex C. (2014) Orthopaedic Oncology Completed. En:Cancer Treatment and Research; pp. 31 - 63; 978-3-319-07322-4; Disponible en: papers3://publication/uuid/FBEEE3E8-B240-41FA-A4CC-0A9C57D87078. Disponible en: 10.1007/978-3-319-07323-1. Nikzamir, Mohammad; Akbarzadeh, Abolfazl; Panahi, Yunes (2021) An overview on nanoparticles used in biomedicine and their cytotoxicity. En:Journal of Drug Delivery Science and Technology; Vol. 61; pp. 102316 - 102316; Editions de Sante; Disponible en: 10.1016/j.jddst.2020.102316.Jímenez, María Jesús (2005) El Debilitamiento de los Efectos de la Filiación. En: Revista de la Facultad de Derecho de la Universidad de Granada. pp. 395 - 396; Disponible en: https://dialnet.unirioja.es/servlet/autor?codigo=73526. Barbosa, Jéssica S.; Mendes, Ricardo F.; Figueira, Flávio; Gaspar, Vítor M.; Mano, João F.; Braga, Susana S.; Rocha, João; Almeida Paz, Filipe A. (2020) Bone Tissue Disorders: Healing Through Coordination Chemistry. En:Chemistry; Vol. 26; No. 67; pp. 15416 - 15437; Disponible en: 10.1002/chem.202004529. Stejskal, Jaroslav; Trchová, Miroslava (2012) Aniline oligomers versus polyaniline. En:Polymer International; Vol. 61; No. 2; pp. 240 - 251; John Wiley & Sons, Ltd; Disponible en: http://doi.wiley.com/10.1002/pi.3179. Disponible en: 10.1002/pi.3179. (2006) Ley 1060 de 2006. Vol. Diario Oficial No. 46.341; Ley 1060 de 2006; Disponible en: https://www.icbf.gov.co/cargues/avance/docs/ley_1060_2006.htm. Zhang, S; Cui, F; Liao, S; Zhu, Y; Han, L (2003) Synthesis and biocompatibility of porous nanohydroxyapatite/collagen/alginate composite. En:J Mater Sci Mater Med; Vol. 14; No. 7; pp. 641 - 645; Zhao, Xin; Li, Peng; Guo, Baolin; Ma, Peter X. (2015) Antibacterial and conductive injectable hydrogels based on quaternized chitosan-graft-polyaniline/oxidized dextran for tissue engineering. En:Acta Biomaterialia; Vol. 26; pp. 236 - 248; Elsevier Ltd; Disponible en: https://pubmed.ncbi.nlm.nih.gov/26272777/. Disponible en: 10.1016/j.actbio.2015.08.006. (2001) Ley 721 de 2001. Vol. Diario Oficial No 44.661; Ley 721 de 2001; Disponible en: https://www.icbf.gov.co/cargues/avance/docs/ley_0721_2001.htm. Kikuchi, M; Itoh, S; Ichinose, S; Shinomiya, K; Tanaka, J (2001) Self-organization mechanism in bone like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. En:Biomaterials; Vol. 22; No. 13; pp. 1705 - 1711; Huang, Gangliang; Huang, Hualiang (2018) Application of dextran as nanoscale drug carriers. En:Nanomedicine; Vol. 13; No. 24; pp. 3149 - 3158; Future Medicine Ltd.; Disponible en: https://pubmed-ncbi-nlm-nih-gov.ez.urosario.edu.co/30516091/. Disponible en: 10.2217/nnm-2018-0331. (1887) Código Civil. Vol. Diario Oficial No. 7.019; Ley 57 de 1887; Disponible en: https://www.icbf.gov.co/cargues/avance/docs/ley_0057_1887.htm. Gao, Dong; Liu, Xiaolu; Jiang, Dongli; Zhao, Huan; Zhu, Yuda; Chen, Xiaoqin; Luo, Hongrong; Fan, Hongsong; Zhang, Xingdong (2018) Exploring of multicolor emissive carbon dots with novel double emission mechanism. En:Sensors and Actuators, B: Chemical; Vol. 277; No. September; pp. 373 - 380; Elsevier; Disponible en: https://doi.org/10.1016/j.snb.2018.09.031. Disponible en: 10.1016/j.snb.2018.09.031. Huang, Chun Lin; Huang, Chih Ching; Mai, Fu Der; Yen, Chia Liang; Tzing, Shin Hwa; Hsieh, Hsiao Ting; Ling, Yong Chien; Chang, Jia Yaw (2015) Application of paramagnetic graphene quantum dots as a platform for simultaneous dual-modality bioimaging and tumor-targeted drug delivery. En:Journal of Materials Chemistry B; Vol. 3; No. 4; pp. 651 - 664; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2015/tb/c4tb01650e; https://pubs.rsc.org/en/content/articlelanding/2015/tb/c4tb01650e. Disponible en: 10.1039/c4tb01650e.Arango, Jorge (1995) Sentencia. : Corte Constitucional Colombiana; Disponible en: https://www.corteconstitucional.gov.co/RELATORIA/1995/C-591-95.htm. Manioudakis, John; Victoria, Florence; Thompson, Christine A.; Brown, Liam; Movsum, Michael; Lucifero, Roberto; Naccache, Rafik (2019) Effects of nitrogen-doping on the photophysical properties of carbon dots. En:Journal of Materials Chemistry C; Vol. 7; No. 4; pp. 853 - 862; Royal Society of Chemistry; Disponible en: 10.1039/c8tc04821e. Arora, Neha; Sharma, N. N. (2014) Arc discharge synthesis of carbon nanotubes: Comprehensive review. En:Diamond and Related Materials; Vol. 50; pp. 135 - 150; Elsevier Ltd; Disponible en: 10.1016/j.diamond.2014.10.001.Corte Interamericana de Derechos Humanos (2012) Artavia Murillo y otros (“Fecundación in vitro”) vs. Costa Rica. : Corte Interamericana de Derechos Humanos; Disponible en: https://www.corteidh.or.cr/docs/casos/articulos/seriec_257_esp.pdf. Spectroscopy, Electronic; Factor, Frank Condon (2020) Electronic Spectroscopy : Interpretation. pp. 1 - 8; Arora, Neha; Sharma, N. N. (2014) Arc discharge synthesis of carbon nanotubes: Comprehensive review. En:Diamond and Related Materials; Vol. 50; pp. 135 - 150; Elsevier Ltd; Disponible en: 10.1016/j.diamond.2014.10.001. (2013) Reproducción Medicamente Asistida. Vol. Ley 26.862; Disponible en: http://www.psi.uba.ar/academica/carrerasdegrado/psicologia/sitios_catedras/obligatorias/723_etica2/material/normativas/ley_26862_y_reglamentacion.pdf. Riss, Terry L; Moravec, Richard A; Niles, Andrew L; Duellman, Sarah; Benink, Hélène A; Worzella, racy J; Minor, Lisa (2013) Cell Viability Assays. En:Assay Guidence Manual; Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK144065/. Zhu, Shoujun; Zhao, Xiaohuan; Song, Yubin; Lu, Siyu; Yang, Bai (2016) Beyond bottom-up carbon nanodots: Citric-acid derived organic molecules. En:Nano Today; Vol. 11; No. 2; pp. 128 - 132; Elsevier B.V.; Disponible en: 10.1016/j.nantod.2015.09.002. (2014) Código civil y comercial Argentino. Ley 26.994; Disponible en: http://servicios.infoleg.gob.ar/infolegInternet/anexos/235000-239999/235975/norma.htm. Xiao, Qi; Liang, Yu; Zhu, Fawei; Lu, Shuangyan; Huang, Shan (2017) Microwave-assisted one-pot synthesis of highly luminescent N-doped carbon dots for cellular imaging and multi-ion probing. En:Microchimica Acta; Vol. 184; No. 7; pp. 2429 - 2438; Microchimica Acta; Disponible en: 10.1007/s00604-017-2242-z. Shi, Qiang; Liu, Hao; Tang, Deding; Li, Yuhui; Li, Xiu Jun; Xu, Feng (2019) Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications. En:NPG Asia Materials; Vol. 11; No. 1; pp. 1 - 21; Nature Research; Disponible en: https://doi.org/10.1038/s41427-019-0165-3. Disponible en: 10.1038/s41427-019-0165-3.Suárez, Roberto (1998) Derecho de familia. Vol. 1; Santa Fé de Bogotá: Temis; Kumar, Pawan; Dehiya, Brijnandan S.; Sindhu, Anil (2019) Synthesis and characterization of nHA-PEG and nBG-PEG scaffolds for hard tissue engineering applications. En:Ceramics International; Vol. 45; No. 7; pp. 8370 - 8379; Elsevier Ltd and Techna Group S.r.l.; Disponible en: https://doi.org/10.1016/j.ceramint.2019.01.145. Disponible en: 10.1016/j.ceramint.2019.01.145. Qu, Jin; Liang, Yongping; Shi, Mengting; Guo, Baolin; Gao, Yanzheng; Yin, Zhanhai (2019) Biocompatible conductive hydrogels based on dextran and aniline trimer as electro-responsive drug delivery system for localized drug release. En:International Journal of Biological Macromolecules; Vol. 140; pp. 255 - 264; Elsevier B.V.; Disponible en: 10.1016/j.ijbiomac.2019.08.120.Rico, Luis Alonso (2017) Sentencia. : Corte Suprema de Justicia Sala de Casación Civil; Chen, Zetao; Bachhuka, Akash; Han, Shengwei; Wei, Fei; Lu, Shifeier; Visalakshan, Rahul Madathiparambil; Vasilev, Krasimir; Xiao, Yin (2019) Tuning Chemistry and Topography of Nanoengineered Surfaces to Manipulate Immune Response for Bone Regeneration Applications. En:American chemical society; Vol. 13; No. 3; pp. 37 - 39; Xu, Chao; Guan, Shui; Wang, Shuping; Gong, Weitao; Liu, Tianqing; Ma, Xuehu; Sun, Changkai (2018) Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering. En:Materials Science and Engineering C; Vol. 84; pp. 32 - 43; Elsevier Ltd; Disponible en: 10.1016/j.msec.2017.11.032.Sánchez, Patricia; Martínez, Nerea; Fernández, Eloisa (2017) Fecundación in vitro postmortem. En: Cultura de los Cuidados. Disponible en: https://rua.ua.es/dspace/bitstream/10045/75355/1/CultCuid_50_16.pdf. Dai, Xiaohan; Wei, Yan; Zhang, Xuehui; Meng, Song; Mo, Xiaoju; Liu, Xing; Deng, Xuliang; Zhang, Li; Deng, Xuming (2015) Attenuating Immune Response of Macrophage by Enhancing Hydrophilicity of Ti Surface. En:Journal of Nanomaterials; Vol. 3; Disponible en: 10.1155/2015/712810. Van Tomme, Sophie R.; Hennink, Wim E. (2007) Biodegradable dextran hydrogels for protein delivery applications. En:Expert Review of Medical Devices; Vol. 4; No. 2; pp. 147 - 164; Expert Rev Med Devices; Disponible en: https://pubmed-ncbi-nlm-nih-gov.ez.urosario.edu.co/17359222/. Disponible en: 10.1586/17434440.4.2.147.Cañón, Pedro (1995) Derecho Civil Familia. En: 2. Vol. 1; pp. 335 Santa Fé de Bogotá: Presencia LTDA; Pujari-Palmer, Shiuli; Chen, Song; Rubino, Stefano; Weng, Hong; Xia, Wei; Engqvist, Håkan; Tang, Liping; Ott, Marjam Karlsson (2016) In vivo and in vitro evaluation of hydroxyapatite nanoparticle morphology on the acute inflammatory response. En:Biomaterials; Vol. 90; pp. 1 - 11; Disponible en: https://www.sciencedirect.com/science/article/pii/S0142961216001617. Disponible en: https://doi.org/10.1016/j.biomaterials.2016.02.039. Dong, Yongqiang; Shao, Jingwei; Chen, Congqiang; Li, Hao; Wang, Ruixue; Chi, Yuwu; Lin, Xiaomei; Chen, Guonan (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. En:Carbon; Vol. 50; No. 12; pp. 4738 - 4743; Pergamon; Disponible en: 10.1016/j.carbon.2012.06.002.Rbich, W.T. (1978) Encyclopedia of bioethics. New York, USA.: Thomson Gale; Zadpoor, Amir A (2015) Bone tissue regeneration: the role of scaffold geometry. En:Biomater. Sci.; Vol. 3; No. 2; pp. 231 - 245; The Royal Society of Chemistry; Disponible en: http://dx.doi.org/10.1039/C4BM00291A. Disponible en: 10.1039/C4BM00291A. Sadhanala, Hari Krishna; Nanda, Karuna Kar (2016) Boron-doped carbon nanoparticles: Size-independent color tunability from red to blue and bioimaging applications. En:Carbon; Vol. 96; pp. 166 - 173; Elsevier Ltd; Disponible en: 10.1016/j.carbon.2015.08.096.Salinas, Carlos (2013) Los concordatos celebrados entre la Santa Sede y los países latinoamericanos durante el siglo XIX. En: Revista de Estudios Historico-Jurídicos. Disponible en: https://scielo.conicyt.cl/pdf/rehj/n35/a08.pdf. Aboudzadeh, Neda; Imani, Mohammad; Shokrgozar, Mohammad Ali; Khavandi, Alireza; Javadpour, Jafar; Shafieyan, Yousef; Farokhi, Mehdi (2010) Fabrication and characterization of poly(D,L-lactide-co-glycolide)/ hydroxyapatite nanocomposite scaffolds for bone tissue regeneration. En:Journal of Biomedical Materials Research; Vol. 94; No. 1; pp. 137 - 145; Disponible en: 10.1002/jbm.a.32673. Dai, Ting yang; Tang, Rong; Yue, Xiao xiao; Xu, Liang; Lu, Yun (2015) Capacitance performances of supramolecular hydrogels based on conducting polymers. En:Chinese Journal of Polymer Science (English Edition); Vol. 33; No. 7; pp. 1018 - 1027; Springer Verlag; Disponible en: https://link-springer-com.ez.urosario.edu.co/article/10.1007/s10118-015-1647-6. Disponible en: 10.1007/s10118-015-1647-6.Monterrosa, Alvaro (1990) Técnicas de Reproducción Asistida. En: Revista Colombiana de obstetricia y ginecología. Vol. XLI; Disponible en: https://revista.fecolsog.org/index.php/rcog/article/view/976/1121. He, Jianhua; Chen, Guobao; Liu, Mengying; Xu, Zhiling; Chen, Hua; Yang, Li; Lv, Yonggang (2020) Scaffold strategies for modulating immune microenvironment during bone regeneration. En:Materials Science and Engineering: C; Vol. 108; pp. 110411 - 110411; Disponible en: https://www.sciencedirect.com/science/article/pii/S0928493118304314. Disponible en: https://doi.org/10.1016/j.msec.2019.110411. Liu, Jia Hui; Cao, Li; LeCroy, Gregory E.; Wang, Ping; Meziani, Mohammed J.; Dong, Yiyang; Liu, Yuanfang; Luo, Pengju G.; Sun, Ya Ping (2015) Carbon "Quantum" Dots for Fluorescence Labeling of Cells. En:ACS Applied Materials and Interfaces; Vol. 7; No. 34; pp. 19439 - 19445; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/acsami.5b05665. Disponible en: 10.1021/acsami.5b05665. Serrano, Leonor (2003) Por la cual se regula el contrato de técnicas de reproducción humana asistida y se dictan otras disposiciones. En: Gaceta 380/03. Proyecto de ley 046 de 2003; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. Zhang, Hangyu; Park, Jaehyung; Jiang, Yonghou; Woodrow, Kim A (2017) Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds. En:Acta Biomaterialia; Vol. 55; pp. 183 - 193; Disponible en: https://www.sciencedirect.com/science/article/pii/S1742706117302143. Disponible en: https://doi.org/10.1016/j.actbio.2017.03.041. Fong, Jessica F.Y.; Ng, Yann H.; Ng, Sing M. (2018) Carbon dots as a new class of light emitters for biomedical diagnostics and therapeutic applications. En:Fullerenes, Graphenes and Nanotubes: A Pharmaceutical Approach; pp. 227 - 295; Elsevier; 9780128136911; Disponible en: 10.1016/B978-0-12-813691-1.00007-5. Clopatofsky, Jairo Rául (2006) Por medio de la cual se reglamentan las técnicas de reproducción humana asistida, la investigación con células madre y se dictan otras disposiciones. En: Gaceta 512/06. Proyecto de Ley 172 de 2006; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. McHale, MK; Bergmann, NM; West, JL (2019) Histogenesis in three dimensional scaffolds. En:Principles of regenerative medicine 3rd ed; pp. 661 - 674; Tan, Xian Wen; Romainor, Ain Nadirah Binti; Chin, Suk Fun; Ng, Sing Muk (2014) Carbon dots production via pyrolysis of sago waste as potential probe for metal ions sensing. En:Journal of Analytical and Applied Pyrolysis; Vol. 105; pp. 157 - 165; Elsevier B.V.; Disponible en: 10.1016/j.jaap.2013.11.001. Morales, Jorge Ignacio (2008) Por medio del cual se reglamenta en todo el territorio nacional la práctica de la gestación sustitutiva mediante las técnicas de reproducción humana asistida y se dictan otras disposiciones. En: Gaceta 771/08. Proyecto de Ley 196 de 2008; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. Ramesh, Niranjan; Moratti, Stephen C.; Dias, George J. (2018) Hydroxyapatite–polymer biocomposites for bone regeneration: A review of current trends. En:Journal of Biomedical Materials Research; Vol. 106; No. 5; pp. 2046 - 2057; Disponible en: 10.1002/jbm.b.33950. Mishra, Vijay; Patil, Akshay; Thakur, Sourav; Kesharwani, Prashant (2018) Carbon dots: emerging theranostic nanoarchitectures. En:Drug Discovery Today; Vol. 23; No. 6; pp. 1219 - 1232; Elsevier Ltd; Disponible en: 10.1016/j.drudis.2018.01.006. Morales, Jorge Ignacio (2009) Por medio del cual se establecen procedimientos para permitir en todo el territorio nacional la práctica de la gestación sustitutiva en desarrollo de las técnicas de reproducción asistida y se dictan otras disposiciones. En: Gaceta 609/09. Proyecto de Ley 037 de 2009; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. Tripathy, Nirmalya; Perumal, Elumalai; Ahmad, Rafiq; Song, Jeong Eun; Khang, Gilson (2019) Hybrid Composite Biomaterials. En:Principles of regenerative medicine 3rd ed; pp. 695 - 714; Sagbas, Selin; Sahiner, Nurettin (2018) Carbon dots: Preparation, properties, and application. En:Nanocarbon and its Composites: Preparation, Properties and Applications; pp. 651 - 676; Elsevier; 9780081025093; Disponible en: 10.1016/B978-0-08-102509-3.00022-5. Acuña, Laureano Augusto (2013) Por medio del cual se reconoce la infertilidad como enfermedad y se establecen criterios para su cobertura médico asistencial por parte del Sistema de Salud del Estado. En: Gaceta 779/13. Proyecto de Ley 109 de 2013; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. Croisier, F; Jérome, C (2013) Chitosan based biomaterials for tissue engineering. En:Eur Polym J; Vol. 49; pp. 780 - 792; Date, Pranjali; Tanwar, Archana; Ladage, Priyanka; Kodam, Kisan M.; Ottoor, Divya (2020) Carbon dots-incorporated pH-responsive agarose-PVA hydrogel nanocomposites for the controlled release of norfloxacin drug. En:Polymer Bulletin; Vol. 77; No. 10; pp. 5323 - 5344; Springer; Disponible en: https://doi.org/10.1007/s00289-019-03015-3. Disponible en: 10.1007/s00289-019-03015-3. Guerra, María del Rosario (2016) Por medio del cual se prohíbe la práctica de la maternidad subrogada al ser una categoría de trata de personas y una explotación de la mujer con fines reproductivos. En: Gaceta 086/16. Proyecto de Ley 202 de 2016; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. Kulanthaivel, Senthilguru; Rathnam, V S Sharan; Agarwal, Tarun; Pradhan, Susanta; Pal, Kunal; Giri, Supratim; Maiti, Tapas; Banerjee, Indranil (2017) Gum tragacanth. En:J. Mater. Chem. B; Vol. 5; Disponible en: 10.1039/C7TB00390K. Cui, Fangchao; Sun, Jiadi; Ji, Jian; Yang, Xingxing; Wei, Kaimin; Xu, Hongwen; Gu, Qingyin; Zhang, Yinzhi; Sun, Xiulan (2021) Carbon dots-releasing hydrogels with antibacterial activity, high biocompatibility, and fluorescence performance as candidate materials for wound healing. En:Journal of Hazardous Materials; Vol. 406; pp. 124330 - 124330; Elsevier B.V.; Disponible en: 10.1016/j.jhazmat.2020.124330. Guerra, María del Rosario (2016) Por medio del cual se prohíbe la práctica de alquiler de vientres en Colombia por ser una categoría de trata de personas y una explotación de la mujer con fines reproductivos. En: Gaceta 554/16. Proyecto de Ley 026 de 2016; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. Hacker, Michael C.; Krieghoff, Jan; Mikos, Antonios G. (2019) Synthetic polymers. En:Principles of regenerative medicine 3rd ed; pp. 559 - 590; Ehtesabi, Hamide; Roshani, Shabnam; Bagheri, Zeinab; Yaghoubi-Avini, Mohammad (2019) Carbon dots-Sodium alginate hydrogel: A novel tetracycline fluorescent sensor and adsorber. En:Journal of Environmental Chemical Engineering; Vol. 7; No. 5; pp. 103419 - 103419; Elsevier Ltd; Disponible en: 10.1016/j.jece.2019.103419. Duque, Luis Fernando (2017) Por medio de la cual se reglamenta la reproducción humana asistida, la procreación con asistencia científica y se dictan otras disposiciones. En: Gaceta 713/17. Proyecto de Ley 88 de 2017; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. Maji, Kanchan; Dasgupta, Sudip; Pramanik, Krishna; Bissoyi, Akalabya (2018) Preparation and characterization of gelatin-chitosan-nanoβ-TCP based scaffold for orthopaedic application. En:Materials Science and Engineering: C; Vol. 86; Disponible en: 10.1016/j.msec.2018.02.001. Ray, Suprakas Sinha; Gusain, Rashi; Kumar, Neeraj (2020) Carbon nanomaterials: synthesis, functionalization, and properties. En:Carbon Nanomaterial-Based Adsorbents for Water Purification; pp. 137 - 179; Elsevier; Disponible en: 10.1016/b978-0-12-821959-1.00007-6. Guerra, María del Rosario (2017) Por medio del cual se prohíbe la maternidad subrogada con fines lucrativos y se crean controles para prevenir esta práctica. En: Gaceta 1025/17. Proyecto de Ley 186 de 2017; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. Zhang, Haifeng; Mao, Xiyuan; Du, Zijing; Jiang, Wenbo; Han, Xiuguo; Zhao, Danyang; Han, Dong; Li, Qingfeng (2016) Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model. En:Science and Technology of Advanced Materials; Vol. 17; pp. 136 - 148; Disponible en: 10.1080/14686996.2016.1145532. Sarkar, Niladri; Sahoo, Gyanaranjan; Das, Rashmita; Prusty, Gyanaranjan; Swain, Sarat K. (2017) Carbon quantum dot tailored calcium alginate hydrogel for pH responsive controlled delivery of vancomycin. En:European Journal of Pharmaceutical Sciences; Vol. 109; pp. 359 - 371; Elsevier B.V.; Disponible en: 10.1016/j.ejps.2017.08.015. Benedetti, Armando Alberto (2018) Por medio de la cual se reglamenta la reproducción humana asistida, la procreación con asistencia científica y se dictan otras disposiciones. En: Gaceta 543/18. Proyecto de Ley 019 de 2018; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. Zheng, Xin Ting; Ananthanarayanan, Arundithi; Luo, Kathy Qian; Chen, Peng (2015) Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. En:Small; Vol. 11; No. 14; pp. 1620 - 1636; Disponible en: 10.1002/smll.201402648. Argenta, Débora F; dos Santos, Talitha C; Campos, Angela M; Caon, Thiago (2019) Chapter 3. En:Nanocarriers for Drug Delivery; pp. 81 - 131; 978-0-12-814033-8; Disponible en: https://app.dimensions.ai/details/publication/pub.1107570734; http://www.sciencedirect.com/science/article/pii/B9780128140338000035; https://app.dimensions.ai/details/publication/pub.1107570734%0Ahttp://www.sciencedirect.com/science/article/pii/B97801281403. Guerra, María del Rosario (2018) Por medio del cual se prohíbe la maternidad subrogada con fines de lucro en Colombia y se reglamenta en otros casos. En: Gaceta 576/18. Proyecto de Ley 70 de 2018; Disponible en: http://svrpubindc.imprenta.gov.co/senado/view/gestion/gacetaPublica.xhtml. Gogoi, Satyabrat; Kumar, Manishekhar; Mandal, Biman B; Karak, Niranjan (2016) A renewable resource based carbon dot decorated hydroxyapatite nanohybrid and its fabrication with waterborne hyperbranched polyurethane for bone tissue engineering. En:RSC Adv.; Vol. 6; No. 31; pp. 26066 - 26076; The Royal Society of Chemistry; Disponible en: http://dx.doi.org/10.1039/C6RA02341J. Disponible en: 10.1039/C6RA02341J. Ganguly, Sayan; Das, Poushali; Das, Narayan Ch (2019) Characterization tools and techniques of hydrogels. En:Hydrogels Based on Natural Polymers; pp. 481 - 517; Elsevier; 9780128164211; Disponible en: 10.1016/B978-0-12-816421-1.00016-1.Murcia, Humberto; G.J. T. CLII 2393 (1976) Sentencia de Casación. : Corte Suprema de Justicia; Disponible en: https://cortesuprema.gov.co/corte/wp-content/uploads/subpage/GJ/Gaceta%20Judicial/GJ%20CLII%20Parte%201%20n.%202393%20(1976).pdf. Galli, C; Passeri, G; MacAluso, G M (2010) Critical reviews in oral biology & medicine: Osteocytes and WNT: The mechanical control of bone formation. En:Journal of Dental Research; Vol. 89; No. 4; pp. 331 - 343; Disponible en: 10.1177/0022034510363963. Castro, Leonardo Enrique Valencia; Martínez, Cinthia Jhovanna Pérez; Del Castillo Castro, Teresa; Ortega, María Mónica Castillo; Encinas, José Carmelo (2015) Chemical polymerization of pyrrole in the presence of L-serine or L-glutamic acid: Electrically controlled amoxicillin release from composite hydrogel. En:Journal of Applied Polymer Science; Vol. 132; No. 15; pp. n/a - n/a; John Wiley and Sons Inc; Disponible en: http://doi.wiley.com/10.1002/app.41804. Disponible en: 10.1002/app.41804.Villaverde, Maria Silvia (2015) Providencia. : Departamento judicial de Lomas de Zamora; Atala, Anthony; Lanza, Robert; Mikos G, Antonios; Nerem, Robert (2019) Preclinical bone repair models in regenerative medicine. En:Principles of regenerative medicine 3rd ed; pp. 761 - 767; Aswathy, S. H.; Narendrakumar, U.; Manjubala, I. (2020) Commercial hydrogels for biomedical applications. En:Heliyon; Vol. 6; No. 4; pp. e03719 - e03719; Elsevier Ltd; Disponible en: 10.1016/j.heliyon.2020.e03719.Naranjo, Gloria Patricia (1997) La ley colombiana ante la reproducción asistida. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=5617409. Carson, Joshua S; Bostrom, Mathias P G (2007) Synthetic bone scaffolds and fracture repair. En:Injury; Vol. 38; No. SUPPL. 1; Disponible en: 10.1016/j.injury.2007.02.008. Stejskal, Jaroslav (2017) Conducting polymer hydrogels. En:Chemical Papers; Vol. 71; No. 2; pp. 269 - 291; De Gruyter Open Ltd; Disponible en: https://link-springer-com.ez.urosario.edu.co/article/10.1007/s11696-016-0072-9. Disponible en: 10.1007/s11696-016-0072-9.Vidal, Jaime (2019) Acerca de la regulación de las técnicas de reproducción humana asistida. En: Actualidad Jurídica Iberomericana. Vol. No 10 Bis; pp. 478 - 513; 2386; Disponible en: https://idibe.org/wp-content/uploads/2019/08/478-513.pdf. Zhu, Y; Wagner, W (2019) Design principles in biomaterials and scaffols. En:Principles of regenerative medicine 3rd ed; pp. 505 - 522; Sharma, Kashma; Kumar, Vijay; Kaith, B. S.; Kalia, Susheel; Swart, Hendrik C. (2017) Conducting Polymer Hydrogels and Their Applications. En:Conducting Polymer Hybrids; pp. 193 - 221; Springer, Cham; Disponible en: https://link-springer-com.ez.urosario.edu.co/chapter/10.1007/978-3-319-46458-9_7. Disponible en: 10.1007/978-3-319-46458-9_7.Casado, María (1997) Reproducción humana asistida: los problemas que suscita desde la bioética y el derecho. En: Universidad Autónoma de Barcelona. Vol. 53; Lee, S J; Lim, G J; Lee, J W; Atala, A; Yoo, J J (2006) In vitro evaluation of a poly(lactide-co-glycolide)/collagen composite scaffold for bone regeneration. En:Biomaterials; Vol. 27; pp. 3466 - 3472; Bansal, Mahima; Dravid, Anusha; Aqrawe, Zaid; Montgomery, Johanna; Wu, Zimei; Svirskis, Darren (2020) Conducting polymer hydrogels for electrically responsive drug delivery. En:Journal of Controlled Release; Vol. 328; pp. 192 - 209; Elsevier B.V.; Disponible en: 10.1016/j.jconrel.2020.08.051. Dimitriou, R; Jones, E; McGonagle, D; Giannoudis, P (2011) Bone regeneration: current concepts and future directions. En:BMC Med; Vol. 9; No. 66; Del Agua, Isabel; Marina, Sara; Pitsalidis, Charalampos; Mantione, Daniele; Ferro, Magali; Iandolo, Donata; Sanchez-Sanchez, Ana; Malliaras, George G.; Owens, Róisín M.; Mecerreyes, David (2018) Conducting Polymer Scaffolds Based on Poly(3,4-ethylenedioxythiophene) and Xanthan Gum for Live-Cell Monitoring. En:ACS Omega; Vol. 3; No. 7; pp. 7424 - 7431; American Chemical Society; Disponible en: https://pubs.acs.org/sharingguidelines. Disponible en: 10.1021/acsomega.8b00458. Liu, X; Liao, X; Luo, E; Chen, W; Bao, C; Xu, H H K (2014) Mesenchymal stem cells systematically injected into femoral marrow of dogs home to mandibular defects to enhance new bone formation. En:Tissue Eng Part A; Vol. 20; No. 3-4; pp. 883 - 892; Sahiner, Nurettin; Demirci, Sahin (2016) Conducting semi-interpenetrating polymeric composites via the preparation of poly(aniline), poly(thiophene), and poly(pyrrole) polymers within superporous poly(acrylic acid) cryogels. En:Reactive and Functional Polymers; Vol. 105; pp. 60 - 65; Elsevier B.V.; Disponible en: 10.1016/j.reactfunctpolym.2016.05.017. Herforf, A; Stoffella, E; Stanford, C (2014) Bone grafts and bone substitute materials. En:Principles and practice of single implant and restorations; pp. 75 - 86; Zamora-Sequeira, Roy; Ardao, Inés; Starbird, Ricardo; García-González, Carlos A. (2018) Conductive nanostructured materials based on poly-(3,4-ethylenedioxythiophene) (PEDOT) and starch/κ-carrageenan for biomedical applications. En:Carbohydrate Polymers; Vol. 189; pp. 304 - 312; Elsevier Ltd; Disponible en: 10.1016/j.carbpol.2018.02.040. Burr, David B; Akkus, Ozan (2013) Bone Morphology and Organization. En:Basic and Applied Bone Biology; pp. 3 - 25; Elsevier Inc.; 9780124160156; Disponible en: http://dx.doi.org/10.1016/B978-0-12-416015-6.00001-0. Disponible en: 10.1016/B978-0-12-416015-6.00001-0. Mawad, Damia; Lauto, Antonio; Wallace, Gordon G. (2016) Conductive Polymer Hydrogels. En:Polymeric Hydrogels as Smart Biomaterials; pp. 19 - 44; Springer, Cham; Disponible en: https://link-springer-com.ez.urosario.edu.co/chapter/10.1007/978-3-319-25322-0_2. Disponible en: 10.1007/978-3-319-25322-0_2. Eivazzadeh-Keihan, Reza; Maleki, Ali; de la Guardia, Miguel; Bani, Milad Salimi; Chenab, Karim Khanmohammadi; Pashazadeh-Panahi, Paria; Baradaran, Behzad; Mokhtarzadeh, Ahad; Hamblin, Michael R (2019) Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. En:Journal of Advanced Research; Vol. 18; No. March; pp. 185 - 201; Cairo University; Disponible en: https://doi.org/10.1016/j.jare.2019.03.011. Disponible en: 10.1016/j.jare.2019.03.011. Tang, Xinhua; Li, Haoran; Du, Zhuwei; Wang, Weida; Ng, How Yong (2015) Conductive polypyrrole hydrogels and carbon nanotubes composite as an anode for microbial fuel cells. En:RSC Advances; Vol. 5; No. 63; pp. 50968 - 50974; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2015/ra/c5ra06064h; https://pubs.rsc.org/en/content/articlelanding/2015/ra/c5ra06064h. Disponible en: 10.1039/c5ra06064h. Abramoff, Benjamin; Caldera, Franklin E (2020) Osteoarthritis: Pathology, Diagnosis, and Treatment Options. En:Medical Clinics of North America; Vol. 104; No. 2; pp. 293 - 311; Disponible en: https://www.sciencedirect.com/science/article/pii/S0025712519301130. Disponible en: https://doi.org/10.1016/j.mcna.2019.10.007. Effati, Elham; Pourabbas, Behzad; Zakerhamidi, Mohammad Sadegh (2019) Continuous microfluidic fabrication of polypyrrole nanoparticles. En:RSC Advances; Vol. 9; No. 30; pp. 16977 - 16988; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2019/ra/c9ra00946a; https://pubs.rsc.org/en/content/articlelanding/2019/ra/c9ra00946a. Disponible en: 10.1039/c9ra00946a. Liu, Yanpeng; Yu, Peng; Peng, Xu; Huang, Qin; Ding, Mingming; Chen, Yantao; Jin, Ruitao; Xie, Jing; Zhao, Changsheng; Li, Jianshu (2019) Hexapeptide-conjugated calcitonin for targeted therapy of osteoporosis. En:Journal of Controlled Release; Vol. 304; pp. 39 - 50; Disponible en: https://www.sciencedirect.com/science/article/pii/S0168365919302457. Disponible en: https://doi.org/10.1016/j.jconrel.2019.04.042. Weiser, Jennifer R.; Saltzman, W. Mark (2014) Controlled release for local delivery of drugs: Barriers and models. En:Journal of Controlled Release; Vol. 190; pp. 664 - 673; Elsevier B.V.; Disponible en: 10.1016/j.jconrel.2014.04.048. Mora-Raimundo, Patricia; Lozano, Daniel; Manzano, Miguel; Vallet-Regí, María (2019) Nanoparticles to Knockdown Osteoporosis-Related Gene and Promote Osteogenic Marker Expression for Osteoporosis Treatment. En:ACS Nano; Disponible en: 10.1021/acsnano.9b00241. Shin, Bom Yi; Kim, Jaeyun (2015) Controlled Remodeling of Hydrogel Networks and Subsequent Crosslinking: A Strategy for Preparation of Alginate Hydrogels with Ultrahigh Density and Enhanced Mechanical Properties. En:Macromolecular Chemistry and Physics; Vol. 216; No. 8; pp. 914 - 921; Wiley-VCH Verlag; Disponible en: http://doi.wiley.com/10.1002/macp.201400503. Disponible en: 10.1002/macp.201400503. Encyclopaedia Britannica (2020) Osteoarthritis. En:Encyclopedia Britannica; Lee, Kuen Yong; Rowley, Jon A.; Eiselt, Petra; Moy, Erick M.; Bouhadir, Kamal H.; Mooney, David J. (2000) Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. En:Macromolecules; Vol. 33; No. 11; pp. 4291 - 4294; ACS; Disponible en: https://hanyang.elsevierpure.com/en/publications/controlling-mechanical-and-swelling-properties-of-alginate-hydrog. Disponible en: 10.1021/ma9921347. Franz, Sandra; Rammelt, Stefan; Scharnweber, Dieter; Simon, Jan C (2011) Immune responses to implants – A review of the implications for the design of immunomodulatory biomaterials. En:Biomaterials; Vol. 32; No. 28; pp. 6692 - 6709; Disponible en: https://www.sciencedirect.com/science/article/pii/S0142961211006491. Disponible en: https://doi.org/10.1016/j.biomaterials.2011.05.078. Friedli, Andrienne C.; Schlager, Inge R.; Wright, Stephen W. (2005) Demonstrating encapsulation and release: A new take on alginate complexation and the nylon rope trick. En:Journal of Chemical Education; Vol. 82; No. 7; pp. 1017 - 1020; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/ed082p1017. Disponible en: 10.1021/ed082p1017. Shin, Jae-Won; Mooney, David J (2016) Improving Stem Cell Therapeutics with Mechanobiology. En:Cell Stem Cell; Vol. 18; No. 1; pp. 16 - 19; Disponible en: https://www.sciencedirect.com/science/article/pii/S1934590915005524. Disponible en: https://doi.org/10.1016/j.stem.2015.12.007. Li, Jianyu; Mooney, David J. (2016) Designing hydrogels for controlled drug delivery. En:Nature Reviews Materials; Vol. 1; No. 12; Nature Publishing Group; Disponible en: /pmc/articles/PMC5898614/; /pmc/articles/PMC5898614/?report=abstract; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898614/. Disponible en: 10.1038/natrevmats.2016.71. Capes, J S; Ando, H Y; Cameron, R E (2005) Fabrication of polymeric scaffolds. En:Journal of material schience:materials in medicine; Vol. 16; pp. 1069 - 1075; Heo, Dong Nyoung; Lee, Se Jun; Timsina, Raju; Qiu, Xiangyun; Castro, Nathan J.; Zhang, Lijie Grace (2019) Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. En:Materials Science and Engineering C; Vol. 99; pp. 582 - 590; Elsevier Ltd; Disponible en: 10.1016/j.msec.2019.02.008. He, Jianhua; Chen, Guobao; Liu, Mengying; Xu, Zhiling; Chen, Hua; Yang, Li; Lv, Yonggang (2020) Scaffold strategies for modulating immune microenvironment during bone regeneration. En:Materials Science and Engineering C; Vol. 108; pp. 110 - 411; Elsevier; Disponible en: https://doi.org/10.1016/j.msec.2019.110411. Disponible en: 10.1016/j.msec.2019.110411. Ding, Han; Du, Feiyue; Liu, Pengchang; Chen, Zhijun; Shen, Jiacong (2015) DNA-carbon dots function as fluorescent vehicles for drug delivery. En:ACS Applied Materials and Interfaces; Vol. 7; No. 12; pp. 6889 - 6897; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/acsami.5b00628. Disponible en: 10.1021/acsami.5b00628. Shuai, Cijun; Nie, Yi; Gao, Chengde; Feng, Pei; Zhuang, Jingyu; Zhou, Ying; Peng, Shuping (2013) The microstructure evolution of nanohydroxapatite powder sintered for bone tissue engineering. En:Journal of Experimental Nanoscience; Vol. 8; No. 5; pp. 762 - 773; Disponible en: 10.1080/17458080.2011.606507. Javanbakht, Siamak; Namazi, Hassan (2018) Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. En:Materials Science and Engineering C; Vol. 87; pp. 50 - 59; Elsevier Ltd; Disponible en: 10.1016/j.msec.2018.02.010. Menéndez-Bueyes, Luis R; del Carmen Soler Fernández, María (2017) Paget's Disease of Bone: Approach to Its Historical Origins. En:Reumatología Clínica (English Edition); Vol. 13; No. 2; pp. 66 - 72; Disponible en: https://www.sciencedirect.com/science/article/pii/S2173574317300011. Disponible en: https://doi.org/10.1016/j.reumae.2016.02.009. Wen, Hong; Jung, Huijeong; Li, Xuhong (2015) Drug Delivery Approaches in Addressing Clinical Pharmacology-Related Issues: Opportunities and Challenges. En:AAPS Journal; Vol. 17; No. 6; pp. 1327 - 1340; Springer New York LLC; Disponible en: https://link.springer.com/article/10.1208/s12248-015-9814-9. Disponible en: 10.1208/s12248-015-9814-9. Campana, V; Milano, G; Pagano, E; Barba, M; Cicione, C; Salonna, G; Lattanzi, W; Logroscino, G (2014) Bone substitutes in orthopaedic surgery: from basic science to clinical practice. En:J Mater Sci Mater Med; Vol. 25; pp. 2445 - 2461; Shakesheff, Kevin M. (2011) Drug delivery systems. En:Handbook of Biodegradable Polymers: Isolation, Synthesis, Characterization and Applications; pp. 363 - 378; 9783527324415; Disponible en: https://www.nibib.nih.gov/science-education/science-topics/drug-delivery-systems-getting-drugs-their-targets-controlled-manner. Disponible en: 10.1002/9783527635818.ch15. Lowe, Baboucarr; Hardy, John G; Walsh, Laurence J (2019) Optimizing Nanohydroxyapatite Nanocomposites for Bone Tissue Engineering. En:ACS Omega; Vol. 5; No. 1; pp. 1 - 9; Kohrs, Nicholas J.; Liyanage, Thilanga; Venkatesan, Nandakumar; Najarzadeh, Amir; Puleo, David A. (2019) Drug delivery systems and controlled release. En:Encyclopedia of Biomedical Engineering; Vol. 1-3; pp. 316 - 329; Elsevier; 9780128051443; Disponible en: 10.1016/B978-0-12-801238-3.11037-2. Roberts, Timothy; Rosenbaum, Andrew (2012) Bone grafts, bone substitutes and orthobiologics: The bridge between basic science and clinical advancements in fracture healing. En:Organogenesis; Vol. 8; pp. 114 - 124; Puiggalí-Jou, Anna; del Valle, Luis J.; Alemán, Carlos (2019) Drug delivery systems based on intrinsically conducting polymers. En:Journal of Controlled Release; Vol. 309; pp. 244 - 264; Elsevier B.V.; Disponible en: 10.1016/j.jconrel.2019.07.035. Ghassemi, Toktam; al, Et (2018) Current Concepts in Scaffolding for Bone Tissue Engineering. En:The archives of bone and joint surgery; Vol. 6; No. 2; pp. 90 - 99; Fu, Yao; Kao, Weiyuan John (2010) Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. En:Expert Opinion on Drug Delivery; Vol. 7; No. 4; pp. 429 - 444; Expert Opin Drug Deliv; Disponible en: https://pubmed.ncbi.nlm.nih.gov/20331353/. Disponible en: 10.1517/17425241003602259. Gestarsalud (2020) La osteoporosis en Colombia amerita un programa prioritario en salud pública | Gestarsalud. En:Gestarsalud; Disponible en: https://gestarsalud.com/2020/10/20/la-osteoporosis-en-; colombia-amerita-un-programa-prioritario-en-salud-; publica/. Distler, Thomas; Polley, Christian; Shi, Fukun; Schneidereit, Dominik; Ashton, Mark. D.; Friedrich, Oliver; Kolb, Jürgen F.; Hardy, John G.; Detsch, Rainer; Seitz, Hermann; Boccaccini, Aldo R. (2021) Electrically Conductive and 3D-Printable Oxidized Alginate-Gelatin Polypyrrole:PSS Hydrogels for Tissue Engineering. En:Advanced Healthcare Materials; pp. 2001876 - 2001876; John Wiley and Sons Inc; Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/adhm.202001876. Disponible en: 10.1002/adhm.202001876. Nair, Arun K; Gautieri, Alfonso; Chang, Shu-Wei; Buehler, Markus J (2013) Molecular mechanics of mineralized collagen fibrils in bone. En:Nature Communications volume; Vol. 4; No. 1724; Disponible en: https://doi.org/10.1038/ncomms2720. Paradee, Nophawan; Sirivat, Anuvat (2014) Electrically controlled release of benzoic acid from poly(3,4- ethylenedioxythiophene)/alginate matrix: Effect of conductive poly(3,4-ethylenedioxythiophene) morphology. En:Journal of Physical Chemistry B; Vol. 118; No. 31; pp. 9263 - 9271; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/jp502674f. Disponible en: 10.1021/jp502674f. Sheikh, Faheem A; Ju, Hyung Woo; Moon, Bo Mi; Lee, Ok Joo; Kim, Jung-Ho; Park, Hyun Jung; Kim, Dong Wook; Kim, Dong-Kyu; Jang, Ji Eun; Khang, Gilson; Park, Chan Hum (2015) Hybrid scaffolds based on PLGA and silk for bone tissue engineering. En:J Tissue Eng Regen Med; Vol. 10; No. 3; pp. 209 - 221; 1932-6254; Disponible en: http://dx.doi.org/10.1016/j.trsl.2010.06.007. Disponible en: 10.1002/term. Zhang, Danying; Di, Feng; Zhu, Yinyan; Xiao, Yinghong; Che, Jianfei (2015) Electroactive hybrid hydrogel: Toward a smart coating for neural electrodes. En:Journal of Bioactive and Compatible Polymers; Vol. 30; No. 6; pp. 600 - 616; SAGE Publications Ltd; Disponible en: http://journals.sagepub.com/doi/10.1177/0883911515591647. Disponible en: 10.1177/0883911515591647. Shao, Dan; Lu, Mengmeng; Xu, Duo; Zheng, Xiao; Pan, Yue; Song, Yubin; Xu, Jinying; Li, Mingqiang; Zhang, Ming; Li, Jing; Chi, Guangfan; Chen, Li; Yang, Bai (2017) Carbon dots for tracking and promoting the osteogenic differentiation of mesenchymal stem cells. En:Biomaterials Science; Vol. 5; No. 9; pp. 1820 - 1827; Royal Society of Chemistry; Disponible en: 10.1039/c7bm00358g. Kleber, Carolin; Lienkamp, Karen; Rühe, Jürgen; Asplund, Maria (2019) Electrochemically Controlled Drug Release from a Conducting Polymer Hydrogel (PDMAAp/PEDOT) for Local Therapy and Bioelectronics. En:Advanced Healthcare Materials; Vol. 8; No. 10; pp. 1801488 - 1801488; Wiley-VCH Verlag; Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201801488. Disponible en: 10.1002/adhm.201801488. Turnbull, Gareth; Clarke, Jon; Picard, Frédéric; Riches, Philip; Jia, Luanluan; Han, Fengxuan; Li, Bin; Shu, Wenmiao (2018) 3D bioactive composite scaffolds for bone tissue engineering. En:Bioactive Materials; Vol. 3; No. 3; pp. 278 - 314; Disponible en: 10.1016/j.bioactmat.2017.10.001. Spencer, Andrew R.; Primbetova, Asel; Koppes, Abigail N.; Koppes, Ryan A.; Fenniri, Hicham; Annabi, Nasim (2018) Electroconductive Gelatin Methacryloyl-PEDOT:PSS Composite Hydrogels: Design, Synthesis, and Properties. En:ACS Biomaterials Science and Engineering; Vol. 4; No. 5; pp. 1558 - 1567; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/acsbiomaterials.8b00135. Disponible en: 10.1021/acsbiomaterials.8b00135. Maia, F; Correlo, V; Oliveira, J; Reis, R (2019) Natural origin materials for bone tissue engineering: Properties, processing, and performance. En:Principles of Regenerative Medicine; pp. 535 - 558; 9780128098806; Disponible en: 10.1016/c2015-0-02433-9. Guiseppi-Elie, Anthony (2010) Electroconductive hydrogels: Synthesis, characterization and biomedical applications. En:Biomaterials; Vol. 31; No. 10; pp. 2701 - 2716; Elsevier; Disponible en: 10.1016/j.biomaterials.2009.12.052. Wenisch, S; Stahl, J P; Horas, U; Heiss, C; Kilian, O; Trinkaus, K; Hild, A; Schnettler, R (2003) In vivo mechanisms of hydroxyapatite ceramic degradation by osteoclasts: Fine structural microscopy. En:Journal of Biomedical Materials Research; Vol. 67; No. 3; pp. 713 - 718; Disponible en: 10.1002/jbm.a.10091. Shi, Xingwei; Hu, Yanli; Tu, Kai; Zhang, Lina; Wang, Hao; Xu, Jian; Zhang, Hongming; Li, Ji; Wang, Xianhong; Xu, Min (2013) Electromechanical polyaniline-cellulose hydrogels with high compressive strength. En:Soft Matter; Vol. 9; No. 42; pp. 10129 - 10134; The Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2013/sm/c3sm51490k; https://pubs.rsc.org/en/content/articlelanding/2013/sm/c3sm51490k. Disponible en: 10.1039/c3sm51490k. Meng Bao, Chao Le; Y.L., Erin; S.K., Mark; Liu, Yuchun; Choolani, Mahesh; K.Y., Jerry (2013) Advances in Bone Tissue Engineering. En:Regenerative Medicine and Tissue Engineering; pp. 1 - 27; Disponible en: 10.5772/55916. Seyfoddin, Ali; Dezfooli, Seyedehsara Masoomi; Greene, Carol Ann (2019) Engineering drug delivery systems. En:Engineering Drug Delivery Systems; pp. 1 - 238; Elsevier; 9780081025482; Disponible en: 10.1016/C2017-0-01844-X. Smrke, Dragica; Roman, Primo; Veselko, Matja; Gubi, Borut (2013) Treatment of Bone Defects — Allogenic Platelet Gel and Autologous Bone Technique. En:Regenerative Medicine and Tissue Engineering; Disponible en: 10.5772/55987. Liu, Yamin; Wang, Ping; Shiral Fernando, K. A.; Lecroy, Gregory E.; Maimaiti, Halidan; Harruff-Miller, Barbara A.; Lewis, William K.; Bunker, Christopher E.; Hou, Zhi Ling; Sun, Ya Ping (2016) Enhanced fluorescence properties of carbon dots in polymer films. En:Journal of Materials Chemistry C; Vol. 4; No. 29; pp. 6967 - 6974; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2016/tc/c6tc01932c; https://pubs.rsc.org/en/content/articlelanding/2016/tc/c6tc01932c. Disponible en: 10.1039/c6tc01932c. Rambina, K (2019) Biomineralization and bone regeneration. En:Principles of regenerative medicine 3rd ed; pp. 853 - 866; Chandrawati, Rona (2016) Enzyme-responsive polymer hydrogels for therapeutic delivery. En:Experimental Biology and Medicine; Vol. 241; No. 9; pp. 972 - 979; SAGE Publications Inc.; Disponible en: https://pubmed.ncbi.nlm.nih.gov/27188515/. Disponible en: 10.1177/1535370216647186. Pereira, H; Cengiz, I; Silva, F; Reis, R; Oliveira, J (2020) Scaffolds and coatings for bone regeneration. En:J Mater Sci Mater Med; Vol. 31; No. 27; Xiao, J; Liu, P; Wang, C. X.; Yang, G. W. (2017) External field-assisted laser ablation in liquid: An efficient strategy for nanocrystal synthesis and nanostructure assembly. En:Progress in Materials Science; Vol. 87; pp. 140 - 220; Disponible en: https://www.sciencedirect.com/science/article/pii/S0079642517300269. Disponible en: 10.1016/j.pmatsci.2017.02.004. Bilezikian, J P; Raisz, L G; Martin, T J (2008) Principles of bone biology. En:Academic press; pp. 3 - 28; Vinchhi, Preksha; Rawal, Shruti U.; Patel, Mayur M. (2021) External stimuli-responsive drug delivery systems. En:Drug Delivery Devices and Therapeutic Systems; pp. 267 - 288; Elsevier; Disponible en: 10.1016/b978-0-12-819838-4.00023-7. Dilogo, Ismail Hadisoebroto; Rahmatika, Dina; Pawitan, Jeanne Adiwinata; Liem, Isabella Kurnia; Kurniawati, Tri; Kispa, Tera; Mujadid, Fajar (2020) Allogeneic umbilical cord-derived mesenchymal stem cells for treating critical-sized bone defects: a translational study. En:European Journal of Orthopaedic Surgery and Traumatology; No. 0123456789; Springer Paris; 0059002002765; Disponible en: https://doi.org/10.1007/s00590-020-02765-5. Disponible en: 10.1007/s00590-020-02765-5. Fuller, Eric G.; Sun, Hao; Dhavalikar, Rohan D.; Unni, Mythreyi; Scheutz, Georg M.; Sumerlin, Brent S.; Rinaldi, Carlos (2019) Externally Triggered Heat and Drug Release from Magnetically Controlled Nanocarriers. En:ACS Applied Polymer Materials; Vol. 1; No. 2; pp. 211 - 220; American Chemical Society (ACS); Disponible en: https://pubs.acs.org/doi/abs/10.1021/acsapm.8b00100. Disponible en: 10.1021/acsapm.8b00100. Meskinfam, M; Bertoldi, S; Albanese, N; Cerri, A; Tanzi, M C; Imani, R; Baheiraei, N; Farokhi, M; Farè, S (2018) Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration. En:Materials Science and Engineering C; Vol. 82; No. July 2017; pp. 130 - 140; Elsevier; Disponible en: http://dx.doi.org/10.1016/j.msec.2017.08.064. Disponible en: 10.1016/j.msec.2017.08.064. Dong, Yongqiang; Zhou, Nana; Lin, Xiaomei; Lin, Jianpeng; Chi, Yuwu; Chen, Guonan (2010) Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. En:Chemistry of Materials; Vol. 22; No. 21; pp. 5895 - 5899; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/cm1018844. Disponible en: 10.1021/cm1018844. Bauer, T; Muschler, G (2000) Bone graft materials: an overview of the basic science. En:Clin. Orthop. Relat. Res; Vol. 371; pp. 10 - 27; Uyen, Nguyen Thi Thanh; Hamid, Zuratul Ain Abdul; Tram, Nguyen Xuan Thanh; Ahmad, Nurazreena (2020) Fabrication of alginate microspheres for drug delivery: A review. En:International Journal of Biological Macromolecules; Vol. 153; pp. 1035 - 1046; Elsevier B.V.; Disponible en: 10.1016/j.ijbiomac.2019.10.233. O´Brien, Fergal (2011) Biomaterials and scaffolds for tissue engineering. En:materials today; Vol. 14; No. 3; pp. 88 - 95; Huang, Hong; Xu, Yue; Tang, Chun Jing; Chen, Jian Rong; Wang, Ai Jun; Feng, Jiu Ju (2014) Facile and green synthesis of photoluminescent carbon nanoparticles for cellular imaging. En:New Journal of Chemistry; Vol. 38; No. 2; pp. 784 - 789; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2014/nj/c3nj01185b; https://pubs.rsc.org/en/content/articlelanding/2014/nj/c3nj01185b. Disponible en: 10.1039/c3nj01185b. Tetteh, G; Khan, A S; Delaine-Smith, R M; Reilly, G C; Rehman, I U (2014) Electrospun polyurethane/hydroxyapatite bioactive Scaffolds for bone tissue engineering: The role of solvent and hydroxyapatite particles. En:Journal of the Mechanical Behavior of Biomedical Materials; Vol. 39; pp. 95 - 110; Elsevier; Disponible en: http://dx.doi.org/10.1016/j.jmbbm.2014.06.019. Disponible en: 10.1016/j.jmbbm.2014.06.019. Guo, Baolin; Finne-Wistrand, Anna; Albertsson, Ann Christine (2011) Facile synthesis of degradable and electrically conductive polysaccharide hydrogels. En:Biomacromolecules; Vol. 12; No. 7; pp. 2601 - 2609; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/bm200389t. Disponible en: 10.1021/bm200389t. Waite, P D; Morawetz, R B; Zeiger, H E; Pincock, J L (1989) Reconstruction of cranial defects with porous hydroxyapatite block. En:Neurosurgery; Vol. 25; pp. 214 - 217; Liu, Ting; Li, Na; Dong, Jiang Xue; Luo, Hong Qun; Li, Nian Bing (2016) Fluorescence detection of mercury ions and cysteine based on magnesium and nitrogen co-doped carbon quantum dots and IMPLICATION logic gate operation. En:Sensors and Actuators, B: Chemical; Vol. 231; pp. 147 - 153; Elsevier B.V.; Disponible en: 10.1016/j.snb.2016.02.141. Xie, Y; Zhang, L; Xiong, Q; Gao, Y; Ge, W; Tang, P (2019) Bench-to-bedside strategies for osteoporotic fracture: From osteoimmunology to mechanosensation. En:Bone res; Vol. 7; No. 25; Sun, Xiangcheng; Lei, Yu (2017) Fluorescent carbon dots and their sensing applications. En:TrAC; Vol. 89; pp. 163 - 180; Elsevier B.V.; Disponible en: 10.1016/j.trac.2017.02.001. Amini, AR; Laurencin, CT; Nukavarapu, SP (2012) Bone tissue engineering: recent advances and challenges. En:Crit Rev Biomed Eng.; Vol. 40; pp. 363 - 408; Wang, Ziyi; Liao, Han; Wu, Hao; Wang, Beibei; Zhao, Haidong; Tan, Mingqian (2015) Fluorescent carbon dots from beer for breast cancer cell imaging and drug delivery. En:Analytical Methods; Vol. 7; No. 20; pp. 8911 - 8917; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2015/ay/c5ay01978h; https://pubs.rsc.org/en/content/articlelanding/2015/ay/c5ay01978h. Disponible en: 10.1039/c5ay01978h. Morelli, Sabrina; Salerno, Simona; Holopainen, Jani; Ritala, Mikko; De Bartolo, Loredana (2015) Osteogenic and osteoclastogenic differentiation of co-cultured cells in polylactic acid-nanohydroxyapatite fiber scaffolds. En:Journal of Biotechnology; Vol. 204; pp. 53 - 62; Chen, Gengwen; Song, Fengling; Xiong, Xiaoqing; Peng, Xiaojun (2013) Fluorescent nanosensors based on fluorescence resonance energy transfer (FRET). En:Industrial and Engineering Chemistry Research; Vol. 52; No. 33; pp. 11228 - 11245; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/ie303485n. Disponible en: 10.1021/ie303485n. Zhao, Yue; Li, Zuhao; Jiang, Yingnan; Liu, Hou; Wang, Zhonghan; Yang, Bai; Lin, Quan (2020) Bioinspired mineral hydrogels as nanocomposite scaffolds for the promotion of osteogenic marker expression and the induction of bone regeneration in osteoporosis. En:El sevier Acta Biomaterialia; pp. 614 - 626; Mohammadi, Somayeh; Salimi, Abdollah (2018) Fluorometric determination of microRNA-155 in cancer cells based on carbon dots and MnO2 nanosheets as a donor-acceptor pair. En:Microchimica Acta; Vol. 185; No. 8; Springer-Verlag Wien; Disponible en: 10.1007/s00604-018-2868-5. Pavia, Donald L.; Lampman, Gary M.; Kriz, George S.; Vyvyan, James R. (2010) Introduction to spectroscopy. pp. 655 - 655; 9780495114789; Qu, Dan; Zheng, Min; Zhang, Ligong; Zhao, Haifeng; Xie, Zhigang; Jing, Xiabin; Haddad, Raid E.; Fan, Hongyou; Sun, Zaicheng (2014) Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. En:Scientific Reports; Vol. 4; No. 1; pp. 1 - 11; Nature Publishing Group; Disponible en: www.nature.com/scientificreports. Disponible en: 10.1038/srep05294. Chen, Qiang; Chen, Hong; Zhu, Lin; Zheng, Jie (2015) Fundamentals of double network hydrogels. En:Journal of Materials Chemistry B; Vol. 3; No. 18; pp. 3654 - 3676; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2015/tb/c5tb00123d; https://pubs.rsc.org/en/content/articlelanding/2015/tb/c5tb00123d. Disponible en: 10.1039/c5tb00123d. Tong, Meng Qi; Luo, Lan Zi; Xue, Peng Peng; Han, Yong Hui; Wang, Li Fen; Zhuge, De Li; Yao, Qing; Chen, Bin; Zhao, Ying Zheng; Xu, He Lin (2021) Glucose-responsive hydrogel enhances the preventive effect of insulin and liraglutide on diabetic nephropathy of rats. En:Acta Biomaterialia; Vol. 122; pp. 111 - 132; Acta Materialia Inc; Disponible en: 10.1016/j.actbio.2021.01.007. Shen, Di; Yu, Haojie; Wang, Li; Chen, Xiang; Feng, Jingyi; Li, Chengjiang; Xiong, Wei; Zhang, Qian (2021) Glucose-responsive hydrogel-based microneedles containing phenylborate ester bonds and N-isopropylacrylamide moieties and their transdermal drug delivery properties. En:European Polymer Journal; Vol. 148; pp. 110348 - 110348; Elsevier Ltd; Disponible en: 10.1016/j.eurpolymj.2021.110348. Martín, Cristina; Martín-Pacheco, Ana; Naranjo, Alicia; Criado, Alejandro; Merino, Sonia; Díez-Barra, Enrique; Herrero, M. Antonia; Vázquez, Ester (2019) Graphene hybrid materials? the role of graphene materials in the final structure of hydrogels. En:Nanoscale; Vol. 11; No. 11; pp. 4822 - 4830; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2019/nr/c8nr09728c; https://pubs.rsc.org/en/content/articlelanding/2019/nr/c8nr09728c. Disponible en: 10.1039/c8nr09728c. Servant, Ania; Leon, Veronica; Jasim, Dhifaf; Methven, Laura; Limousin, Patricia; Fernandez-Pacheco, Ester Vazquez; Prato, Maurizio; Kostarelos, Kostas (2014) Graphene-Based Electroresponsive Scaffolds as Polymeric Implants for On-Demand Drug Delivery. En:Advanced Healthcare Materials; Vol. 3; No. 8; pp. 1334 - 1343; Wiley-VCH Verlag; Disponible en: http://doi.wiley.com/10.1002/adhm.201400016. Disponible en: 10.1002/adhm.201400016. Liu, Wen; Diao, Haipeng; Chang, Honghong; Wang, Haojiang; Li, Tingting; Wei, Wenlong (2017) Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. En:Sensors and Actuators, B: Chemical; Vol. 241; pp. 190 - 198; Elsevier B.V.; Disponible en: 10.1016/j.snb.2016.10.068. Kashi, Mana; Baghbani, Fatemeh; Moztarzadeh, Fathollah; Mobasheri, Hamid; Kowsari, Elaheh (2018) Green synthesis of degradable conductive thermosensitive oligopyrrole/chitosan hydrogel intended for cartilage tissue engineering. En:International Journal of Biological Macromolecules; Vol. 107; pp. 1567 - 1575; Elsevier B.V.; Disponible en: 10.1016/j.ijbiomac.2017.10.015. Zhu, Shoujun; Meng, Qingnan; Wang, Lei; Zhang, Junhu; Song, Yubin; Jin, Han; Zhang, Kai; Sun, Hongchen; Wang, Haiyu; Yang, Bai (2013) Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging. En:Angewandte Chemie; Vol. 125; No. 14; pp. 4045 - 4049; Wiley; Disponible en: http://doi.wiley.com/10.1002/ange.201300519. Disponible en: 10.1002/ange.201300519. Gutiérrez-Pineda, Eduart; Cáceres-Vélez, Paolin Rocio; Rodríguez-Presa, María José; Moya, Sergio E.; Gervasi, Claudio A.; Amalvy, Javier I. (2018) Hybrid Conducting Composite Films Based on Polypyrrole and Poly(2-(diethylamino)ethyl methacrylate) Hydrogel Nanoparticles for Electrochemically Controlled Drug Delivery. En:Advanced Materials Interfaces; Vol. 5; No. 21; pp. 1800968 - 1800968; Wiley-VCH Verlag; Disponible en: http://doi.wiley.com/10.1002/admi.201800968. Disponible en: 10.1002/admi.201800968. Song, Yang; Song, Jianan; Shang, Minjing; Xu, Wenhua; Liu, Saier; Wang, Baoyi; Lu, Qinghua; Su, Yuanhai (2018) Hydrodynamics and mass transfer performance during the chemical oxidative polymerization of aniline in microreactors. En:Chemical Engineering Journal; Vol. 353; pp. 769 - 780; Elsevier B.V.; Disponible en: 10.1016/j.cej.2018.07.166. Yuk, Hyunwoo; Lu, Baoyang; Zhao, Xuanhe (2019) Hydrogel bioelectronics. En:Chemical Society Reviews; Vol. 48; No. 6; pp. 1642 - 1667; Royal Society of Chemistry; Disponible en: http://zhao.mit.edu/. Disponible en: 10.1039/c8cs00595h. Conte, Raffaele; De Luise, Adriana; Valentino, Anna; Di Cristo, Francesca; Petillo, Orsolina; Riccitiello, Francesco; Di Salle, Anna; Calarco, Anna; Peluso, Gianfranco (2019) Hydrogel Nanocomposite Systems. En:Nanocarriers for Drug Delivery; pp. 319 - 349; Elsevier; Disponible en: 10.1016/b978-0-12-814033-8.00010-2. El-Sherbiny, Ibrahim M.; Yacoub, Magdi H. (2013) Hydrogel scaffolds for tissue engineering: Progress and challenges. En:Global Cardiology Science and Practice; Vol. 2013; No. 3; pp. 38 - 38; Hamad bin Khalifa University Press (HBKU Press); Disponible en: https://www.qscience.com/content/journals/10.5339/gcsp.2013.38. Disponible en: 10.5339/gcsp.2013.38. Holback, H.; Yeo, Y.; Park, K. (2011) Hydrogel swelling behavior and its biomedical applications. En:Biomedical Hydrogels; pp. 3 - 24; Elsevier; Disponible en: 10.1533/9780857091383.1.3. Ahmed, Enas M. (2015) Hydrogel: Preparation, characterization, and applications: A review. En:Journal of Advanced Research; Vol. 6; No. 2; pp. 105 - 121; Elsevier B.V.; Disponible en: 10.1016/j.jare.2013.07.006. Sudhakar, Kalvatala; Mishra, Vijay; Riyaz, Bushra; Jain, Ankush; Charyulu, R. Narayana; Jain, Sanjay (2019) Hydrogel-Based Drug Delivery for Lung Cancer. En:Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer; pp. 293 - 310; Elsevier; Disponible en: 10.1016/b978-0-12-815720-6.00012-5. Peppas, Nicholas A.; Hoffman, Allan S. (2020) Hydrogels. En:Biomaterials Science; pp. 153 - 166; Elsevier; Disponible en: https://linkinghub.elsevier.com/retrieve/pii/B9780128161371000143. Disponible en: 10.1016/B978-0-12-816137-1.00014-3. Wang, Wenda; Narain, Ravin; Zeng, Hongbo (2020) Hydrogels. En:Polymer Science and Nanotechnology; pp. 203 - 244; Elsevier; Disponible en: https://linkinghub.elsevier.com/retrieve/pii/B9780128168066000108. Disponible en: 10.1016/B978-0-12-816806-6.00010-8. Mahinroosta, Mostafa; Jomeh Farsangi, Zohreh; Allahverdi, Ali; Shakoori, Zahra (2018) Hydrogels as intelligent materials: A brief review of synthesis, properties and applications. En:Materials Today Chemistry; Vol. 8; pp. 42 - 55; Elsevier Ltd; Disponible en: 10.1016/j.mtchem.2018.02.004. Onaciu, Anca; Munteanu, Raluca Andrada; Moldovan, Alin Iulian; Moldovan, Cristian Silviu; Berindan-Neagoe, Ioana (2019) Hydrogels based drug delivery synthesis, characterization and administration. En:Pharmaceutics; Vol. 11; No. 9; pp. 432 - 432; MDPI AG; Disponible en: www.mdpi.com/journal/pharmaceutics. Disponible en: 10.3390/pharmaceutics11090432. Gupta, Piyush; Vermani, Kavita; Garg, Sanjay (2002) Hydrogels: From controlled release to pH-responsive drug delivery. En:Drug Discovery Today; Vol. 7; No. 10; pp. 569 - 579; Elsevier Current Trends; Disponible en: 10.1016/S1359-6446(02)02255-9. Prabhakar, Reetu; Kumar, D. (2016) Influence of Dopant Ions on the Properties of Conducting Polyacrylamide/Polyaniline Hydrogels. En:Polymer; Vol. 55; No. 1; pp. 46 - 53; Taylor and Francis Inc.; Disponible en: http://www.tandfonline.com/doi/full/10.1080/03602559.2015.1055501. Disponible en: 10.1080/03602559.2015.1055501. Reckmeier, Claas J.; Wang, Yu; Zboril, Radek; Rogach, Andrey L. (2016) Influence of Doping and Temperature on Solvatochromic Shifts in Optical Spectra of Carbon Dots. En:Journal of Physical Chemistry C; Vol. 120; No. 19; pp. 10591 - 10604; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.5b12294. Disponible en: 10.1021/acs.jpcc.5b12294. Shah, Vinod P.; Gurbarg, Michael; Noory, Assad; Dighe, Shrikant; Skelly, Jerome P. (1992) Influence of higher rates of agitation on release patterns of immediate‐release drug products. En:Journal of Pharmaceutical Sciences; Vol. 81; No. 6; pp. 500 - 503; Elsevier; Disponible en: 10.1002/jps.2600810604. Li, Longchao; Ge, Juan; Ma, Peter X.; Guo, Baolin (2015) Injectable conducting interpenetrating polymer network hydrogels from gelatin-graft-polyaniline and oxidized dextran with enhanced mechanical properties. En:RSC Advances; Vol. 5; No. 112; pp. 92490 - 92498; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2015/ra/c5ra19467a; https://pubs.rsc.org/en/content/articlelanding/2015/ra/c5ra19467a. Disponible en: 10.1039/c5ra19467a. Li, Longchao; Ge, Juan; Ma, Peter X.; Guo, Baolin (2015) Injectable conducting interpenetrating polymer network hydrogels from gelatin-graft-polyaniline and oxidized dextran with enhanced mechanical properties. En:RSC Advances; Vol. 5; No. 112; pp. 92490 - 92498; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2015/ra/c5ra19467a; https://pubs.rsc.org/en/content/articlelanding/2015/ra/c5ra19467a. Disponible en: 10.1039/c5ra19467a. Talebian, Sepehr; Foroughi, Javad (2019) Intelligent drug delivery systems. En:Engineering Drug Delivery Systems; pp. 163 - 184; Elsevier; 9780081025482; Disponible en: 10.1016/B978-0-08-102548-2.00007-X. Lajunen, Tatu; Viitala, Lauri; Kontturi, Leena Stiina; Laaksonen, Timo; Liang, Huamin; Vuorimaa-Laukkanen, Elina; Viitala, Tapani; Le Guével, Xavier; Yliperttula, Marjo; Murtomäki, Lasse; Urtti, Arto (2015) Light induced cytosolic drug delivery from liposomes with gold nanoparticles. En:Journal of Controlled Release; Vol. 203; pp. 85 - 98; Elsevier B.V.; Disponible en: 10.1016/j.jconrel.2015.02.028. Pattnaik, Satyanarayan; Swain, Kalpana; Singh, Satya Prakash; Sirbaiya, Anup Kumar (2020) Lipid vesicles: Potentials as drug delivery systems. En:Nanoengineered Biomaterials for Advanced Drug Delivery; pp. 163 - 180; Elsevier; Disponible en: 10.1016/b978-0-08-102985-5.00008-5. Rahman, Mahfoozur; Alam, Kainat; Beg, Sarwar; Anwar, Firoz; Kumar, Vikas (2019) Liposomes as topical drug delivery systems: State of the arts. En:Biomedical Applications of Nanoparticles; pp. 149 - 161; Elsevier; Disponible en: 10.1016/b978-0-12-816506-5.00004-8. Los sistemas de liberación modificada de fármacos | Boletín del Conicet. Disponible en: https://bahiablanca.conicet.gov.ar/boletin/boletin29/indexb452.html?option=com_content&view=article&id=400&Itemid=553. Hu, Meng; Gu, Xiaoyu; Hu, Yang; Wang, Tao; Huang, Jian; Wang, Chaoyang (2016) Low Chemically Cross-Linked PAM/C-Dot Hydrogel with Robustness and Superstretchability in Both As-Prepared and Swelling Equilibrium States. En:Macromolecules; Vol. 49; No. 8; pp. 3174 - 3183; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/acs.macromol.5b02352. Disponible en: 10.1021/acs.macromol.5b02352. Fang, Qingqing; Dong, Yongqiang; Chen, Yingmei; Lu, Chun Hua; Chi, Yuwu; Yang, Huang Hao; Yu, Ting (2017) Luminescence origin of carbon based dots obtained from citric acid and amino group-containing molecules. En:Carbon; Vol. 118; pp. 319 - 326; Elsevier Ltd; Disponible en: 10.1016/j.carbon.2017.03.061. Vedadghavami, Armin; Minooei, Farnaz; Mohammadi, Mohammad Hossein; Khetani, Sultan; Rezaei Kolahchi, Ahmad; Mashayekhan, Shohreh; Sanati-Nezhad, Amir (2017) Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. En:Acta Biomaterialia; Vol. 62; pp. 42 - 63; Acta Materialia Inc; Disponible en: 10.1016/j.actbio.2017.07.028. Bruschi Marcos Luciano (2015) Mathematical models of drug release. En:Strategies to Modify the Drug Release from Pharmaceutical Systems; pp. 63 - 86; Elsevier; Disponible en: 10.1016/b978-0-08-100092-2.00005-9. Jahanmir, Ghodsiehsadat; Chau, Ying (2019) Mathematical models of drug release from degradable hydrogels. En:Biomedical Applications of Nanoparticles; pp. 233 - 269; Elsevier; Disponible en: 10.1016/b978-0-12-816506-5.00002-4. Kishi, Ryoichi; Kubota, Kazuma; Miura, Toshiaki; Yamaguchi, Tomohiko; Okuzaki, Hidenori; Osada, Yoshihito (2014) Mechanically tough double-network hydrogels with high electronic conductivity. En:Journal of Materials Chemistry C; Vol. 2; No. 4; pp. 736 - 743; The Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2014/tc/c3tc31999g; https://pubs.rsc.org/en/content/articlelanding/2014/tc/c3tc31999g. Disponible en: 10.1039/c3tc31999g. Mazutis, Linas; Vasiliauskas, Remigijus; Weitz, David A. (2015) Microfluidic Production of Alginate Hydrogel Particles for Antibody Encapsulation and Release. En:Macromolecular Bioscience; Vol. 15; No. 12; pp. 1641 - 1646; Wiley-VCH Verlag; Disponible en: http://doi.wiley.com/10.1002/mabi.201500226. Disponible en: 10.1002/mabi.201500226. Hu, Tianli; Wu, Yaobin; Zhao, Xin; Wang, Ling; Bi, Leyu; Ma, Peter X.; Guo, Baolin (2019) Micropatterned, electroactive, and biodegradable poly(glycerol sebacate)-aniline trimer elastomer for cardiac tissue engineering. En:Chemical Engineering Journal; Vol. 366; pp. 208 - 222; Elsevier B.V.; Disponible en: 10.1016/j.cej.2019.02.072. He, Guili; Shu, Mengjun; Yang, Zhi; Ma, Yujie; Huang, Da; Xu, Shusheng; Wang, Yanfang; Hu, Nantao; Zhang, Yafei; Xu, Lin (2017) Microwave formation and photoluminescence mechanisms of multi-states nitrogen doped carbon dots. En:Applied Surface Science; Vol. 422; pp. 257 - 265; Elsevier B.V.; Disponible en: 10.1016/j.apsusc.2017.05.036. Qin, Xiaoyun; Lu, Wenbo; Asiri, Abdullah M.; Al-Youbi, Abdulrahman O.; Sun, Xuping (2013) Microwave-assisted rapid green synthesis of photoluminescent carbon nanodots from flour and their applications for sensitive and selective detection of mercury(II) ions. En:Sensors and Actuators, B: Chemical; Vol. 184; pp. 156 - 162; Elsevier; Disponible en: 10.1016/j.snb.2013.04.079. Qi, Yunlong; Cao, Yue; Meng, Xiaotong; Yu, Kecheng; Si, Weimeng; Lei, Wu; Hao, Qingli; Li, Jiao; Wang, Fagang (2018) Microwave-Assisted Synthesis of a Polypyrrole/Graphene Composite Using a Pyrrole-Induced Graphene Oxide Hydrogel for the Selective Determination of Dihydroxybenzenes. En:ChemistrySelect; Vol. 3; No. 27; pp. 7713 - 7717; Wiley-Blackwell; Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/slct.201801306. Disponible en: 10.1002/slct.201801306. Costa, P.; Sousa Lobo, J. M. (2001) Modeling and comparison of dissolution profiles. En:European Journal of Pharmaceutical Sciences; Vol. 13; No. 2; pp. 123 - 133; Elsevier; Disponible en: 10.1016/S0928-0987(01)00095-1. Juric, Dajan; Rohner, Nathan A.; von Recum, Horst A. (2019) Molecular Imprinting of Cyclodextrin Supramolecular Hydrogels Improves Drug Loading and Delivery. En:Macromolecular Bioscience; Vol. 19; No. 1; pp. 1800246 - 1800246; Wiley-VCH Verlag; Disponible en: http://doi.wiley.com/10.1002/mabi.201800246. Disponible en: 10.1002/mabi.201800246. Youssef, A. M.; Abdel-Aziz, M. E.; El-Sayed, E. S.A.; Abdel-Aziz, M. S.; Abd El-Hakim, A. A.; Kamel, S.; Turky, G. (2018) Morphological, electrical & antibacterial properties of trilayered Cs/PAA/PPy bionanocomposites hydrogel based on Fe3O4-NPs. En:Carbohydrate Polymers; Vol. 196; pp. 483 - 493; Elsevier Ltd; Disponible en: 10.1016/j.carbpol.2018.05.065. Wei, Siqi; Yin, Xinghang; Li, Haoyi; Du, Xiaoyu; Zhang, Limei; Yang, Qiang; Yang, Rui (2020) Multi-Color Fluorescent Carbon Dots: Graphitized sp2 Conjugated Domains and Surface State Energy Level Co-Modulate Band Gap Rather Than Size Effects. En:Chemistry; Vol. 26; No. 36; pp. 8129 - 8136; Wiley-VCH Verlag; Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.202000763. Disponible en: 10.1002/chem.202000763. Wei, Siqi; Yin, Xinghang; Li, Haoyi; Du, Xiaoyu; Zhang, Limei; Yang, Qiang; Yang, Rui (2020) Multi-Color Fluorescent Carbon Dots: Graphitized sp2 Conjugated Domains and Surface State Energy Level Co-Modulate Band Gap Rather Than Size Effects. En:Chemistry; Vol. 26; No. 36; pp. 8129 - 8136; Wiley-VCH Verlag; Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/chem.202000763. Disponible en: 10.1002/chem.202000763. Batool, Syeda Rubab; Nazeer, Muhammad Anwaar; Ekinci, Duygu; Sahin, Afsun; Kizilel, Seda (2020) Multifunctional alginate-based hydrogel with reversible crosslinking for controlled therapeutics delivery. En:International Journal of Biological Macromolecules; Vol. 150; pp. 315 - 325; Elsevier B.V.; Disponible en: 10.1016/j.ijbiomac.2020.02.042. Shi, Yongliang; Pramanik, Avijit; Tchounwou, Christine; Pedraza, Francisco; Crouch, Rebecca A.; Chavva, Suhash Reddy; Vangara, Aruna; Sinha, Sudarson Sekhar; Jones, Stacy; Sardar, Dhiraj; Hawker, Craig; Ray, Paresh Chandra (2015) Multifunctional Biocompatible Graphene Oxide Quantum Dots Decorated Magnetic Nanoplatform for Efficient Capture and Two-Photon Imaging of Rare Tumor Cells. En:ACS Applied Materials and Interfaces; Vol. 7; No. 20; pp. 10935 - 10943; American Chemical Society; Disponible en: https://pubmed.ncbi.nlm.nih.gov/25939643/. Disponible en: 10.1021/acsami.5b02199. Wang, Yan Qin; Xue, Ya Nan; Li, Shuang Ran; Zhang, Xue Hui; Fei, Heng Xiao; Wu, Xiao Gang; Sang, Sheng Bo; Li, Xiao Na; Wei, Min; Chen, Wei Yi (2017) Nanocomposite carbon dots/PAM fluorescent hydrogels and their mechanical properties. En:Journal of Polymer Research; Vol. 24; No. 12; Disponible en: https://doi.org/10.1007/s10965-017-1389-y. Disponible en: 10.1007/s10965-017-1389-y. Sui, Bowen; Li, Yunfeng; Yang, Bai (2020) Nanocomposite hydrogels based on carbon dots and polymers. En:Chinese Chemical Letters; Vol. 31; No. 6; pp. 1443 - 1447; Elsevier B.V.; Disponible en: 10.1016/j.cclet.2019.08.023. Shi, Ye; Peng, Lele; Yu, Guihua (2015) Nanostructured conducting polymer hydrogels for energy storage applications. En:Nanoscale; Vol. 7; No. 30; pp. 12796 - 12806; Royal Society of Chemistry; Disponible en: 10.1039/c5nr03403e. Shi, Ye; Pan, Lijia; Liu, Borui; Wang, Yaqun; Cui, Yi; Bao, Zhenan; Yu, Guihua (2014) Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. En:Journal of Materials Chemistry A; Vol. 2; No. 17; pp. 6086 - 6091; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2014/ta/c4ta00484a; https://pubs.rsc.org/en/content/articlelanding/2014/ta/c4ta00484a. Disponible en: 10.1039/c4ta00484a. Nair, Akhila; Haponiuk, Jozef T.; Thomas, Sabu; Gopi, Sreeraj (2020) Natural carbon-based quantum dots and their applications in drug delivery: A review. En:Biomedicine and Pharmacotherapy; Vol. 132; pp. 110834 - 110834; Elsevier Masson s.r.l.; Disponible en: 10.1016/j.biopha.2020.110834. Varghese, Sandhya Alice; Rangappa, Sanjay Mavinkere; Siengchin, Suchart; Parameswaranpillai, Jyotishkumar (2019) Natural polymers and the hydrogels prepared from them. En:Hydrogels Based on Natural Polymers; pp. 17 - 47; Elsevier; 9780128164211; Disponible en: 10.1016/B978-0-12-816421-1.00002-1. Rong, Qinfeng; Han, Hongliang; Feng, Feng; Ma, Zhanfang (2015) Network nanostructured polypyrrole hydrogel/Au composites as enhanced electrochemical biosensing platform. En:Scientific Reports; Vol. 5; No. 1; pp. 1 - 8; Nature Publishing Group; Disponible en: www.nature.com/scientificreports/. Disponible en: 10.1038/srep11440. Zhang, Lin; Li, Yan; Li, Longchao; Guo, Baolin; Ma, Peter X. (2014) Non-cytotoxic conductive carboxymethyl-chitosan/aniline pentamer hydrogels. En:Reactive and Functional Polymers; Vol. 82; pp. 81 - 88; Elsevier; Disponible en: 10.1016/j.reactfunctpolym.2014.06.003. Hu, Meng; Yang, Yu; Gu, Xiaoyu; Hu, Yang; Du, Zhenshan; Wang, Chaoyang (2015) Novel Nanocomposite Hydrogels Consisting of C-Dots with Excellent Mechanical Properties. En:Macromolecular Materials and Engineering; Vol. 300; No. 11; pp. 1043 - 1048; Wiley-VCH Verlag; Disponible en: http://doi.wiley.com/10.1002/mame.201500141. Disponible en: 10.1002/mame.201500141. Idumah, Christopher Igwe (2021) Novel trends in conductive polymeric nanocomposites, and bionanocomposites. En:Synthetic Metals; Vol. 273; pp. 116674 - 116674; Elsevier Ltd; Disponible en: 10.1016/j.synthmet.2020.116674. Kang, Yan Fei; Fang, Yang Wu; Li, Yu Hao; Li, Wen; Yin, Xue Bo (2015) Nucleus-staining with biomolecule-mimicking nitrogen-doped carbon dots prepared by a fast neutralization heat strategy. En:Chemical Communications; Vol. 51; No. 95; pp. 16956 - 16959; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2015/cc/c5cc06304c; https://pubs.rsc.org/en/content/articlelanding/2015/cc/c5cc06304c. Disponible en: 10.1039/c5cc06304c. Roshni, V.; Misra, Sweta; Santra, Manas Kumar; Ottoor, Divya (2019) One pot green synthesis of C-dots from groundnuts and its application as Cr(VI) sensor and in vitro bioimaging agent. En:Journal of Photochemistry and Photobiology A: Chemistry; Vol. 373; pp. 28 - 36; Elsevier B.V.; Disponible en: 10.1016/j.jphotochem.2018.12.028. Kashi, Mana; Baghbani, Fatemeh; Moztarzadeh, Fathollah; Mobasheri, Hamid; Kowsari, Elaheh; Şarkaya, Koray; Yildirim, Mert; Alli, Abdulkadir; Castro, Leonardo Enrique Valencia; Martínez, Cinthia Jhovanna Pérez; Del Castillo Castro, Teresa; Ortega, María Mónica Castillo; Encinas, José Carmelo (2015) One-step preparation of poly(NIPAM-pyrrole) electroconductive composite hydrogel and its dielectric properties. En:Journal of Applied Polymer Science; Vol. 138; No. 22; pp. n/a - n/a; John Wiley and Sons Inc; Disponible en: http://doi.wiley.com/10.1002/app.41804; https://onlinelibrary.wiley.com/doi/10.1002/app.50527. Disponible en: 10.1002/app.41804. Şarkaya, Koray; Yildirim, Mert; Alli, Abdulkadir (2021) One-step preparation of poly(NIPAM-pyrrole) electroconductive composite hydrogel and its dielectric properties. En:Journal of Applied Polymer Science; Vol. 138; No. 22; pp. 50527 - 50527; John Wiley and Sons Inc; Disponible en: https://onlinelibrary.wiley.com/doi/10.1002/app.50527. Disponible en: 10.1002/app.50527. Li, Naixin; Lei, Fang; Xu, Dandan; Li, Yong; Liu, Jinliang; Shi, Ying (2021) One-step synthesis of N, P Co-doped orange carbon quantum dots with novel optical properties for bio-imaging. En:Optical Materials; Vol. 111; pp. 110618 - 110618; Elsevier B.V.; Disponible en: 10.1016/j.optmat.2020.110618. Wang, Runxia; Wang, Xiufang; Sun, Yimin (2017) One-step synthesis of self-doped carbon dots with highly photoluminescence as multifunctional biosensors for detection of iron ions and pH. En:Sensors and Actuators, B: Chemical; Vol. 241; pp. 73 - 79; Elsevier B.V.; Disponible en: 10.1016/j.snb.2016.10.043. Shi, Xiangning; Zheng, Yudong; Wang, Guojie; Lin, Qinghua; Fan, Jinsheng (2014) PH- and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. En:RSC Advances; Vol. 4; No. 87; pp. 47056 - 47065; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2014/ra/c4ra09640a; https://pubs.rsc.org/en/content/articlelanding/2014/ra/c4ra09640a. Disponible en: 10.1039/c4ra09640a. Yang, Mei; Li, Baoyan; Zhong, Kailiang; Lu, Yun (2018) Photoluminescence properties of N-doped carbon dots prepared in different solvents and applications in pH sensing. En:Journal of Materials Science; Vol. 53; No. 4; pp. 2424 - 2433; Springer New York LLC; Disponible en: https://link-springer-com.ez.urosario.edu.co/article/10.1007/s10853-017-1700-7. Disponible en: 10.1007/s10853-017-1700-7. Ruiz-Palomero, Celia; Soriano, M. Laura; Benítez-Martínez, Sandra; Valcárcel, Miguel (2017) Photoluminescent sensing hydrogel platform based on the combination of nanocellulose and S,N-codoped graphene quantum dots. En:Sensors and Actuators, B: Chemical; Vol. 245; pp. 946 - 953; Elsevier B.V.; Disponible en: 10.1016/j.snb.2017.02.006. Lima, Diego S.; Tenório-Neto, Ernandes T.; Lima-Tenório, Michele K.; Guilherme, Marcos R.; Scariot, Débora B.; Nakamura, Celso V.; Muniz, Edvani C.; Rubira, Adley F. (2018) pH-responsive alginate-based hydrogels for protein delivery. En:Journal of Molecular Liquids; Vol. 262; pp. 29 - 36; Elsevier B.V.; Disponible en: 10.1016/j.molliq.2018.04.002. Meher, Mukesh Kumar; Poluri, Krishna Mohan (2020) pH-Sensitive Nanomaterials for Smart Release of Drugs. En:Intelligent Nanomaterials for Drug Delivery Applications; pp. 17 - 41; Elsevier; Disponible en: 10.1016/b978-0-12-817830-0.00002-3. Abd El-Ghaffar, M. A.; Hashem, M. S.; El-Awady, M. K.; Rabie, A. M. (2012) PH-sensitive sodium alginate hydrogels for riboflavin controlled release. En:Carbohydrate Polymers; Vol. 89; No. 2; pp. 667 - 675; Elsevier; Disponible en: 10.1016/j.carbpol.2012.03.074. Hua, Shuibo; Ma, Haizhen; Li, Xun; Yang, Huixia; Wang, Aiqin (2010) pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium. En:International Journal of Biological Macromolecules; Vol. 46; No. 5; pp. 517 - 523; Elsevier; Disponible en: 10.1016/j.ijbiomac.2010.03.004. Montaser, A. S.; Rehan, Mohamed; El-Naggar, Mehrez E. (2019) pH-Thermosensitive hydrogel based on polyvinyl alcohol/sodium alginate/N-isopropyl acrylamide composite for treating re-infected wounds. En:International Journal of Biological Macromolecules; Vol. 124; pp. 1016 - 1024; Elsevier B.V.; Disponible en: https://pubmed.ncbi.nlm.nih.gov/30500494/. Disponible en: 10.1016/j.ijbiomac.2018.11.252. Bhowmick, Biplab; Mollick, Md. Masud R.; Mondal, Dibyendu; Maity, Dipanwita; Bain, Mrinal K.; Bera, Nirmal K.; Rana, Dipak; Chattopadhyay, Sanatan; Chakraborty, Mukut; Chattopadhyay, Dipankar (2014) Poloxamer and gelatin gel guided polyaniline nanofibers: Synthesis and characterization. En:Polymer International; Vol. 63; No. 8; pp. 1505 - 1512; John Wiley and Sons Ltd; Disponible en: http://doi.wiley.com/10.1002/pi.4657. Disponible en: 10.1002/pi.4657. Paris, Juan L.; Cabanas, M. Victoria; Manzano, Miguel; Vallet-Regí, María (2015) Polymer-Grafted Mesoporous Silica Nanoparticles as Ultrasound-Responsive Drug Carriers. En:ACS Nano; Vol. 9; No. 11; pp. 11023 - 11033; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/acsnano.5b04378. Disponible en: 10.1021/acsnano.5b04378. Kapse, Anuja; Anup, Neelima; Patel, Vruti; Saraogi, Gaurav K.; Mishra, Dinesh Kumar; Tekade, Rakesh K. (2019) Polymeric micelles: A ray of hope among new drug delivery systems. En:Drug Delivery Systems; pp. 235 - 289; Elsevier; 9780128145081; Disponible en: 10.1016/B978-0-12-814487-9.00006-5. Panigrahy, Sibasankar; Kandasubramanian, Balasubramanian (2020) Polymeric thermoelectric PEDOT: PSS & composites: Synthesis, progress, and applications. En:European Polymer Journal; Vol. 132; pp. 109726 - 109726; Elsevier Ltd; Disponible en: 10.1016/j.eurpolymj.2020.109726. Yang, Sumi; Jang, LindyK.; Kim, Semin; Yang, Jongcheol; Yang, Kisuk; Cho, Seung Woo; Lee, Jae Young (2016) Polypyrrole/Alginate Hybrid Hydrogels: Electrically Conductive and Soft Biomaterials for Human Mesenchymal Stem Cell Culture and Potential Neural Tissue Engineering Applications. En:Macromolecular Bioscience; Vol. 16; No. 11; pp. 1653 - 1661; Wiley-VCH Verlag; Disponible en: http://doi.wiley.com/10.1002/mabi.201600148. Disponible en: 10.1002/mabi.201600148. Yang, Jongcheol; Choe, Goeun; Yang, Sumi; Jo, Hyerim; Lee, Jae Young (2016) Polypyrrole-incorporated conductive hyaluronic acid hydrogels. En:Biomaterials Research; Vol. 20; No. 1; pp. 1 - 7; BioMed Central Ltd.; Disponible en: https://link.springer.com/articles/10.1186/s40824-016-0078-y; https://link.springer.com/article/10.1186/s40824-016-0078-y. Disponible en: 10.1186/s40824-016-0078-y. Miyata, Takashi; Jikihara, Atsushi; Nakamae, Katsuhiko; Uragami, Tadashi; Hoffman, Allan S.; Kinomura, Keisuke; Okumura, Masakazu (1996) Preparation of Glucose-Sensitive Hydrogels by Entrapment or Copolymerization of Concanavalin a in a Glucosyloxyethyl Methacrylate Hydrogel. En:Advanced Biomaterials in Biomedical Engineering and Drug Delivery Systems; pp. 237 - 238; Springer Japan; Disponible en: https://link.springer.com/chapter/10.1007/978-4-431-65883-2_55. Disponible en: 10.1007/978-4-431-65883-2_55. Langer, Michal; Paloncýová, Markéta; Medveď, Miroslav; Pykal, Martin; Nachtigallová, Dana; Shi, Baimei; Aquino, Adélia J.A.; Lischka, Hans; Otyepka, Michal (2021) Progress and challenges in understanding of photoluminescence properties of carbon dots based on theoretical computations. En:Applied Materials Today; Vol. 22; pp. 100924 - 100924; Elsevier Ltd; Disponible en: 10.1016/j.apmt.2020.100924. Zare, Ehsan Nazarzadeh; Makvandi, Pooyan; Ashtari, Behnaz; Rossi, Filippo; Motahari, Ahmad; Perale, Giuseppe (2020) Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review. En:Journal of Medicinal Chemistry; Vol. 63; No. 1; pp. 1 - 22; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.9b00803. Disponible en: 10.1021/acs.jmedchem.9b00803. Guo, Bin; Ma, Zhong; Pan, Lijia; Shi, Yi (2019) Properties of conductive polymer hydrogels and their application in sensors. En:Journal of Polymer Science, Part B: Polymer Physics; Vol. 57; No. 23; pp. 1606 - 1621; John Wiley and Sons Inc.; Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1002/polb.24899. Disponible en: 10.1002/polb.24899. Campana, Patricia T.; Marletta, Alexandre; Piovesan, Erick; Francisco, Kelliton J. M.; Neto, Francisco V. R.; Petrini, Leandro; Silva, Thiago R.; Machado, Danilo; Basoli, Francesco; Oliveira, Osvaldo N.; Licoccia, Silvia; Traversa, Enrico (2019) Pulsatile Discharge from Polymeric Scaffolds: A Novel Method for Modulated Drug Release. En:Bulletin of the Chemical Society of Japan; Vol. 92; No. 7; pp. 1237 - 1244; Chemical Society of Japan; Disponible en: http://www.journal.csj.jp/doi/10.1246/bcsj.20180403. Disponible en: 10.1246/bcsj.20180403. Ilaiyaraja, Nallamuthu; Fathima, Syeda J.; Khanum, Farhath (2018) Quantum dots: A novel fluorescent probe for bioimaging and drug delivery applications. En:Inorganic Frameworks as Smart Nanomedicines; pp. 529 - 563; William Andrew; 9780128136621; Disponible en: 10.1016/B978-0-12-813661-4.00012-2. Sun, Ya Ping; Zhou, Bing; Lin, Yi; Wang, Wei; Fernando, K. A.Shiral; Pathak, Pankaj; Meziani, Mohammed Jaouad; Harruff, Barbara A.; Wang, Xin; Wang, Haifang; Luo, Pengju G.; Yang, Hua; Kose, Muhammet Erkan; Chen, Bailin; Veca, L. Monica; Xie, Su Yuan (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. En:Journal of the American Chemical Society; Vol. 128; No. 24; pp. 7756 - 7757; American Chemical Society; Disponible en: https://pubs.acs.org/doi/pdf/10.1021/ja062677d. Disponible en: 10.1021/ja062677d. Sun, Ya Ping; Zhou, Bing; Lin, Yi; Wang, Wei; Fernando, K. A.Shiral; Pathak, Pankaj; Meziani, Mohammed Jaouad; Harruff, Barbara A.; Wang, Xin; Wang, Haifang; Luo, Pengju G.; Yang, Hua; Kose, Muhammet Erkan; Chen, Bailin; Veca, L. Monica; Xie, Su Yuan (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. En:Journal of the American Chemical Society; Vol. 128; No. 24; pp. 7756 - 7757; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/ja062677d. Disponible en: 10.1021/ja062677d. Liu, Pengfei; Zhai, Maolin; Li, Jiuqiang; Peng, Jing; Wu, Jilan (2002) Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels. En:Radiation Physics and Chemistry; Vol. 63; No. 3-6; pp. 525 - 528; Pergamon; Disponible en: 10.1016/S0969-806X(01)00649-1. Dou, Peng; Liu, Zhi; Cao, Zhenzhen; Zheng, Jiao; Wang, Chao; Xu, Xinhua (2016) Rapid synthesis of hierarchical nanostructured Polyaniline hydrogel for high power density energy storage application and three-dimensional multilayers printing. En:Journal of Materials Science; Vol. 51; No. 9; pp. 4274 - 4282; Springer New York LLC; Disponible en: https://link-springer-com.ez.urosario.edu.co/article/10.1007/s10853-016-9727-8. Disponible en: 10.1007/s10853-016-9727-8. Li, Lanlan; Shi, Ye; Pan, Lijia; Shi, Yi; Yu, Guihua (2015) Rational design and applications of conducting polymer hydrogels as electrochemical biosensors. En:Journal of Materials Chemistry B; Vol. 3; No. 25; pp. 2920 - 2930; Royal Society of Chemistry; Disponible en: https://pubs.rsc.org/en/content/articlehtml/2015/tb/c5tb00090d; https://pubs.rsc.org/en/content/articlelanding/2015/tb/c5tb00090d. Disponible en: 10.1039/c5tb00090d. Kim, Byung Chul; Hong, Jin Yong; Wallace, Gordon G.; Park, Ho Seok (2015) Recent Progress in Flexible Electrochemical Capacitors: Electrode Materials, Device Configuration, and Functions. En:Advanced Energy Materials; Vol. 5; No. 22; pp. 1500959 - 1500959; Wiley-VCH Verlag; Disponible en: http://doi.wiley.com/10.1002/aenm.201500959. Disponible en: 10.1002/aenm.201500959. Pinto León, Rodrigo Alexis; Coronel Maldonado, Felipe Santiago; Bueno Palomeque, Freddy Leonardo; Galán Mena, Jorge; Pinto León, Rodrigo Alexis; Coronel Maldonado, Felipe Santiago; Bueno Palomeque, Freddy Leonardo; Galán Mena, Jorge (2020) Reconocimiento de tres patrones básicos de movimiento de la mano utilizando electromiografía de superficie y algoritmos inteligentes. En:Revista Cubana de Investigaciones Biomédicas; Vol. 39; No. 2; 1999, Editorial Ciencias Médicas; Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03002020000200003&lng=es&nrm=iso&tlng=. Ge, Jiechao; Jia, Qingyan; Liu, Weimin; Guo, Liang; Liu, Qingyun; Lan, Minhuan; Zhang, Hongyan; Meng, Xiangmin; Wang, Pengfei (2015) Red-Emissive Carbon Dots for Fluorescent, Photoacoustic, and Thermal Theranostics in Living Mice. En:Advanced Materials; Vol. 27; No. 28; pp. 4169 - 4177; Wiley-VCH Verlag; Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201500323; https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201500323; https://onlinelibrary.wiley.com/doi/10.1002/adma.201500323. Disponible en: 10.1002/adma.201500323. Gupta, Aashu; Maheshwari, Rahul; Kuche, Kaushik; Hutcheon, Gillian A.; Tekade, Rakesh K. (2019) Regulatory assessment for controlled drug delivery products. En:Drug Delivery Systems; pp. 721 - 741; Elsevier; 9780128145081; Disponible en: 10.1016/B978-0-12-814487-9.00015-6. Baby, Deepa K. (2019) Rheology of hydrogels. En:Rheology of Polymer Blends and Nanocomposites: Theory, Modelling and Applications; pp. 193 - 204; Elsevier; 9780128169575; Disponible en: 10.1016/B978-0-12-816957-5.00009-4. Guo, Haitao; He, Weina; Lu, Yun; Zhang, Xuetong (2015) Self-crosslinked polyaniline hydrogel electrodes for electrochemical energy storage. En:Carbon; Vol. 92; pp. 133 - 141; Elsevier Ltd; Disponible en: 10.1016/j.carbon.2015.03.062. Bagheri, Babak; Zarrintaj, Payam; Surwase, Sachin Subhash; Baheiraei, Nafiseh; Saeb, Mohammad Reza; Mozafari, Masoud; Kim, Yeu Chun; Park, O. Ok (2019) Self-gelling electroactive hydrogels based on chitosan–aniline oligomers/agarose for neural tissue engineering with on-demand drug release. En:Colloids and Surfaces B: Biointerfaces; Vol. 184; pp. 110549 - 110549; Elsevier B.V.; Disponible en: 10.1016/j.colsurfb.2019.110549. Yuan, Fanglong; Li, Shuhua; Fan, Zetan; Meng, Xiangyue; Fan, Louzhen; Yang, Shihe (2016) Shining carbon dots: Synthesis and biomedical and optoelectronic applications. En:Nano Today; Vol. 11; No. 5; pp. 565 - 586; Elsevier B.V.; Disponible en: 10.1016/j.nantod.2016.08.006. Hamd-Ghadareh, Somayeh; Salimi, Abdollah; Parsa, Sara; Fathi, Fardin (2018) Simultaneous biosensing of CA125 and CA15-3 tumor markers and imaging of OVCAR-3 and MCF-7 cells lines via bi-color FRET phenomenon using dual blue-green luminescent carbon dots with single excitation wavelength. En:International Journal of Biological Macromolecules; Vol. 118; pp. 617 - 628; Elsevier B.V.; Disponible en: 10.1016/j.ijbiomac.2018.06.116. Barrera Holguin, Sttifany Marcela; Rodriguez Burbano, Diana Consuelo; Ramírez Clavijo, Sandra R. (2020) SÍNTESIS DE PUNTOS DE CARBONO Y REVISIÓN DE SU CITOTOXICIDAD EN TUMORES DE MAMA. pp. 13 - 14; Bogotá Disponible en: https://repository.urosario.edu.co/bitstream/handle/10336/24438/BarreraHolguín-SttifanyMArcela-2020.pdf?sequence=1&isAllowed=y. ROJAS, MIRIAM CAROLINA BERMUDEZ (2016) Sintesis Y Caracterizacion De Polipirrol Dopado Con Poliestireno Sulfonato De Sodio. En:Repositorio Universidad Distrital Francisco José de Caldas; Vol. 147; pp. 67 - 67; Disponible en: https://repository.udistrital.edu.co/bitstream/handle/11349/3475/BermudezRojasMiriamCarolina2016.pdf?sequence=1&isAllowed=y. Peña Blanque, Virginia; Peña Blanque, Virginia (2016) Sistemas de liberación controlada de medicamentos. Aplicaciones biomédicas. Ebara, Mitsuhiro; Kotsuchibashi, Yohei; Uto, Koichiro; Aoyagi, Takao; Kim, Young-Jin; Narain, Ravin; Idota, Naokazu; Hoffman, John M. (2014) Smart Nanoassemblies and Nanoparticles. pp. 67 - 113; Springer, Tokyo; Disponible en: https://link.springer.com/chapter/10.1007/978-4-431-54400-5_3. Disponible en: 10.1007/978-4-431-54400-5_3. Chaturvedi, Kiran; Ganguly, Kuntal; More, Uttam A.; Reddy, Kakarla Raghava; Dugge, Tanavi; Naik, Balaram; Aminabhavi, Tejraj M.; Noolvi, Malleshappa N. (2019) Sodium alginate in drug delivery and biomedical areas. En:Natural Polysaccharides in Drug Delivery and Biomedical Applications; pp. 59 - 100; Elsevier; 9780128170557; Disponible en: 10.1016/B978-0-12-817055-7.00003-0. Parker, Graham C.; Anastassova-Kristeva, Marlene; Eisenberg, Leonard M.; Rao, Mahendra S.; Williams, Marc A.; Sanberg, Paul R.; English, Denis (2005) Stem cells: Shibboleths of development, part II: Toward a functional definition. En:Stem Cells and Development; Vol. 14; No. 5; pp. 463 - 469; Mary Ann Liebert, Inc. 2 Madison Avenue Larchmont, NY 10538 USA; Disponible en: https://www.liebertpub.com/doi/abs/10.1089/scd.2005.14.463. Disponible en: 10.1089/scd.2005.14.463. Mohamed, Mohamed Alaa; Fallahi, Afsoon; El-Sokkary, Ahmed M.A.; Salehi, Sahar; Akl, Magda A.; Jafari, Amin; Tamayol, Ali; Fenniri, Hicham; Khademhosseini, Ali; Andreadis, Stelios T.; Cheng, Chong (2019) Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology. En:Progress in Polymer Science; Vol. 98; pp. 101147 - 101147; Elsevier Ltd; Disponible en: 10.1016/j.progpolymsci.2019.101147. Soppimath, K. S.; Aminabhavi, T. M.; Dave, A. M.; Kumbar, S. G.; Rudzinski, W. E. (2002) Stimulus-responsive "smart" hydrogels as novel drug delivery systems. En:Drug Development and Industrial Pharmacy; Vol. 28; No. 8; pp. 957 - 974; Drug Dev Ind Pharm; Disponible en: https://pubmed.ncbi.nlm.nih.gov/12378965/. Disponible en: 10.1081/DDC-120006428. Koetting, Michael C.; Peters, Jonathan T.; Steichen, Stephanie D.; Peppas, Nicholas A. (2015) Stimulus-responsive hydrogels: Theory, modern advances, and applications. En:Materials Science and Engineering R: Reports; Vol. 93; pp. 1 - 49; Elsevier Ltd; Disponible en: 10.1016/j.mser.2015.04.001. Hao, Guang Ping; Hippauf, Felix; Oschatz, Martin; Wisser, Florian M.; Leifert, Annika; Nickel, Winfried; Mohamed-Noriega, Nasser; Zheng, Zhikun; Kaskel, Stefan (2014) Stretchable and semitransparent conductive hybrid hydrogels for flexible supercapacitors. En:ACS Nano; Vol. 8; No. 7; pp. 7138 - 7146; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/nn502065u. Disponible en: 10.1021/nn502065u. Dai, Tingyang; Jia, Yujie (2011) Supramolecular hydrogels of polyaniline-poly(styrene sulfonate) prepared in concentrated solutions. En:Polymer; Vol. 52; No. 12; pp. 2550 - 2558; Elsevier Ltd; Disponible en: 10.1016/j.polymer.2011.04.006. Omidian, H.; Park, K. (2008) Swelling agents and devices in oral drug delivery. En:Journal of Drug Delivery Science and Technology; Vol. 18; No. 2; pp. 83 - 93; Editions de Sante; Disponible en: 10.1016/S1773-2247(08)50016-5. Haider, Sajjad; Park, Soo Young; Saeed, Khalid; Farmer, B. L. (2007) Swelling and electroresponsive characteristics of gelatin immobilized onto multi-walled carbon nanotubes. En:Sensors and Actuators, B: Chemical; Vol. 124; No. 2; pp. 517 - 528; Elsevier; Disponible en: 10.1016/j.snb.2007.01.024. Lim, Byung Chul; Singu, Bal Sydulu; Hong, Sang Eun; Na, Yang Ho; Yoon, Kuk Ro (2016) Synthesis and characterization nanocomposite of polyacrylamide-rGO-Ag-PEDOT/PSS hydrogels by photo polymerization method. En:Polymers for Advanced Technologies; Vol. 27; No. 3; pp. 366 - 373; John Wiley and Sons Ltd; Disponible en: http://doi.wiley.com/10.1002/pat.3648. Disponible en: 10.1002/pat.3648. Zhao, Sanping; Cao, Mengjie; Li, Han; Li, Liyan; Xu, Weilin (2010) Synthesis and characterization of thermo-sensitive semi-IPN hydrogels based on poly(ethylene glycol)-co-poly(ε-caprolactone) macromer, N-isopropylacrylamide, and sodium alginate. En:Carbohydrate Research; Vol. 345; No. 3; pp. 425 - 431; Carbohydr Res; Disponible en: https://pubmed-ncbi-nlm-nih-gov.ez.urosario.edu.co/20031120/. Disponible en: 10.1016/j.carres.2009.11.014. Redaelli, F.; Sorbona, M.; Rossi, F. (2017) Synthesis and processing of hydrogels for medical applications. En:Bioresorbable Polymers for Biomedical Applications: From Fundamentals to Translational Medicine; pp. 205 - 228; Elsevier; 9780081002667; Disponible en: 10.1016/B978-0-08-100262-9.00010-0. Ajji, Z.; Maarouf, M.; Khattab, A.; Ghazal, H. (2020) Synthesis of pH-responsive hydrogel based on PVP grafted with crotonic acid for controlled drug delivery. En:Radiation Physics and Chemistry; Vol. 170; pp. 108612 - 108612; Elsevier Ltd; Disponible en: 10.1016/j.radphyschem.2019.108612. Kandra, Ranju; Bajpai, Sunil (2020) Synthesis, mechanical properties of fluorescent carbon dots loaded nanocomposites chitosan film for wound healing and drug delivery. En:Arabian Journal of Chemistry; Vol. 13; No. 4; pp. 4882 - 4894; Elsevier B.V.; Disponible en: 10.1016/j.arabjc.2019.12.010. Li, Chunyan; Liu, Yi; Wu, Yongquan; Sun, Yun; Li, Fuyou (2013) The cellular uptake and localization of non-emissive iridium(III) complexes as cellular reaction-based luminescence probes. En:Biomaterials; Vol. 34; No. 4; pp. 1223 - 1234; Elsevier; Disponible en: 10.1016/j.biomaterials.2012.09.014. Oh, Jung Kwon; Drumright, Ray; Siegwart, Daniel J.; Matyjaszewski, Krzysztof (2008) The development of microgels/nanogels for drug delivery applications. En:Progress in Polymer Science (Oxford); Vol. 33; No. 4; pp. 448 - 477; Elsevier Limited; Disponible en: https://utsouthwestern.pure.elsevier.com/en/publications/the-development-of-microgelsnanogels-for-drug-delivery-applicatio. Disponible en: 10.1016/j.progpolymsci.2008.01.002. Hoffman, Allan S. (2008) The origins and evolution of "controlled" drug delivery systems. En:Journal of Controlled Release; Vol. 132; No. 3; pp. 153 - 163; Elsevier; Disponible en: 10.1016/j.jconrel.2008.08.012. Kaczmarek, B.; Nadolna, K.; Owczarek, A. (2019) The physical and chemical properties of hydrogels based on natural polymers. En:Hydrogels Based on Natural Polymers; pp. 151 - 172; Elsevier; 9780128164211; Disponible en: 10.1016/B978-0-12-816421-1.00006-9. Dong, Wei; Zhou, Siqi; Dong, Yan; Wang, Jingwen; Ge, Xin; Sui, Lili (2015) The preparation of ethylenediamine-modified fluorescent carbon dots and their use in imaging of cells. En:Luminescence; Vol. 30; No. 6; pp. 867 - 871; John Wiley and Sons Ltd; Disponible en: https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/full/10.1002/bio.2834; https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/bio.2834; https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/bio.2834. Disponible en: 10.1002/bio.2834. Dong, Miheng; Chen, Yu (2019) The stimuli-responsive properties of hydrogels based on natural polymers. En:Hydrogels Based on Natural Polymers; pp. 173 - 222; Elsevier; 9780128164211; Disponible en: 10.1016/B978-0-12-816421-1.00007-0. Zhou, Y.; Chu, J. S.; Li, J. X.; Wu, X. Y. (2010) Theoretical analysis of release kinetics of coated tablets containing constant and non-constant drug reservoirs. En:International Journal of Pharmaceutics; Vol. 385; No. 1-2; pp. 98 - 103; Disponible en: 10.1016/j.ijpharm.2009.10.039. Huang, Haiqin; Qi, Xiaole; Chen, Yanhua; Wu, Zhenghong (2019) Thermo-sensitive hydrogels for delivering biotherapeutic molecules: A review. En:Saudi Pharmaceutical Journal; Vol. 27; No. 7; pp. 990 - 999; Elsevier B.V.; Disponible en: 10.1016/j.jsps.2019.08.001. Cui, Xiaofeng; Wang, Jin; Liu, Bing; Ling, Shan; Long, Ran; Xiong, Yujie (2018) Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO 2 Reduction through Bridging Ligands. En:Journal of the American Chemical Society; Vol. 140; No. 48; pp. 16514 - 16520; American Chemical Society; Disponible en: https://pubs.acs.org/doi/abs/10.1021/jacs.8b06723. Disponible en: 10.1021/jacs.8b06723. Sun, X M; Tang, Q W; Wu, J H; Xu, K Q; Zhong, X; Lin, J M; Huang, M L (2011) Two-step synthesis of superabsorbent conducting hydrogel based on poly(acrylamide-pyrrole) with interpenetrating network structure. En:Materials Research Innovations; Vol. 15; No. 1; pp. 70 - 74; Taylor & Francis; Disponible en: https://www.tandfonline.com/doi/full/10.1179/143307511X12922272564021. Disponible en: 10.1179/143307511X12922272564021. Pavia, Donald L; Lampman, Gary M; Kriz, George S; Vyvyan, James R. (2010) ULTRAVIOLET SPECTROSCOPY. En:INTRODUCTION TO SPECTROSCOPY; pp. 381 - 383; Belmont: Brooks/Cole Cengage learning; 9780495114789; Wei, Junhua; Qiu, Jingjing (2015) Unveil the Fluorescence of Carbon Quantum Dots. En:Advanced Engineering Materials; Vol. 17; No. 2; pp. 138 - 142; Wiley-VCH Verlag; Disponible en: http://doi.wiley.com/10.1002/adem.201400146. Disponible en: 10.1002/adem.201400146. Lugao, Ademar B; Malmonge, Sônia Maria (2001) Use of radiation in the production of hydrogels. En:Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms; Vol. 185; No. 1-4; pp. 37 - 42; Disponible en: www.elsevier.com/locate/nimb. Disponible en: 10.1016/S0168-583X(01)00807-2. H. Takahashi, Suelen; M. Lira, Luiz; I. Córdoba de Torresi, Susana (2012) Zero-Order Release Profiles from A Multistimuli Responsive Electro-Conductive Hydrogel. En:Journal of Biomaterials and Nanobiotechnology; Vol. 03; No. 02; pp. 262 - 268; Scientific Research Publishing, Inc,; Disponible en: http://dx.doi.org/10.4236/jbnb.2012.322032PublishedOnlineMay2012; http://www.scirp.org/journal/jbnb. Disponible en: 10.4236/jbnb.2012.322032.instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURSistemas de administración de fármacos encapsulados en puntos de carbono en un hidrogel basado en alginatoSistemas de administración de fármacos basados en hidrogelLiberación controlada de fármacosSistema de liberación controlada de medicamentos basado en un hidrogel electroresponsivoFarmacología & terapéutica615600Drug delivery systems encapsulated at carbon points in an alginate-based hydrogelHydrogel-based drug delivery systemsControlled drug releaseControlled drug release system based on an electroresponsive hydrogelEncapsulación de puntos de carbono en un hidrogel basado en alginato: Prueba de concepto de liberación controlada de fármacosEncapsulation of carbon dots in an alginate-based hydrogel: Proof of concept of controlled drug deliveryEncapsulation of Carbon Points in an Alginate-Based Hydrogel: Proof of Concept for Controlled Drug ReleasebachelorThesisMonografíaTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fEscuela de Medicina y Ciencias de la SaludLICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/3927a5b2-4773-4a95-993a-1487849aed64/downloadfab9d9ed61d64f6ac005dee3306ae77eMD53ORIGINALTD_KarenRojas.pdfTD_KarenRojas.pdfDocumento trabajo dirigidoapplication/pdf7623065https://repository.urosario.edu.co/bitstreams/71551781-01ca-4dd3-8861-30c4a14b603d/download99900d5efc62072e5aec9721541bda63MD51TD_KarenRojas.risTD_KarenRojas.risBibliografíaapplication/octet-stream367038https://repository.urosario.edu.co/bitstreams/cbe6dfad-7b4f-41a3-bdc9-58719e2ad3df/download9129d9c3d3368133e0bc4975553e8a3aMD52TEXTTD_KarenRojas.pdf.txtTD_KarenRojas.pdf.txtExtracted texttext/plain203527https://repository.urosario.edu.co/bitstreams/2b5309e7-e555-4c7e-8d06-1d0987fd050d/download27764303242f6a2deb06f8f0699892d2MD54THUMBNAILTD_KarenRojas.pdf.jpgTD_KarenRojas.pdf.jpgGenerated Thumbnailimage/jpeg2636https://repository.urosario.edu.co/bitstreams/f5029850-ad7a-41e3-b400-52ea409b2548/download4b54cd3993f09e23482ab97a70a8441eMD5510336/31581oai:repository.urosario.edu.co:10336/315812021-06-08 16:39:30.31https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo=