Quiet sleep detection in preterm infants using deep convolutional neural networks

Objective. Neonates spend most of their time asleep. Sleep of preterm infants evolves rapidly throughout maturation and plays an important role in brain development. Since visual labelling of the sleep stages is a time consuming task, automated analysis of electroencephalography (EEG) to identify sl...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/22407
Acceso en línea:
https://doi.org/10.1088/1741-2552/aadc1f
https://repository.urosario.edu.co/handle/10336/22407
Palabra clave:
Article
Brain development
Brain maturation
Classification
Clinical article
Convolutional neural network
Correlation analysis
Electroencephalogram
Electroencephalography
Feature extraction
Human
Infant
Machine learning
Nerve cell differentiation
Newborn care
Prematurity
Priority journal
Receiver operating characteristic
Sleep
Sleep stage
Algorithm
Artificial neural network
Automation
Brain
Female
Male
Newborn
Physiology
Prematurity
Procedures
Sleep
Wakefulness
Algorithms
Automation
Brain
Electroencephalography
Female
Humans
Male
Neural Networks (Computer)
Sleep
Sleep Stages
Wakefulness
Convolutional neural network
EEG
Preterm neonate
Sleep stage classification
Newborn
development and aging
Premature
Growth
Infant
Infant
Rights
License
Abierto (Texto Completo)
id EDOCUR2_c135daeaaac075305382ca2d40ca5c74
oai_identifier_str oai:repository.urosario.edu.co:10336/22407
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 06b5407b-13bc-4091-8510-b24e71589dde-15b45fff5-4f13-4894-99dd-ca56f42f6aa5-1828ba1f8-7f27-432c-b460-8c737cb3131a-121e3cc2b-385f-4821-a9ca-d9d7303f84ce-1df8f51ae-6ef0-4179-a77b-d75be3a821dc-10972b341-4019-4c34-a7b7-38ae0d273c5b-1573e36c5-aeee-4517-a867-3bb0b9b772d6-13183bdf3-ff03-450d-ae46-40944441d817-138de6b05-427b-4843-8821-5161b28c7324-113e85339-b951-4e4f-84a3-92c720dbe6e0-12020-05-25T23:56:22Z2020-05-25T23:56:22Z2018Objective. Neonates spend most of their time asleep. Sleep of preterm infants evolves rapidly throughout maturation and plays an important role in brain development. Since visual labelling of the sleep stages is a time consuming task, automated analysis of electroencephalography (EEG) to identify sleep stages is of great interest to clinicians. This automated sleep scoring can aid in optimizing neonatal care and assessing brain maturation. Approach. In this study, we designed and implemented an 18-layer convolutional neural network to discriminate quiet sleep from non-quiet sleep in preterm infants. The network is trained on 54 recordings from 13 preterm neonates and the performance is assessed on 43 recordings from 13 independent patients. All neonates had a normal neurodevelopmental outcome and the EEGs were recorded between 27 and 42 weeks postmenstrual age. Main results. The proposed network achieved an area under the mean and median ROC curve equal to 92% and 98%, respectively. Significance. Our findings suggest that CNN is a suitable and fast approach to classify neonatal sleep stages in preterm infants. © 2018 IOP Publishing Ltd.application/pdfhttps://doi.org/10.1088/1741-2552/aadc1f17412560https://repository.urosario.edu.co/handle/10336/22407engInstitute of Physics PublishingNo. 6Journal of Neural EngineeringVol. 15Journal of Neural Engineering, ISSN:17412560, Vol.15, No.6 (2018)https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056640275&doi=10.1088%2f1741-2552%2faadc1f&partnerID=40&md5=e8c4d90292f0be7dafb243e04340c93fAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURArticleBrain developmentBrain maturationClassificationClinical articleConvolutional neural networkCorrelation analysisElectroencephalogramElectroencephalographyFeature extractionHumanInfantMachine learningNerve cell differentiationNewborn carePrematurityPriority journalReceiver operating characteristicSleepSleep stageAlgorithmArtificial neural networkAutomationBrainFemaleMaleNewbornPhysiologyPrematurityProceduresSleepWakefulnessAlgorithmsAutomationBrainElectroencephalographyFemaleHumansMaleNeural Networks (Computer)SleepSleep StagesWakefulnessConvolutional neural networkEEGPreterm neonateSleep stage classificationNewborndevelopment and agingPrematureGrowthInfantInfantQuiet sleep detection in preterm infants using deep convolutional neural networksarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Ansari A.H.De Wel O.Lavanga M.Caicedo A.Dereymaeker A.Jansen K.Vervisch J.De Vos M.Naulaers G.Van Huffel S.10336/22407oai:repository.urosario.edu.co:10336/224072022-05-02 07:37:14.147163https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Quiet sleep detection in preterm infants using deep convolutional neural networks
title Quiet sleep detection in preterm infants using deep convolutional neural networks
spellingShingle Quiet sleep detection in preterm infants using deep convolutional neural networks
Article
Brain development
Brain maturation
Classification
Clinical article
Convolutional neural network
Correlation analysis
Electroencephalogram
Electroencephalography
Feature extraction
Human
Infant
Machine learning
Nerve cell differentiation
Newborn care
Prematurity
Priority journal
Receiver operating characteristic
Sleep
Sleep stage
Algorithm
Artificial neural network
Automation
Brain
Female
Male
Newborn
Physiology
Prematurity
Procedures
Sleep
Wakefulness
Algorithms
Automation
Brain
Electroencephalography
Female
Humans
Male
Neural Networks (Computer)
Sleep
Sleep Stages
Wakefulness
Convolutional neural network
EEG
Preterm neonate
Sleep stage classification
Newborn
development and aging
Premature
Growth
Infant
Infant
title_short Quiet sleep detection in preterm infants using deep convolutional neural networks
title_full Quiet sleep detection in preterm infants using deep convolutional neural networks
title_fullStr Quiet sleep detection in preterm infants using deep convolutional neural networks
title_full_unstemmed Quiet sleep detection in preterm infants using deep convolutional neural networks
title_sort Quiet sleep detection in preterm infants using deep convolutional neural networks
dc.subject.keyword.spa.fl_str_mv Article
Brain development
Brain maturation
Classification
Clinical article
Convolutional neural network
Correlation analysis
Electroencephalogram
Electroencephalography
Feature extraction
Human
Infant
Machine learning
Nerve cell differentiation
Newborn care
Prematurity
Priority journal
Receiver operating characteristic
Sleep
Sleep stage
Algorithm
Artificial neural network
Automation
Brain
Female
Male
Newborn
Physiology
Prematurity
Procedures
Sleep
Wakefulness
Algorithms
Automation
Brain
Electroencephalography
Female
Humans
Male
Neural Networks (Computer)
Sleep
Sleep Stages
Wakefulness
Convolutional neural network
EEG
Preterm neonate
Sleep stage classification
topic Article
Brain development
Brain maturation
Classification
Clinical article
Convolutional neural network
Correlation analysis
Electroencephalogram
Electroencephalography
Feature extraction
Human
Infant
Machine learning
Nerve cell differentiation
Newborn care
Prematurity
Priority journal
Receiver operating characteristic
Sleep
Sleep stage
Algorithm
Artificial neural network
Automation
Brain
Female
Male
Newborn
Physiology
Prematurity
Procedures
Sleep
Wakefulness
Algorithms
Automation
Brain
Electroencephalography
Female
Humans
Male
Neural Networks (Computer)
Sleep
Sleep Stages
Wakefulness
Convolutional neural network
EEG
Preterm neonate
Sleep stage classification
Newborn
development and aging
Premature
Growth
Infant
Infant
dc.subject.keyword.eng.fl_str_mv Newborn
development and aging
Premature
Growth
Infant
Infant
description Objective. Neonates spend most of their time asleep. Sleep of preterm infants evolves rapidly throughout maturation and plays an important role in brain development. Since visual labelling of the sleep stages is a time consuming task, automated analysis of electroencephalography (EEG) to identify sleep stages is of great interest to clinicians. This automated sleep scoring can aid in optimizing neonatal care and assessing brain maturation. Approach. In this study, we designed and implemented an 18-layer convolutional neural network to discriminate quiet sleep from non-quiet sleep in preterm infants. The network is trained on 54 recordings from 13 preterm neonates and the performance is assessed on 43 recordings from 13 independent patients. All neonates had a normal neurodevelopmental outcome and the EEGs were recorded between 27 and 42 weeks postmenstrual age. Main results. The proposed network achieved an area under the mean and median ROC curve equal to 92% and 98%, respectively. Significance. Our findings suggest that CNN is a suitable and fast approach to classify neonatal sleep stages in preterm infants. © 2018 IOP Publishing Ltd.
publishDate 2018
dc.date.created.spa.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-05-25T23:56:22Z
dc.date.available.none.fl_str_mv 2020-05-25T23:56:22Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1088/1741-2552/aadc1f
dc.identifier.issn.none.fl_str_mv 17412560
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/22407
url https://doi.org/10.1088/1741-2552/aadc1f
https://repository.urosario.edu.co/handle/10336/22407
identifier_str_mv 17412560
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationIssue.none.fl_str_mv No. 6
dc.relation.citationTitle.none.fl_str_mv Journal of Neural Engineering
dc.relation.citationVolume.none.fl_str_mv Vol. 15
dc.relation.ispartof.spa.fl_str_mv Journal of Neural Engineering, ISSN:17412560, Vol.15, No.6 (2018)
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056640275&doi=10.1088%2f1741-2552%2faadc1f&partnerID=40&md5=e8c4d90292f0be7dafb243e04340c93f
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Institute of Physics Publishing
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167556244635648