Evaluación de la citotoxicidad de puntos de carbono (CD) en las líneas celulares tumorales U-87 Y MCF-7

El glioblastoma multiforme (GBM) es uno de los tipos de cáncer con mayor letalidad. El promedio de vida para todos los pacientes es de 12-18 meses después del diagnóstico y tratamiento. Los principales tratamientos para combatir el glioblastoma son: la cirugía y radioterapia. La cirugía principalmen...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
spa
OAI Identifier:
oai:repository.urosario.edu.co:10336/31625
Acceso en línea:
https://doi.org/10.48713/10336_31625
https://repository.urosario.edu.co/handle/10336/31625
Palabra clave:
Glioblastoma
Puntos de carbono
Citotoxicidad
Azul tripán
Ingeniería & operaciones afines
Ciencias médicas - Innovaciones tecnológicas
Bioingeniería
Rights
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id EDOCUR2_bd2bfec86aa6430f0a3c1fa6003ceefc
oai_identifier_str oai:repository.urosario.edu.co:10336/31625
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la citotoxicidad de puntos de carbono (CD) en las líneas celulares tumorales U-87 Y MCF-7
dc.title.TranslatedTitle.spa.fl_str_mv Evaluation of carbon point (CD) cytotoxicity in tumor cell lines U-87 and MCF-7
title Evaluación de la citotoxicidad de puntos de carbono (CD) en las líneas celulares tumorales U-87 Y MCF-7
spellingShingle Evaluación de la citotoxicidad de puntos de carbono (CD) en las líneas celulares tumorales U-87 Y MCF-7
Glioblastoma
Puntos de carbono
Citotoxicidad
Azul tripán
Ingeniería & operaciones afines
Ciencias médicas - Innovaciones tecnológicas
Bioingeniería
title_short Evaluación de la citotoxicidad de puntos de carbono (CD) en las líneas celulares tumorales U-87 Y MCF-7
title_full Evaluación de la citotoxicidad de puntos de carbono (CD) en las líneas celulares tumorales U-87 Y MCF-7
title_fullStr Evaluación de la citotoxicidad de puntos de carbono (CD) en las líneas celulares tumorales U-87 Y MCF-7
title_full_unstemmed Evaluación de la citotoxicidad de puntos de carbono (CD) en las líneas celulares tumorales U-87 Y MCF-7
title_sort Evaluación de la citotoxicidad de puntos de carbono (CD) en las líneas celulares tumorales U-87 Y MCF-7
dc.contributor.advisor.none.fl_str_mv Rodríguez Burbano, Diana Consuelo
Ondo Méndez, Alejandro Oyono
dc.subject.spa.fl_str_mv Glioblastoma
Puntos de carbono
Citotoxicidad
Azul tripán
topic Glioblastoma
Puntos de carbono
Citotoxicidad
Azul tripán
Ingeniería & operaciones afines
Ciencias médicas - Innovaciones tecnológicas
Bioingeniería
dc.subject.ddc.spa.fl_str_mv Ingeniería & operaciones afines
dc.subject.lemb.spa.fl_str_mv Ciencias médicas - Innovaciones tecnológicas
Bioingeniería
description El glioblastoma multiforme (GBM) es uno de los tipos de cáncer con mayor letalidad. El promedio de vida para todos los pacientes es de 12-18 meses después del diagnóstico y tratamiento. Los principales tratamientos para combatir el glioblastoma son: la cirugía y radioterapia. La cirugía principalmente utilizada para eliminar la mayor parte de la masa tumoral, ha tenido limitaciones dado a la característica invasiva que precede del GBM. La radioterapia (RT) ha tomado un papel crucial en terapias de GBM, siendo su objetivo detener la proliferación celular ocasionando rupturas en la cadena del ADN de las células cancerosas. Sin embargo, las células de GBM tienen un carácter radioresistente, limitando la efectividad de esta terapia. Los puntos de carbono (PC) son nanoestructuras esféricas, de alta biocompatibilidad, propiedades ópticas y fisicoquímicas que los hacen interesantes para aplicaciones dirigidas al aumentar la efectividad de la radioterapia. En estas aplicaciones, uno de los parámetros más importantes a establecer en los PC es su nivel de citotoxicidad. Por esto, el objetivo de este trabajo fue identificar el efecto citotóxico que tienen los puntos de carbono a base de ácido cítrico frente a células cancerosas de glioblastoma (U87) y células cancerosas de mama (MCF-7) por medio de dos ensayos de viabilidad MTT y Azul Tripán. Como resultado se obtuvieron puntos de carbono por medio de reacción microondas (bottom up) a partir de acido cítrico, etanol y N,N-dimetilformamida, emitiendo una fluorescencia de color azul bajo irradiación con luz ultravioleta de 365 nm. Se vió una alta viabilidad de las células U87 y MCF-7 frente a los PC sintetizados. Lo que da a entender que su baja citotoxicidad evidenciada en este trabajo, su facilidad para modular propiedades superficiales y su biocompatibilidad hacen que los PC sean potencialmente investigados para trabajos futuros.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-16T20:48:19Z
dc.date.available.none.fl_str_mv 2021-06-16T20:48:19Z
dc.date.created.none.fl_str_mv 2021-05-28
dc.type.eng.fl_str_mv bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.document.spa.fl_str_mv Trabajo de grado
dc.type.spa.spa.fl_str_mv Trabajo de grado
dc.identifier.doi.none.fl_str_mv https://doi.org/10.48713/10336_31625
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/31625
url https://doi.org/10.48713/10336_31625
https://repository.urosario.edu.co/handle/10336/31625
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
Abierto (Texto Completo)
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 38 pp.
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad del Rosario
dc.publisher.department.spa.fl_str_mv Escuela de Medicina y Ciencias de la Salud
dc.publisher.program.spa.fl_str_mv Ingeniería Biomédica
institution Universidad del Rosario
dc.source.bibliographicCitation.spa.fl_str_mv World Health Organization -cancer, (2018). https://www.who.int/healthtopics/cancer#tab=tab_1.
G.P. Gupta, J. Massagué, Cancer Metastasis: Building a Framework, Cell. 127 (2006) 679–695. https://doi.org/10.1016/j.cell.2006.11.001.
Internation Agengy for Research on Cancer, Estimated number of prevalent cases in 2020, worldwide, both sexes, all ages, Cancer Today. 896 (2020) 2020. https://gco.iarc.fr/today/online-analysistable?v=2020&mode=cancer&mode_population=regions&population=900&populatio ns=900&key=asr&sex=0&cancer=39&type=2&statistic=5&prevalence=1&population _group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer=1&in cl.
P. bórquez, c. romero, El paciente oncológico geriátrico, Rev. Chil. Cirugía. 59 (2007). https://doi.org/10.4067/s0718-40262007000600015.
J. Wang, X. Wu, P. Shen, J. Wang, Y. Shen, Y. Shen, T.J. Webster, J. Deng, Applications of inorganic nanomaterials in photothermal therapy based on combinational cancer treatment, Int. J. Nanomedicine. 15 (2020) 1903–1914. https://doi.org/10.2147/IJN.S239751.
V.T. DeVita, E. Chu, A history of cancer chemotherapy, Cancer Res. 68 (2008) 8643– 8653. https://doi.org/10.1158/0008-5472.CAN-07-6611.
H. Chen, Y. Zhao, Applications of Light-Responsive Systems for Cancer Theranostics, ACS Appl. Mater. Interfaces. 10 (2018) 21021–21034. https://doi.org/10.1021/acsami.8b01114
D. Khuntia, P. Brown, J. Li, M.P. Mehta, Whole-brain radiotherapy in the management of brain metastasis, J. Clin. Oncol. 24 (2006) 1295–1304. https://doi.org/10.1200/JCO.2005.04.6185.
J. Liu, K. Bi, R. Yang, H. Li, Z. Nikitaki, L. Chang, Role of DNA damage and repair in radiation cancer therapy: a current update and a look to the future, Int. J. Radiat. Biol. 96 (2020) 1329–1338. https://doi.org/10.1080/09553002.2020.1807641.
J. Ruan, Y. Wang, F. Li, R. Jia, G. Zhou, C. Shao, L. Zhu, M. Cui, D.P. Yang, S. Ge, Graphene Quantum Dots for Radiotherapy, ACS Appl. Mater. Interfaces. 10 (2018) 14342–14355. https://doi.org/10.1021/acsami.7b18975
P.B. Dirks, Brain tumor stem cells: Bringing order to the chaos of brain cancer, J. Clin. Oncol. 26 (2008) 2916–2924. https://doi.org/10.1200/JCO.2008.17.6792.
GLOBOCAN, Estimated number of deaths in 2020,both sexes, all ages, brain cancer, Int. Agency Res. Cancer. 144 (2020) 100. https://gco.iarc.fr/today/online-analysistable?v=2020&mode=population&mode_population=continents&population=900&po pulations=900&key=asr&sex=0&cancer=31&type=1&statistic=5&prevalence=0&pop ulation_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer.
C.J. Sherr, Principles of Tumor Suppression, Cell. 116 (2004) 235–246. https://doi.org/10.1016/S0092-8674(03)01075-4.
J. Han, Y. Jun, S.H. Kim, H.H. Hoang, Y. Jung, S. Kim, J. Kim, R.H. Austin, S. Lee, S. Park, Rapid emergence and mechanisms of resistance by U87 glioblastoma cells to doxorubicin in an in vitro tumor microfluidic ecology, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 14283–14288. https://doi.org/10.1073/pnas.1614898113.
A. Bradshaw, A. Wickremesekera, H.D. Brasch, A.M. Chibnall, P.F. Davis, S.T. Tan, T. Itinteang, Cancer Stem Cells in Glioblastoma Multiforme, Front. Surg. 3 (2016) 1203–1217. https://doi.org/10.3389/fsurg.2016.00048.
J.K. Park, T. Hodges, L. Arko, M. Shen, D. Dello Iacono, A. McNabb, N.O. Bailey, T.N. Kreisl, F.M. Iwamoto, J. Sul, S. Auh, G.E. Park, H.A. Fine, P.M.L. Black, Scale to predict survival after surgery for recurrent glioblastoma multiforme, J. Clin. Oncol. 28 (2010) 3838–3843. https://doi.org/10.1200/JCO.2010.30.0582.
F. Hanif, K. Muzaffar, K. Perveen, S.M. Malhi, S.U. Simjee, Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment, Asian Pacific J. Cancer Prev. 18 (2017) 3–9. https://doi.org/10.22034/APJCP.2017.18.1.3.
R. Rodríguez, K. Lombardo, G. Roldán, J. Silvera, R. Lagomarsino, Glioblastoma multiforme cerebral hemisférico: análisis de sobrevida de 65 casos tratados en el Departamento de Oncología del Hospital de Clínicas, desde 1980 a 2000, Rev. Médica Del Uruguay. 28 (2012) 250–261.
X. Li, F. Shao, J. Sun, K. Du, Y. Sun, F. Feng, Enhanced Copper-Temozolomide Interactions by Protein for Chemotherapy against Glioblastoma Multiforme, ACS Appl. Mater. Interfaces. (2019). https://doi.org/10.1021/acsami.9b14849.
J. Mann, R. Ramakrishna, R. Magge, A.G. Wernicke, Advances in radiotherapy for glioblastoma, Front. Neurol. 8 (2018) 1–11. https://doi.org/10.3389/fneur.2017.00748.
J. Choi, G. Kim, S. Bin Cho, H.J. Im, Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme, J. Nanobiotechnology. 18 (2020) 1–23. https://doi.org/10.1186/s12951-020-00684-5.
F. Kazmi, K.A. Vallis, B.A. Vellayappan, A. Bandla, D. Yukun, R. Carlisle, Megavoltage radiosensitization of gold nanoparticles on a glioblastoma cancer cell line using a clinical platform, Int. J. Mol. Sci. 21 (2020) 1–12. https://doi.org/10.3390/ijms21020429.
O. Grauer, M. Jaber, K. Hess, M. Weckesser, W. Schwindt, S. Maring, J. Wölfer, W. Stummer, Combined intracavitary thermotherapy with iron oxide nanoparticles and radiotherapy as local treatment modality in recurrent glioblastoma patients, J. Neurooncol. 141 (2019) 83–94. https://doi.org/10.1007/s11060-018-03005-x.
K. Chatterjee, S. Sarkar, K. Jagajjanani Rao, S. Paria, Core/shell nanoparticles in biomedical applications, Adv. Colloid Interface Sci. 209 (2014) 8–39. https://doi.org/10.1016/j.cis.2013.12.008.
C.G. Lizarazo-Salcedo, E.E. González-Jiménez, C.Y. Arias-Portela, J. GuarguatiAriza, Nanomateriales: un acercamiento a lo básico, Med. Segur. Trab. (Madr). 64 (2018) 109–118.
N. Sanvicens, M.P. Marco, Multifunctional nanoparticles - properties and prospects for their use in human medicine, Trends Biotechnol. 26 (2008) 425–433. https://doi.org/10.1016/j.tibtech.2008.04.005.
J. Yao, M. Yang, Y. Duan, Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy, Chem. Rev. 114 (2014) 6130–6178. https://doi.org/10.1021/cr200359p.
K.P.R. Chowdary, A. Srinivasa Rao, Nanoparticles as drug carriers, Indian Drugs. 34 (1997) 549–556. https://doi.org/10.1533/9781908818195.29.
N.D. Thorat, H. Townely, G. Brennan, A.K. Parchur, C. Silien, J. Bauer, S.A.M. Tofail, Progress in Remotely Triggered Hybrid Nanostructures for Next-Generation Brain Cancer Theranostics, ACS Biomater. Sci. Eng. 5 (2019) 2669–2687. https://doi.org/10.1021/acsbiomaterials.8b01173.
D. Kwatra, A. Venugopal, S. Anant, Nanoparticles in radiation therapy: A summary of various approaches to enhance radiosensitization in cancer, Transl. Cancer Res. 2 (2013) 330–342. https://doi.org/10.3978/j.issn.2218-676X.2013.08.06.
R. Jelinek, Carbon Quantum Dots. Synthesis, Properties and Applicatons, 2017
S. Sagbas, N. Sahiner, Carbon dots: Preparation, properties, and application, Elsevier Ltd., 2018. https://doi.org/10.1016/B978-0-08-102509-3.00022-5.
H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, X. Yang, Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties, Chem. Commun. (2009) 5118–5120. https://doi.org/10.1039/b907612c
P. Miao, K. Han, Y. Tang, B. Wang, T. Lin, W. Cheng, Recent advances in carbon nanodots: Synthesis, properties and biomedical applications, Nanoscale. 7 (2015) 1586–1595. https://doi.org/10.1039/c4nr05712k.
D.B. Shinde, V.K. Pillai, Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes, Chem. - A Eur. J. 18 (2012) 12522–12528. https://doi.org/10.1002/chem.201201043
A. Sharma, J. Das, Small molecules derived carbon dots: Synthesis and applications in sensing, catalysis, imaging, and biomedicine, J. Nanobiotechnology. 17 (2019) 1– 24. https://doi.org/10.1186/s12951-019-0525-8.
J. Prado-Gonjal, E. Morán, E.J. Morán Prado-Gonjal, Síntesis asistida por microondas de sólidos inorgánicos Investigación Química Introducción, An. Quím. 107 (2011) 129–136.
E.E. González Jiménez, F. González, Síntesis por radiación con microondas de nanotubos de carbono, Univ. Sci. 13 (2008) 258–266.
L. Pan, S. Sun, A. Zhang, K. Jiang, L. Zhang, C. Dong, Q. Huang, A. Wu, H. Lin, Truly Fluorescent Excitation-Dependent Carbon Dots and Their Applications in Multicolor Cellular Imaging and Multidimensional Sensing, Adv. Mater. 27 (2015) 7782–7787. https://doi.org/10.1002/adma.201503821.
S. Pandey, G.R. Gedda, M. Thakur, M.L. Bhaisare, A. Talib, M.S. Khan, S.M. Wu, H.F. Wu, Theranostic carbon dots ‘clathrate-like’ nanostructures for targeted photochemotherapy and bioimaging of cancer, J. Ind. Eng. Chem. 56 (2017) 62–73. https://doi.org/10.1016/j.jiec.2017.06.008.
T. V. De Medeiros, J. Manioudakis, F. Noun, J.R. Macairan, F. Victoria, R. Naccache, Microwave-assisted synthesis of carbon dots and their applications, J. Mater. Chem. C. 7 (2019) 7175–7195. https://doi.org/10.1039/c9tc01640f.
L. Cao, X. Wang, M.J. Meziani, F. Lu, H. Wang, P.G. Luo, Y. Lin, B.A. Harruff, L.M. Veca, D. Murray, S. Xie, Y. Sun, Geburt des Schwarzhändlers | DIE ZEIT Archiv | Ausgabe 20/1946, Americal. (1946) 11318–11319.
F. Du, M. Zhang, A. Gong, Y. Tan, J. Miao, Y. Gong, S. Zou, L. Zhang, L. Zhang, C. Wu, M. Sun, H. Ju, Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors, Biomaterials. 121 (2017) 109–120. https://doi.org/10.1016/j.biomaterials.2016.07.008.
M. Tuerhong, Y. XU, X.B. YIN, Review on Carbon Dots and Their Applications, Chinese J. Anal. Chem. 45 (2017) 139–150. https://doi.org/10.1016/S1872- 2040(16)60990-8.
S.D. Hettiarachchi, R.M. Graham, K.J. Mintz, Y. Zhou, S. Vanni, Z. Peng, R.M. Leblanc, Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors, Nanoscale. 11 (2019) 6192–6205. https://doi.org/10.1039/C8NR08970A.
Z. Ji, P. Ai, C. Shao, T. Wang, C. Yan, L. Ye, W. Gu, Manganese-Doped Carbon Dots for Magnetic Resonance/Optical Dual-Modal Imaging of Tiny Brain Glioma, ACS Biomater. Sci. Eng. 4 (2018) 2089–2094. https://doi.org/10.1021/acsbiomaterials.7b01008.
L. Zhang, Z. Lin, Y.X. Yu, B.P. Jiang, X.C. Shen, Multifunctional hyaluronic acidderived carbon dots for self-targeted imaging-guided photodynamic therapy, J. Mater. Chem. B. 6 (2018) 6534–6543. https://doi.org/10.1039/c8tb01957f.
A. Kundu, J. Lee, B. Park, C. Ray, K.V. Sankar, W.S. Kim, S.H. Lee, I.J. Cho, S.C. Jun, Facile approach to synthesize highly fluorescent multicolor emissive carbon dots via surface functionalization for cellular imaging, J. Colloid Interface Sci. 513 (2018) 505–514. https://doi.org/10.1016/j.jcis.2017.10.095.
N. Irmania, K. Dehvari, G. Gedda, P.J. Tseng, J.Y. Chang, Manganese-doped green tea-derived carbon quantum dots as a targeted dual imaging and photodynamic therapy platform, J. Biomed. Mater. Res. - Part B Appl. Biomater. 108 (2020) 1616– 1625. https://doi.org/10.1002/jbm.b.34508.
S.B. de M. Barros, Toxicologia, Rev. Bras. Ciências Farm. 38 (2002) 500–500. https://doi.org/10.1590/s1516-93322002000400015.
N. Vasimalai, V. Vilas-Boas, J. Gallo, M. de F. Cerqueira, M. Menéndez-Miranda, J.M. Costa-Fernández, L. Diéguez, B. Espiña, M.T. Fernández-Argüelles, Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition, Beilstein J. Nanotechnol. 9 (2018) 530–544. https://doi.org/10.3762/bjnano.9.51.
H. Muktha, R. Sharath, N. Kottam, S.P. Smrithi, K. Samrat, P. Ankitha, Green Synthesis of Carbon Dots and Evaluation of Its Pharmacological Activities, Bionanoscience. 10 (2020) 731–744. https://doi.org/10.1007/s12668-020-00741-1.
A. Sharma, V. Panwar, J. Thomas, V. Chopra, H.S. Roy, D. Ghosh, Actin-binding carbon dots selectively target glioblastoma cells while sparing normal cells, Colloids Surfaces B Biointerfaces. 200 (2021) 111572. https://doi.org/10.1016/j.colsurfb.2021.111572.
Z. Wang, H. Liao, H. Wu, B. Wang, H. Zhao, M. Tan, Fluorescent carbon dots from beer for breast cancer cell imaging and drug delivery, Anal. Methods. 7 (2015) 8911– 8917. https://doi.org/10.1039/c5ay01978h.
E. Arkan, A. Barati, M. Rahmanpanah, L. Hosseinzadeh, S. Moradi, M. Hajialyani, Green synthesis of carbon dots derived from walnut oil and an investigation of their cytotoxic and apoptogenic activities toward cancer cells, Adv. Pharm. Bull. 8 (2018) 149–155. https://doi.org/10.15171/apb.2018.018.
Ö.S. Aslantürk, In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages, Genotoxicity - A Predict. Risk to Our Actual World. (2018) 1–18. https://doi.org/10.5772/intechopen.71923.
P. Brescia, P. Banks, Quantifying Cytotoxicity of Thiostrepton on Mesothelioma Cells using MTT Assay and the Epoch TM Microplate Spectrophotometer, BioTek. (2009) 3.
L. Florento, R. Matias, E. Tuaño, K. Santiago, F. Dela Cruz, A. Tuazon, Comparison of cytotoxic activity of anticancer drugs against various human tumor cell lines using in vitro cell-based approach, Int. J. Biomed. Sci. 8 (2012) 76–80.
K.E. Zakrzewska, A. Samluk, M. Wierzbicki, S. Jaworski, M. Kutwin, E. Sawosz, A. Chwalibog, D.G. Pijanowska, K.D. Pluta, Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines, PLoS One. 10 (2015) 1–15. https://doi.org/10.1371/journal.pone.0122579.
Y. Wang, P. Anilkumar, L. Cao, J.H. Liu, P.G. Luo, K.N. Tackett, S. Sahu, P. Wang, X. Wang, Y.P. Sun, Carbon dots of different composition and surface functionalization: Cytotoxicity issues relevant to fluorescence cell imaging, Exp. Biol. Med. 236 (2011) 1231–1238. https://doi.org/10.1258/ebm.2011.011132.
ATCC, American Type Culture Collection U87, HTB-14, (2020) 17025. available: https://www.atcc.org/products/all/HTB-14.aspx.
MCF-7, American Type Culture Collection ATCC (atcc ® htb-22 TM ), (2020) 17025.
S. Bao, Q. Wu, R.E. McLendon, Y. Hao, Q. Shi, A.B. Hjelmeland, M.W. Dewhirst, D.D. Bigner, J.N. Rich, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature. 444 (2006) 756–760. https://doi.org/10.1038/nature05236.
N. Kumar, S. Kumbhat, Carbon‐Based Nanomaterials, Essentials Nanosci. Nanotechnol. (2016) 189–236. https://doi.org/10.1002/9781119096122.ch5.
Reactor de síntesis-Monowave 50-Anton-Paar, Donau Lab Ukr. (2019) 2021.
D. Gao, X. Liu, D. Jiang, H. Zhao, Y. Zhu, X. Chen, H. Luo, H. Fan, X. Zhang, Exploring of multicolor emissive carbon dots with novel double emission mechanism, Sensors Actuators, B Chem. 277 (2018) 373–380. https://doi.org/10.1016/j.snb.2018.09.031.
E.H. Hong, K.H. Lee, S.H. Oh, C.G. Park, Synthesis of Carbon Nanotubes Using Microwave Radiation, Adv. Funct. Mater. 13 (2003) 961–966. https://doi.org/10.1002/adfm.200304396.
Q. Xiao, Y. Liang, F. Zhu, S. Lu, S. Huang, Microwave-assisted one-pot synthesis of highly luminescent N-doped carbon dots for cellular imaging and multi-ion probing, Microchim. Acta. 184 (2017) 2429–2438. https://doi.org/10.1007/s00604-017-2242- z.
A. Ettinger, T. Wittmann, Fluorescence live cell imaging, 1st ed., Elsevier Inc., 2014. https://doi.org/10.1016/B978-0-12-420138-5.00005-7.
J. Cigales Canga, Síntesis y caracterización de nanopartículas de carbono luminiscentes: Carbon Quantum Dots (CQDs), (2016) 70.
S. Xia, E.M. Rosen, J. Laterra, Sensitization of glioma cells to fas-dependent apoptosis by chemotherapy-induced oxidative stress, Cancer Res. 65 (2005) 5248– 5255. https://doi.org/10.1158/0008-5472.CAN-04-4332.
R. Ahmad, G. Schettino, G. Royle, M. Barry, Q.A. Pankhurst, O. Tillement, B. Russell, K. Ricketts, Radiobiological Implications of Nanoparticles Following Radiation Treatment, Part. Part. Syst. Charact. 37 (2020). https://doi.org/10.1002/ppsc.201900411.
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/c5d96f27-74e5-4d08-adef-f5869a39e5c1/download
https://repository.urosario.edu.co/bitstreams/c77f0c63-5d8e-4eef-89ef-512b6c86efda/download
https://repository.urosario.edu.co/bitstreams/18c71165-0e82-4052-9081-77c4794c970d/download
https://repository.urosario.edu.co/bitstreams/6173c56f-84f0-4690-9d30-15314953074d/download
https://repository.urosario.edu.co/bitstreams/a4ba370f-2189-4c35-9518-caea17ee4b32/download
bitstream.checksum.fl_str_mv 10075c86c5bd73af47633f56eae6b627
246ddf9ea6ce10dffcf8fae72e0b3ba1
1ca48449603c13c83640b9a26023500d
fab9d9ed61d64f6ac005dee3306ae77e
217700a34da79ed616c2feb68d4c5e06
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1818106532582129664
spelling Rodríguez Burbano, Diana Consuelo52994699600Ondo Méndez, Alejandro Oyono79831981600Rodríguez Rojas, Yoly CarolinaIngeniero BiomédicoFull time4d6cdf11-c958-4fb2-bf27-ae3a7d52aecc6002021-06-16T20:48:19Z2021-06-16T20:48:19Z2021-05-28El glioblastoma multiforme (GBM) es uno de los tipos de cáncer con mayor letalidad. El promedio de vida para todos los pacientes es de 12-18 meses después del diagnóstico y tratamiento. Los principales tratamientos para combatir el glioblastoma son: la cirugía y radioterapia. La cirugía principalmente utilizada para eliminar la mayor parte de la masa tumoral, ha tenido limitaciones dado a la característica invasiva que precede del GBM. La radioterapia (RT) ha tomado un papel crucial en terapias de GBM, siendo su objetivo detener la proliferación celular ocasionando rupturas en la cadena del ADN de las células cancerosas. Sin embargo, las células de GBM tienen un carácter radioresistente, limitando la efectividad de esta terapia. Los puntos de carbono (PC) son nanoestructuras esféricas, de alta biocompatibilidad, propiedades ópticas y fisicoquímicas que los hacen interesantes para aplicaciones dirigidas al aumentar la efectividad de la radioterapia. En estas aplicaciones, uno de los parámetros más importantes a establecer en los PC es su nivel de citotoxicidad. Por esto, el objetivo de este trabajo fue identificar el efecto citotóxico que tienen los puntos de carbono a base de ácido cítrico frente a células cancerosas de glioblastoma (U87) y células cancerosas de mama (MCF-7) por medio de dos ensayos de viabilidad MTT y Azul Tripán. Como resultado se obtuvieron puntos de carbono por medio de reacción microondas (bottom up) a partir de acido cítrico, etanol y N,N-dimetilformamida, emitiendo una fluorescencia de color azul bajo irradiación con luz ultravioleta de 365 nm. Se vió una alta viabilidad de las células U87 y MCF-7 frente a los PC sintetizados. Lo que da a entender que su baja citotoxicidad evidenciada en este trabajo, su facilidad para modular propiedades superficiales y su biocompatibilidad hacen que los PC sean potencialmente investigados para trabajos futuros.Glioblastoma multiforme (GBM) is one of the most deadly cancers. The average life span for all patients is 12-18 months after diagnosis and treatment. The main treatments to combat glioblastoma are: surgery and radiation therapy. Surgery, mainly used to remove most of the tumor mass, has had limitations due to the invasive characteristic that precedes GBM. Radiotherapy (RT) has taken on a crucial role in GBM therapies, its objective being to stop cell proliferation by causing breaks in the DNA chain of cancer cells. However, GBM cells have a radioresistant character, limiting the effectiveness of this therapy. Carbon dots (PC) are spherical nanostructures, with high biocompatibility, optical and physicochemical properties that make them interesting for targeted applications by increasing the effectiveness of radiotherapy. In these applications, one of the most important parameters to establish in the PC is its level of cytotoxicity. Therefore, the objective of this work was to identify the cytotoxic effect that citric acid-based carbon spots have against glioblastoma cancer cells (U87) and breast cancer cells (MCF-7) by means of two viability assays. MTT and Azul Tripán. As a result, carbon points were obtained by means of microwave reaction (bottom up) from citric acid, ethanol and N, N-dimethylformamide, emitting a blue fluorescence under irradiation with 365 nm ultraviolet light. High viability of U87 and MCF-7 cells was seen against the synthesized PCs. This suggests that their low cytotoxicity evidenced in this work, their ease of modulating surface properties, and their biocompatibility make PCs potentially investigated for future work.38 pp.application/pdfhttps://doi.org/10.48713/10336_31625https://repository.urosario.edu.co/handle/10336/31625spaUniversidad del RosarioEscuela de Medicina y Ciencias de la SaludIngeniería BiomédicaAtribución-NoComercial-SinDerivadas 2.5 ColombiaAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2World Health Organization -cancer, (2018). https://www.who.int/healthtopics/cancer#tab=tab_1.G.P. Gupta, J. Massagué, Cancer Metastasis: Building a Framework, Cell. 127 (2006) 679–695. https://doi.org/10.1016/j.cell.2006.11.001.Internation Agengy for Research on Cancer, Estimated number of prevalent cases in 2020, worldwide, both sexes, all ages, Cancer Today. 896 (2020) 2020. https://gco.iarc.fr/today/online-analysistable?v=2020&mode=cancer&mode_population=regions&population=900&populatio ns=900&key=asr&sex=0&cancer=39&type=2&statistic=5&prevalence=1&population _group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer=1&in cl.P. bórquez, c. romero, El paciente oncológico geriátrico, Rev. Chil. Cirugía. 59 (2007). https://doi.org/10.4067/s0718-40262007000600015.J. Wang, X. Wu, P. Shen, J. Wang, Y. Shen, Y. Shen, T.J. Webster, J. Deng, Applications of inorganic nanomaterials in photothermal therapy based on combinational cancer treatment, Int. J. Nanomedicine. 15 (2020) 1903–1914. https://doi.org/10.2147/IJN.S239751.V.T. DeVita, E. Chu, A history of cancer chemotherapy, Cancer Res. 68 (2008) 8643– 8653. https://doi.org/10.1158/0008-5472.CAN-07-6611.H. Chen, Y. Zhao, Applications of Light-Responsive Systems for Cancer Theranostics, ACS Appl. Mater. Interfaces. 10 (2018) 21021–21034. https://doi.org/10.1021/acsami.8b01114D. Khuntia, P. Brown, J. Li, M.P. Mehta, Whole-brain radiotherapy in the management of brain metastasis, J. Clin. Oncol. 24 (2006) 1295–1304. https://doi.org/10.1200/JCO.2005.04.6185.J. Liu, K. Bi, R. Yang, H. Li, Z. Nikitaki, L. Chang, Role of DNA damage and repair in radiation cancer therapy: a current update and a look to the future, Int. J. Radiat. Biol. 96 (2020) 1329–1338. https://doi.org/10.1080/09553002.2020.1807641.J. Ruan, Y. Wang, F. Li, R. Jia, G. Zhou, C. Shao, L. Zhu, M. Cui, D.P. Yang, S. Ge, Graphene Quantum Dots for Radiotherapy, ACS Appl. Mater. Interfaces. 10 (2018) 14342–14355. https://doi.org/10.1021/acsami.7b18975P.B. Dirks, Brain tumor stem cells: Bringing order to the chaos of brain cancer, J. Clin. Oncol. 26 (2008) 2916–2924. https://doi.org/10.1200/JCO.2008.17.6792.GLOBOCAN, Estimated number of deaths in 2020,both sexes, all ages, brain cancer, Int. Agency Res. Cancer. 144 (2020) 100. https://gco.iarc.fr/today/online-analysistable?v=2020&mode=population&mode_population=continents&population=900&po pulations=900&key=asr&sex=0&cancer=31&type=1&statistic=5&prevalence=0&pop ulation_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer.C.J. Sherr, Principles of Tumor Suppression, Cell. 116 (2004) 235–246. https://doi.org/10.1016/S0092-8674(03)01075-4.J. Han, Y. Jun, S.H. Kim, H.H. Hoang, Y. Jung, S. Kim, J. Kim, R.H. Austin, S. Lee, S. Park, Rapid emergence and mechanisms of resistance by U87 glioblastoma cells to doxorubicin in an in vitro tumor microfluidic ecology, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 14283–14288. https://doi.org/10.1073/pnas.1614898113.A. Bradshaw, A. Wickremesekera, H.D. Brasch, A.M. Chibnall, P.F. Davis, S.T. Tan, T. Itinteang, Cancer Stem Cells in Glioblastoma Multiforme, Front. Surg. 3 (2016) 1203–1217. https://doi.org/10.3389/fsurg.2016.00048.J.K. Park, T. Hodges, L. Arko, M. Shen, D. Dello Iacono, A. McNabb, N.O. Bailey, T.N. Kreisl, F.M. Iwamoto, J. Sul, S. Auh, G.E. Park, H.A. Fine, P.M.L. Black, Scale to predict survival after surgery for recurrent glioblastoma multiforme, J. Clin. Oncol. 28 (2010) 3838–3843. https://doi.org/10.1200/JCO.2010.30.0582.F. Hanif, K. Muzaffar, K. Perveen, S.M. Malhi, S.U. Simjee, Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment, Asian Pacific J. Cancer Prev. 18 (2017) 3–9. https://doi.org/10.22034/APJCP.2017.18.1.3.R. Rodríguez, K. Lombardo, G. Roldán, J. Silvera, R. Lagomarsino, Glioblastoma multiforme cerebral hemisférico: análisis de sobrevida de 65 casos tratados en el Departamento de Oncología del Hospital de Clínicas, desde 1980 a 2000, Rev. Médica Del Uruguay. 28 (2012) 250–261.X. Li, F. Shao, J. Sun, K. Du, Y. Sun, F. Feng, Enhanced Copper-Temozolomide Interactions by Protein for Chemotherapy against Glioblastoma Multiforme, ACS Appl. Mater. Interfaces. (2019). https://doi.org/10.1021/acsami.9b14849.J. Mann, R. Ramakrishna, R. Magge, A.G. Wernicke, Advances in radiotherapy for glioblastoma, Front. Neurol. 8 (2018) 1–11. https://doi.org/10.3389/fneur.2017.00748.J. Choi, G. Kim, S. Bin Cho, H.J. Im, Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme, J. Nanobiotechnology. 18 (2020) 1–23. https://doi.org/10.1186/s12951-020-00684-5.F. Kazmi, K.A. Vallis, B.A. Vellayappan, A. Bandla, D. Yukun, R. Carlisle, Megavoltage radiosensitization of gold nanoparticles on a glioblastoma cancer cell line using a clinical platform, Int. J. Mol. Sci. 21 (2020) 1–12. https://doi.org/10.3390/ijms21020429.O. Grauer, M. Jaber, K. Hess, M. Weckesser, W. Schwindt, S. Maring, J. Wölfer, W. Stummer, Combined intracavitary thermotherapy with iron oxide nanoparticles and radiotherapy as local treatment modality in recurrent glioblastoma patients, J. Neurooncol. 141 (2019) 83–94. https://doi.org/10.1007/s11060-018-03005-x.K. Chatterjee, S. Sarkar, K. Jagajjanani Rao, S. Paria, Core/shell nanoparticles in biomedical applications, Adv. Colloid Interface Sci. 209 (2014) 8–39. https://doi.org/10.1016/j.cis.2013.12.008.C.G. Lizarazo-Salcedo, E.E. González-Jiménez, C.Y. Arias-Portela, J. GuarguatiAriza, Nanomateriales: un acercamiento a lo básico, Med. Segur. Trab. (Madr). 64 (2018) 109–118.N. Sanvicens, M.P. Marco, Multifunctional nanoparticles - properties and prospects for their use in human medicine, Trends Biotechnol. 26 (2008) 425–433. https://doi.org/10.1016/j.tibtech.2008.04.005.J. Yao, M. Yang, Y. Duan, Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy, Chem. Rev. 114 (2014) 6130–6178. https://doi.org/10.1021/cr200359p.K.P.R. Chowdary, A. Srinivasa Rao, Nanoparticles as drug carriers, Indian Drugs. 34 (1997) 549–556. https://doi.org/10.1533/9781908818195.29.N.D. Thorat, H. Townely, G. Brennan, A.K. Parchur, C. Silien, J. Bauer, S.A.M. Tofail, Progress in Remotely Triggered Hybrid Nanostructures for Next-Generation Brain Cancer Theranostics, ACS Biomater. Sci. Eng. 5 (2019) 2669–2687. https://doi.org/10.1021/acsbiomaterials.8b01173.D. Kwatra, A. Venugopal, S. Anant, Nanoparticles in radiation therapy: A summary of various approaches to enhance radiosensitization in cancer, Transl. Cancer Res. 2 (2013) 330–342. https://doi.org/10.3978/j.issn.2218-676X.2013.08.06.R. Jelinek, Carbon Quantum Dots. Synthesis, Properties and Applicatons, 2017S. Sagbas, N. Sahiner, Carbon dots: Preparation, properties, and application, Elsevier Ltd., 2018. https://doi.org/10.1016/B978-0-08-102509-3.00022-5.H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, X. Yang, Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties, Chem. Commun. (2009) 5118–5120. https://doi.org/10.1039/b907612cP. Miao, K. Han, Y. Tang, B. Wang, T. Lin, W. Cheng, Recent advances in carbon nanodots: Synthesis, properties and biomedical applications, Nanoscale. 7 (2015) 1586–1595. https://doi.org/10.1039/c4nr05712k.D.B. Shinde, V.K. Pillai, Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes, Chem. - A Eur. J. 18 (2012) 12522–12528. https://doi.org/10.1002/chem.201201043A. Sharma, J. Das, Small molecules derived carbon dots: Synthesis and applications in sensing, catalysis, imaging, and biomedicine, J. Nanobiotechnology. 17 (2019) 1– 24. https://doi.org/10.1186/s12951-019-0525-8.J. Prado-Gonjal, E. Morán, E.J. Morán Prado-Gonjal, Síntesis asistida por microondas de sólidos inorgánicos Investigación Química Introducción, An. Quím. 107 (2011) 129–136.E.E. González Jiménez, F. González, Síntesis por radiación con microondas de nanotubos de carbono, Univ. Sci. 13 (2008) 258–266.L. Pan, S. Sun, A. Zhang, K. Jiang, L. Zhang, C. Dong, Q. Huang, A. Wu, H. Lin, Truly Fluorescent Excitation-Dependent Carbon Dots and Their Applications in Multicolor Cellular Imaging and Multidimensional Sensing, Adv. Mater. 27 (2015) 7782–7787. https://doi.org/10.1002/adma.201503821.S. Pandey, G.R. Gedda, M. Thakur, M.L. Bhaisare, A. Talib, M.S. Khan, S.M. Wu, H.F. Wu, Theranostic carbon dots ‘clathrate-like’ nanostructures for targeted photochemotherapy and bioimaging of cancer, J. Ind. Eng. Chem. 56 (2017) 62–73. https://doi.org/10.1016/j.jiec.2017.06.008.T. V. De Medeiros, J. Manioudakis, F. Noun, J.R. Macairan, F. Victoria, R. Naccache, Microwave-assisted synthesis of carbon dots and their applications, J. Mater. Chem. C. 7 (2019) 7175–7195. https://doi.org/10.1039/c9tc01640f.L. Cao, X. Wang, M.J. Meziani, F. Lu, H. Wang, P.G. Luo, Y. Lin, B.A. Harruff, L.M. Veca, D. Murray, S. Xie, Y. Sun, Geburt des Schwarzhändlers | DIE ZEIT Archiv | Ausgabe 20/1946, Americal. (1946) 11318–11319.F. Du, M. Zhang, A. Gong, Y. Tan, J. Miao, Y. Gong, S. Zou, L. Zhang, L. Zhang, C. Wu, M. Sun, H. Ju, Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors, Biomaterials. 121 (2017) 109–120. https://doi.org/10.1016/j.biomaterials.2016.07.008.M. Tuerhong, Y. XU, X.B. YIN, Review on Carbon Dots and Their Applications, Chinese J. Anal. Chem. 45 (2017) 139–150. https://doi.org/10.1016/S1872- 2040(16)60990-8.S.D. Hettiarachchi, R.M. Graham, K.J. Mintz, Y. Zhou, S. Vanni, Z. Peng, R.M. Leblanc, Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors, Nanoscale. 11 (2019) 6192–6205. https://doi.org/10.1039/C8NR08970A.Z. Ji, P. Ai, C. Shao, T. Wang, C. Yan, L. Ye, W. Gu, Manganese-Doped Carbon Dots for Magnetic Resonance/Optical Dual-Modal Imaging of Tiny Brain Glioma, ACS Biomater. Sci. Eng. 4 (2018) 2089–2094. https://doi.org/10.1021/acsbiomaterials.7b01008.L. Zhang, Z. Lin, Y.X. Yu, B.P. Jiang, X.C. Shen, Multifunctional hyaluronic acidderived carbon dots for self-targeted imaging-guided photodynamic therapy, J. Mater. Chem. B. 6 (2018) 6534–6543. https://doi.org/10.1039/c8tb01957f.A. Kundu, J. Lee, B. Park, C. Ray, K.V. Sankar, W.S. Kim, S.H. Lee, I.J. Cho, S.C. Jun, Facile approach to synthesize highly fluorescent multicolor emissive carbon dots via surface functionalization for cellular imaging, J. Colloid Interface Sci. 513 (2018) 505–514. https://doi.org/10.1016/j.jcis.2017.10.095.N. Irmania, K. Dehvari, G. Gedda, P.J. Tseng, J.Y. Chang, Manganese-doped green tea-derived carbon quantum dots as a targeted dual imaging and photodynamic therapy platform, J. Biomed. Mater. Res. - Part B Appl. Biomater. 108 (2020) 1616– 1625. https://doi.org/10.1002/jbm.b.34508.S.B. de M. Barros, Toxicologia, Rev. Bras. Ciências Farm. 38 (2002) 500–500. https://doi.org/10.1590/s1516-93322002000400015.N. Vasimalai, V. Vilas-Boas, J. Gallo, M. de F. Cerqueira, M. Menéndez-Miranda, J.M. Costa-Fernández, L. Diéguez, B. Espiña, M.T. Fernández-Argüelles, Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition, Beilstein J. Nanotechnol. 9 (2018) 530–544. https://doi.org/10.3762/bjnano.9.51.H. Muktha, R. Sharath, N. Kottam, S.P. Smrithi, K. Samrat, P. Ankitha, Green Synthesis of Carbon Dots and Evaluation of Its Pharmacological Activities, Bionanoscience. 10 (2020) 731–744. https://doi.org/10.1007/s12668-020-00741-1.A. Sharma, V. Panwar, J. Thomas, V. Chopra, H.S. Roy, D. Ghosh, Actin-binding carbon dots selectively target glioblastoma cells while sparing normal cells, Colloids Surfaces B Biointerfaces. 200 (2021) 111572. https://doi.org/10.1016/j.colsurfb.2021.111572.Z. Wang, H. Liao, H. Wu, B. Wang, H. Zhao, M. Tan, Fluorescent carbon dots from beer for breast cancer cell imaging and drug delivery, Anal. Methods. 7 (2015) 8911– 8917. https://doi.org/10.1039/c5ay01978h.E. Arkan, A. Barati, M. Rahmanpanah, L. Hosseinzadeh, S. Moradi, M. Hajialyani, Green synthesis of carbon dots derived from walnut oil and an investigation of their cytotoxic and apoptogenic activities toward cancer cells, Adv. Pharm. Bull. 8 (2018) 149–155. https://doi.org/10.15171/apb.2018.018.Ö.S. Aslantürk, In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages, Genotoxicity - A Predict. Risk to Our Actual World. (2018) 1–18. https://doi.org/10.5772/intechopen.71923.P. Brescia, P. Banks, Quantifying Cytotoxicity of Thiostrepton on Mesothelioma Cells using MTT Assay and the Epoch TM Microplate Spectrophotometer, BioTek. (2009) 3.L. Florento, R. Matias, E. Tuaño, K. Santiago, F. Dela Cruz, A. Tuazon, Comparison of cytotoxic activity of anticancer drugs against various human tumor cell lines using in vitro cell-based approach, Int. J. Biomed. Sci. 8 (2012) 76–80.K.E. Zakrzewska, A. Samluk, M. Wierzbicki, S. Jaworski, M. Kutwin, E. Sawosz, A. Chwalibog, D.G. Pijanowska, K.D. Pluta, Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines, PLoS One. 10 (2015) 1–15. https://doi.org/10.1371/journal.pone.0122579.Y. Wang, P. Anilkumar, L. Cao, J.H. Liu, P.G. Luo, K.N. Tackett, S. Sahu, P. Wang, X. Wang, Y.P. Sun, Carbon dots of different composition and surface functionalization: Cytotoxicity issues relevant to fluorescence cell imaging, Exp. Biol. Med. 236 (2011) 1231–1238. https://doi.org/10.1258/ebm.2011.011132.ATCC, American Type Culture Collection U87, HTB-14, (2020) 17025. available: https://www.atcc.org/products/all/HTB-14.aspx.MCF-7, American Type Culture Collection ATCC (atcc ® htb-22 TM ), (2020) 17025.S. Bao, Q. Wu, R.E. McLendon, Y. Hao, Q. Shi, A.B. Hjelmeland, M.W. Dewhirst, D.D. Bigner, J.N. Rich, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature. 444 (2006) 756–760. https://doi.org/10.1038/nature05236.N. Kumar, S. Kumbhat, Carbon‐Based Nanomaterials, Essentials Nanosci. Nanotechnol. (2016) 189–236. https://doi.org/10.1002/9781119096122.ch5.Reactor de síntesis-Monowave 50-Anton-Paar, Donau Lab Ukr. (2019) 2021.D. Gao, X. Liu, D. Jiang, H. Zhao, Y. Zhu, X. Chen, H. Luo, H. Fan, X. Zhang, Exploring of multicolor emissive carbon dots with novel double emission mechanism, Sensors Actuators, B Chem. 277 (2018) 373–380. https://doi.org/10.1016/j.snb.2018.09.031.E.H. Hong, K.H. Lee, S.H. Oh, C.G. Park, Synthesis of Carbon Nanotubes Using Microwave Radiation, Adv. Funct. Mater. 13 (2003) 961–966. https://doi.org/10.1002/adfm.200304396.Q. Xiao, Y. Liang, F. Zhu, S. Lu, S. Huang, Microwave-assisted one-pot synthesis of highly luminescent N-doped carbon dots for cellular imaging and multi-ion probing, Microchim. Acta. 184 (2017) 2429–2438. https://doi.org/10.1007/s00604-017-2242- z.A. Ettinger, T. Wittmann, Fluorescence live cell imaging, 1st ed., Elsevier Inc., 2014. https://doi.org/10.1016/B978-0-12-420138-5.00005-7.J. Cigales Canga, Síntesis y caracterización de nanopartículas de carbono luminiscentes: Carbon Quantum Dots (CQDs), (2016) 70.S. Xia, E.M. Rosen, J. Laterra, Sensitization of glioma cells to fas-dependent apoptosis by chemotherapy-induced oxidative stress, Cancer Res. 65 (2005) 5248– 5255. https://doi.org/10.1158/0008-5472.CAN-04-4332.R. Ahmad, G. Schettino, G. Royle, M. Barry, Q.A. Pankhurst, O. Tillement, B. Russell, K. Ricketts, Radiobiological Implications of Nanoparticles Following Radiation Treatment, Part. Part. Syst. Charact. 37 (2020). https://doi.org/10.1002/ppsc.201900411.instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURGlioblastomaPuntos de carbonoCitotoxicidadAzul tripánIngeniería & operaciones afines620600Ciencias médicas - Innovaciones tecnológicasBioingenieríaEvaluación de la citotoxicidad de puntos de carbono (CD) en las líneas celulares tumorales U-87 Y MCF-7Evaluation of carbon point (CD) cytotoxicity in tumor cell lines U-87 and MCF-7bachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fEscuela de Medicina y Ciencias de la SaludTEXTTRABAJODIRIGIDOFINAL.pdf.txtTRABAJODIRIGIDOFINAL.pdf.txtExtracted texttext/plain85942https://repository.urosario.edu.co/bitstreams/c5d96f27-74e5-4d08-adef-f5869a39e5c1/download10075c86c5bd73af47633f56eae6b627MD54THUMBNAILTRABAJODIRIGIDOFINAL.pdf.jpgTRABAJODIRIGIDOFINAL.pdf.jpgGenerated Thumbnailimage/jpeg2605https://repository.urosario.edu.co/bitstreams/c77f0c63-5d8e-4eef-89ef-512b6c86efda/download246ddf9ea6ce10dffcf8fae72e0b3ba1MD55ORIGINALTRABAJODIRIGIDOFINAL.pdfTRABAJODIRIGIDOFINAL.pdfapplication/pdf1515006https://repository.urosario.edu.co/bitstreams/18c71165-0e82-4052-9081-77c4794c970d/download1ca48449603c13c83640b9a26023500dMD51LICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/6173c56f-84f0-4690-9d30-15314953074d/downloadfab9d9ed61d64f6ac005dee3306ae77eMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.urosario.edu.co/bitstreams/a4ba370f-2189-4c35-9518-caea17ee4b32/download217700a34da79ed616c2feb68d4c5e06MD5310336/31625oai:repository.urosario.edu.co:10336/316252022-11-03 12:17:57.472http://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiahttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo=