DNA barcoding for identification and phylogenetic inference of (Diptera; Ceratopogonidae) pollinators of cacao
La pérdida de biodiversidad está ocurriendo a gran escala y la necesidad de monitorearla es cada vez más necesaria. El uso de técnicas morfológicas se puede mejorar con el uso de herramientas moleculares para ayudar a resolver los vacíos en el conocimiento de la diversidad y la historia evolutiva de...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- spa
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/42298
- Acceso en línea:
- https://doi.org/10.48713/10336_38266
https://repository.urosario.edu.co/handle/10336/42298
- Palabra clave:
- Códigos de barras de ADN
COI
Cacao
Ceratopogonidae
Filogenias
- Rights
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
EDOCUR2_bc4d4ee29adccd338e1a86c0020b1648 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/42298 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.none.fl_str_mv |
DNA barcoding for identification and phylogenetic inference of (Diptera; Ceratopogonidae) pollinators of cacao |
title |
DNA barcoding for identification and phylogenetic inference of (Diptera; Ceratopogonidae) pollinators of cacao |
spellingShingle |
DNA barcoding for identification and phylogenetic inference of (Diptera; Ceratopogonidae) pollinators of cacao Códigos de barras de ADN COI Cacao Ceratopogonidae Filogenias |
title_short |
DNA barcoding for identification and phylogenetic inference of (Diptera; Ceratopogonidae) pollinators of cacao |
title_full |
DNA barcoding for identification and phylogenetic inference of (Diptera; Ceratopogonidae) pollinators of cacao |
title_fullStr |
DNA barcoding for identification and phylogenetic inference of (Diptera; Ceratopogonidae) pollinators of cacao |
title_full_unstemmed |
DNA barcoding for identification and phylogenetic inference of (Diptera; Ceratopogonidae) pollinators of cacao |
title_sort |
DNA barcoding for identification and phylogenetic inference of (Diptera; Ceratopogonidae) pollinators of cacao |
dc.contributor.advisor.none.fl_str_mv |
Richardson, James Edward Sánchez Andrade, Adriana Salazar Clavijo, Camilo Andrés Yockteng, Roxana |
dc.subject.none.fl_str_mv |
Códigos de barras de ADN COI Cacao Ceratopogonidae Filogenias |
topic |
Códigos de barras de ADN COI Cacao Ceratopogonidae Filogenias |
description |
La pérdida de biodiversidad está ocurriendo a gran escala y la necesidad de monitorearla es cada vez más necesaria. El uso de técnicas morfológicas se puede mejorar con el uso de herramientas moleculares para ayudar a resolver los vacíos en el conocimiento de la diversidad y la historia evolutiva de las especies. El objetivo de esta investigación fue evaluar el uso del gen mitocondrial citocromo c oxidasa 1 (COI) como marcador de código de barras de ADN para caracterizar mosquitos como posibles polinizadores en cultivos de cacao colombianos. El estudio se implementó en los departamentos del Meta y Norte de Santander. Los taxones muestreados directamente de las flores se analizaron para evaluar su diversidad y relación filogenética utilizando la máxima verosimilitud (ML) y la inferencia bayesiana (BI). Generamos secuencias de aproximadamente 656 pb para 25 individuos Culicomorpha, 13 del Meta y 12 del Norte de Santander y descargamos 388 secuencias de las familias Ceratopogonidae y Chironomidae de GenBank. El análisis de las secuencias COI revela que nuestras secuencias se ubicaron en tres grupos de linajes de Ceratopogonidae (Forcipomyia, Dasyhelea y Stilobezzia) y cinco linajes no resueltos de Chironomidae. También encontramos que las especies que visitaron las flores de cacao en las plantaciones de Meta y Norte de Santander representaban dos grupos separados, que pueden estar influenciados por los procesos orogénicos de las montañas de los Andes. La reconstrucción filogenética indicó que la mayoría (n=17) de nuestras secuencias se resolvieron en el grupo Forcipomyia. Adicionalmente, ninguna de nuestras secuencias fue idéntica a las secuencias de GenBank, lo que refleja un sesgo de investigación para las regiones templadas del norte y la necesidad de más estudios sobre especies tropicales. Nuestros datos ofrecen nuevas secuencias moleculares de Ceratopogonidae colombianos para el desarrollo de un inventario global de especies polinizadoras de plantas de interés económico, como el cacao. Se sugiere también la necesidad de seguir muestreando taxones tropicales para esclarecer la historia evolutiva de estas familias de moscas. |
publishDate |
2023 |
dc.date.created.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-02-27T17:24:23Z |
dc.date.available.none.fl_str_mv |
2024-02-27T17:24:23Z |
dc.date.embargoEnd.none.fl_str_mv |
info:eu-repo/date/embargoEnd/2025-03-24 |
dc.type.none.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.document.none.fl_str_mv |
Trabajo de grado |
dc.type.spa.none.fl_str_mv |
Trabajo de grado |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.48713/10336_38266 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/42298 |
url |
https://doi.org/10.48713/10336_38266 https://repository.urosario.edu.co/handle/10336/42298 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
dc.rights.acceso.none.fl_str_mv |
Restringido (Temporalmente bloqueado) |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International Restringido (Temporalmente bloqueado) http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_f1cf |
dc.format.extent.none.fl_str_mv |
22 pp |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.none.fl_str_mv |
Facultad de Ciencias Naturales |
dc.publisher.program.none.fl_str_mv |
Biología |
publisher.none.fl_str_mv |
Universidad del Rosario |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.none.fl_str_mv |
Adachi, J., & Hasegawa, M. (1996). Model of amino acid substitution in proteins encoded by mitochondrial DNA. Journal of Molecular Evolution, 42(4), 459-468. https://doi.org/10.1007/BF02498640 Anisimova, M., Gil, M., Dufayard, J.-F., Dessimoz, C. & Gascuel, O. (2011). Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihoodbased approximation schemes. Systematic Biology, 60(5), 685-699. https://doi.org/10.1093/sysbio/syr041 Bartley, B. G. D. (Ed.). (2005). The genetic diversity of cacao and its utilization. CABI. https://doi.org/10.1079/9780851996196.0000 Beckenbach, A. T., & Borkent, A. (2003). Molecular analysis of the biting midges (Diptera: Ceratopogonidae), based on mitochondrial cytochrome oxidase subunit 2. Molecular Phylogenetics and Evolution, 27(1), 21-35. https://doi.org/10.1016/s1055-7903(02)00395-0 Borkent, A. (1991). The Ceratopogonidae (Diptera) of the Galápagos Islands, Ecuador with a discussion of their phylogenetic relationships and zoogeographic origins. Insect Systematics & Evolution, 22(1), 97-122. https://doi.org/10.1163/187631291X00336 Borkent, A. (2001). Leptoconops (Diptera: Ceratopogonidae), the Earliest Extant Lineage of Biting Midge, Discovered in 120–122 Million-Year-Old Lebanese Amber. American Museum Novitates, 2001(3328), 1-12. https://doi.org/10.1206/0003- 0082(2001)328<0001:LDCTEE>2.0.CO;2 Borkent, A. (2014). The pupae of the biting midges of the world (Diptera: Ceratopogonidae), with a generic key and analysis of the phylogenetic relationships between genera. Zootaxa, 3879, 1-327. https://doi.org/10.11646/zootaxa.3879.1.1 Borkent, A. & G. R. Spinelli. (2007). Neotropical Ceratopogonidae (Diptera: Insecta). In: Adis, J., J. R. Arias, G. Rueda-Delgado & K. M. Wattzen (Eds): Aquatic Biodiversity in Latin America (ABLA). Vol 4. Pensoft Publishers, Sofia-Moscow, 198 pp. Revista de La Sociedad Entomológica Argentina, 67(1-2), Art. 1-2. https://www.biotaxa.org/RSEA/article/view/31038 Borkent, A., & Dominiak, P. (2020). Catalog of the Biting Midges of the World (Diptera: Ceratopogonidae). Zootaxa, 4787(1), zootaxa.4787.1.1. https://doi.org/10.11646/zootaxa.4787.1.1 Bourguignon, T., Tang, Q., Ho, S. Y. W., Juna, F., Wang, Z., Arab, D. A., Cameron, S. L., Walker, J., Rentz, D., Evans, T. A., & Lo, N. (2018). Transoceanic Dispersal and Plate Tectonics Shaped Global Cockroach Distributions: Evidence from Mitochondrial Phylogenomics. Molecular Biology and Evolution, 35(4), 970-983. https://doi.org/10.1093/molbev/msy013 Branco, S. M. de J., Silva, D. V. da, Lopes, U. V. & Corrêa, R. X. (2018). Characterization of the Sexual Self- and Cross-Compatibility in Genotypes of Cacao. American Journal of Plant Sciences, 9(9), Art. 9. https://doi.org/10.4236/ajps.2018.99131 Bridgemohan, P., Singh, K., Cazoe, E., Perry, G., Mohamed, A., & Bridgemohan, R. S. (2017). Cacao floral phenology and pollination: Implications for productivity in Caribbean Islands. Journal of Plant Breeding and Crop Science, 9(7), 106-117. https://doi.org/10.5897/JPBCS2016.0598 Carpenter, S., Groschup, M. H., Garros, C., Felippe-Bauer, M. L., & Purse, B. V. (2013). Culicoides biting midges, arboviruses and public health in Europe. Antiviral Research, 100(1), 102-113. https://doi.org/10.1016/j.antiviral.2013.07.020 Choufani, J., El-Halabi, W., Azar, D., & Nel, A. (2015). First fossil insect from Lower Cretaceous Lebanese amber in Syria (Diptera: Ceratopogonidae). Cretaceous Research, 54, 106-116. https://doi.org/10.1016/j.cretres.2014.12.006 Damm, S., Schierwater, B. & Hadrys, H. (2010). An integrative approach to species discovery in odonates: From character-based DNA barcoding to ecology. Molecular Ecology, 19(18), 3881-3893. https://doi.org/10.1111/j.1365-294X.2010.04720.x DNA Barcoding Program. (2017, agosto 22). ForestGEO. https://forestgeo.si.edu/researchprograms/dna-barcoding-program Dellinger, A. S., Pérez-Barrales, R., Michelangeli, F. A., Penneys, D. S., FernándezFernández, D. M., & Schönenberger, J. (2021). Low bee visitation rates explain pollinator shifts to vertebrates in tropical mountains. New Phytologist, 231(2), 864-877. https://doi.org/10.1111/nph.17390 Eagles, D., Deveson, T., Walker, P. J., Zalucki, M. P., & Durr, P. (2012). Evaluation of longdistance dispersal of Culicoides midges into northern Australia using a migration model. Medical and Veterinary Entomology, 26(3), 334-340. https://doi.org/10.1111/j.1365- 2915.2011.01005.x Erickson, B. J., Young, A. M., Strand, M. A., & Erickson, E. H. (1987). Pollination biology of Theobroma and Herrania (Sterculiaceae). International Journal of Tropical Insect Science, 8(3), 301-310. https://doi.org/10.1017/S1742758400005282 Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294-299. Freeman, J. A. (1945). Studies in the Distribution of Insects by Aerial Currents. Journal of Animal Ecology, 14(2), 128-154. https://doi.org/10.2307/1389 Frimpong, E. A., Gordon, I., Kwapong, P. K., & Gemmill-Herren, B. (2009). Dynamics of cacao pollination: Tools and applications for surveying and monitoring cacao pollinators. International Journal of Tropical Insect Science, 29(2), 62-69. https://doi.org/10.1017/S1742758409990117 Frimpong-Anin, K., Bosu, P., Adjaloo, M., Braimah, H. & Oduro, W. (2015). Some Facts About Cacao Pollination. Global Pollination Project-Ghana. ISBN: 9964-3-9352-0 Gostel, M. R., & Kress, W. J. (2022). The Expanding Role of DNA Barcodes: Indispensable Tools for Ecology, Evolution, and Conservation. Diversity, 14(3), 213. https://doi.org/10.3390/d14030213 Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307-321. https://doi.org/10.1093/sysbio/syq010 Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270(1512), 313-321. https://doi.org/10.1098/rspb.2002.2218 Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution, 35(2), 518-522. https://doi.org/10.1093/molbev/msx281 Holzapfel, E., & Harrell, J. (1968). Transoceanic dispersal studies of insects. https://www.semanticscholar.org/paper/TRANSOCEANIC-DISPERSAL-STUDIES-OFINSECTS-Holzapfel-Harrell/5e5d6cffb83ae68da4ac989c56eb6684d6c001be Hortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. M. & Ladle, R. J. (2015). Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 46(1), 523-549. https://doi.org/10.1146/annurevecolsys-112414-054400 Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics (Oxford, England), 17(8), 754-755. https://doi.org/10.1093/bioinformatics/17.8.754 Katoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010 Kaufmann, T. (1975). Studies on the ecology and biology of a cacao pollinator, Forcipomyia squamipennis I. & M. (Diptera, Ceratopogonidae) in Ghana. Bulletin of Entomological Research, 65(2), 263-268. https://doi.org/10.1017/S0007485300005940 Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647-1649. https://doi.org/10.1093/bioinformatics/bts199 Klein, A.-M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303-313. https://doi.org/10.1098/rspb.2006.3721 Kobayashi, S., Denda, T., Placksanoi, J., Waengsothorn, S., Aryuthaka, C., Panha, S., & Izawa, M. (2019). The pollination system of the widely distributed mammal-pollinated Mucuna macrocarpa (Fabaceae) in the tropics. Ecology and Evolution, 9(11), 6276-6286. https://doi.org/10.1002/ece3.5201 Kress, W. J., García-Robledo, C., Uriarte, M., & Erickson, D. L. (2015). DNA barcodes for ecology, evolution, and conservation. Trends in Ecology & Evolution, 30(1), 25-35. https://doi.org/10.1016/j.tree.2014.10.008 Krosch, M. N., Baker, A. M., Mather, P. B., & Cranston, P. S. (2011). Systematics and biogeography of the Gondwanan Orthocladiinae (Diptera: Chironomidae). Molecular Phylogenetics and Evolution, 59(2), 458-468. https://doi.org/10.1016/j.ympev.2011.03.003 Kumar, N. P., Rajavel, A. R., Natarajan, R., & Jambulingam, P. (2007). DNA Barcodes Can Distinguish Species of Indian Mosquitoes (Diptera: Culicidae). Journal of Medical Entomology, 44(1), 01-07. https://doi.org/10.1093/jmedent/41.5.01 |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/29b8425d-402c-48d5-a0c7-86510805b3f4/download https://repository.urosario.edu.co/bitstreams/86fbce7b-a1df-4e01-a6ef-732aaa92f8c8/download https://repository.urosario.edu.co/bitstreams/76d77c59-b08e-4b1e-ae33-811d4d5c2678/download https://repository.urosario.edu.co/bitstreams/76daf00c-92f7-40fb-ad96-5abdb4e27819/download https://repository.urosario.edu.co/bitstreams/b7a6c5b8-1248-4603-b95d-83d4dc2a6833/download |
bitstream.checksum.fl_str_mv |
eee45e8efc0e929dc2d6c6e021bc2cba b2825df9f458e9d5d96ee8b7cd74fde6 5643bfd9bcf29d560eeec56d584edaa9 78f16c04f203bce915e93a74a70c1061 47e891711904f6af0b79c8eb21dd9dde |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167436428050432 |
spelling |
Richardson, James Edward0ac28eb4-5e07-4e05-b534-0dc0d7411868-1Sánchez Andrade, Adriana52699585600Salazar Clavijo, Camilo Andrés79873757600Yockteng, Roxana61bd6133-5271-47c6-a3c2-4ed8e5e4308d-1Tamayo Ceballos, Iván MateoBiólogoPregrado45970148-2ad1-4676-a136-927e3f1d306a-12024-02-27T17:24:23Z2024-02-27T17:24:23Z2023info:eu-repo/date/embargoEnd/2025-03-24La pérdida de biodiversidad está ocurriendo a gran escala y la necesidad de monitorearla es cada vez más necesaria. El uso de técnicas morfológicas se puede mejorar con el uso de herramientas moleculares para ayudar a resolver los vacíos en el conocimiento de la diversidad y la historia evolutiva de las especies. El objetivo de esta investigación fue evaluar el uso del gen mitocondrial citocromo c oxidasa 1 (COI) como marcador de código de barras de ADN para caracterizar mosquitos como posibles polinizadores en cultivos de cacao colombianos. El estudio se implementó en los departamentos del Meta y Norte de Santander. Los taxones muestreados directamente de las flores se analizaron para evaluar su diversidad y relación filogenética utilizando la máxima verosimilitud (ML) y la inferencia bayesiana (BI). Generamos secuencias de aproximadamente 656 pb para 25 individuos Culicomorpha, 13 del Meta y 12 del Norte de Santander y descargamos 388 secuencias de las familias Ceratopogonidae y Chironomidae de GenBank. El análisis de las secuencias COI revela que nuestras secuencias se ubicaron en tres grupos de linajes de Ceratopogonidae (Forcipomyia, Dasyhelea y Stilobezzia) y cinco linajes no resueltos de Chironomidae. También encontramos que las especies que visitaron las flores de cacao en las plantaciones de Meta y Norte de Santander representaban dos grupos separados, que pueden estar influenciados por los procesos orogénicos de las montañas de los Andes. La reconstrucción filogenética indicó que la mayoría (n=17) de nuestras secuencias se resolvieron en el grupo Forcipomyia. Adicionalmente, ninguna de nuestras secuencias fue idéntica a las secuencias de GenBank, lo que refleja un sesgo de investigación para las regiones templadas del norte y la necesidad de más estudios sobre especies tropicales. Nuestros datos ofrecen nuevas secuencias moleculares de Ceratopogonidae colombianos para el desarrollo de un inventario global de especies polinizadoras de plantas de interés económico, como el cacao. Se sugiere también la necesidad de seguir muestreando taxones tropicales para esclarecer la historia evolutiva de estas familias de moscas.Biodiversity loss is occurring on a large scale and the need to monitor it is becoming more and more necessary. The use of morphological techniques can be enhanced with the use of molecular tools to help resolve diversity and evolutionary history knowledge gaps. The objective of this research was to evaluate the use of the mitochondrial cytochrome c oxidase 1 (COI) gene as a DNA barcode marker to characterize possible pollinators of Colombian cacao crops. The study was implemented in the departments of Meta and Northern Santander, Colombia. Taxa sampled directly from flowers were analyzed to assess their diversity and phylogenetic relationships using Maximum-Likelihood (ML) and Bayesian Inference (BI). We generated sequences of approximately 656 bp for 25 Culicomorpha individuals, 13 from Meta and 12 from Northern Santander and downloaded 388 sequences of the Ceratopogonidae and Chironomidae families from GenBank. Analysis of the COI sequences reveals that our sequences were placed in three Ceratopogonidae lineages (Forcipomyia, Dasyhelea and Stilobezzia) and five unresolved lineages of Chironomidae. We also found that species that visited cacao flowers in Meta and Northern Santander plantations represented two separate guilds, which could have been influenced by the orogenic processes of the Andes Mountains. Phylogenetic reconstruction indicated that most (n=17) of our sequences were resolved in the Forcipomyia group. Additionally, none of our sequences were identical to any GenBank sequences, reflecting an investigative bias towards northern temperate regions and the need for more molecular studies on tropical species. Our data offer new DNA sequences of Colombian Ceratopogonidae for the development of a global inventory of pollinating species of plants of economic interest, such as cacao. The need to continue sampling tropical taxa is also suggested in order to clarify the evolutionary history of these families of flies.22 ppapplication/pdfhttps://doi.org/10.48713/10336_38266https://repository.urosario.edu.co/handle/10336/42298spaUniversidad del RosarioFacultad de Ciencias NaturalesBiologíaAttribution-NonCommercial-ShareAlike 4.0 InternationalRestringido (Temporalmente bloqueado)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_f1cfAdachi, J., & Hasegawa, M. (1996). Model of amino acid substitution in proteins encoded by mitochondrial DNA. Journal of Molecular Evolution, 42(4), 459-468. https://doi.org/10.1007/BF02498640Anisimova, M., Gil, M., Dufayard, J.-F., Dessimoz, C. & Gascuel, O. (2011). Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihoodbased approximation schemes. Systematic Biology, 60(5), 685-699. https://doi.org/10.1093/sysbio/syr041Bartley, B. G. D. (Ed.). (2005). The genetic diversity of cacao and its utilization. CABI. https://doi.org/10.1079/9780851996196.0000Beckenbach, A. T., & Borkent, A. (2003). Molecular analysis of the biting midges (Diptera: Ceratopogonidae), based on mitochondrial cytochrome oxidase subunit 2. Molecular Phylogenetics and Evolution, 27(1), 21-35. https://doi.org/10.1016/s1055-7903(02)00395-0Borkent, A. (1991). The Ceratopogonidae (Diptera) of the Galápagos Islands, Ecuador with a discussion of their phylogenetic relationships and zoogeographic origins. Insect Systematics & Evolution, 22(1), 97-122. https://doi.org/10.1163/187631291X00336Borkent, A. (2001). Leptoconops (Diptera: Ceratopogonidae), the Earliest Extant Lineage of Biting Midge, Discovered in 120–122 Million-Year-Old Lebanese Amber. American Museum Novitates, 2001(3328), 1-12. https://doi.org/10.1206/0003- 0082(2001)328<0001:LDCTEE>2.0.CO;2Borkent, A. (2014). The pupae of the biting midges of the world (Diptera: Ceratopogonidae), with a generic key and analysis of the phylogenetic relationships between genera. Zootaxa, 3879, 1-327. https://doi.org/10.11646/zootaxa.3879.1.1Borkent, A. & G. R. Spinelli. (2007). Neotropical Ceratopogonidae (Diptera: Insecta). In: Adis, J., J. R. Arias, G. Rueda-Delgado & K. M. Wattzen (Eds): Aquatic Biodiversity in Latin America (ABLA). Vol 4. Pensoft Publishers, Sofia-Moscow, 198 pp. Revista de La Sociedad Entomológica Argentina, 67(1-2), Art. 1-2. https://www.biotaxa.org/RSEA/article/view/31038Borkent, A., & Dominiak, P. (2020). Catalog of the Biting Midges of the World (Diptera: Ceratopogonidae). Zootaxa, 4787(1), zootaxa.4787.1.1. https://doi.org/10.11646/zootaxa.4787.1.1Bourguignon, T., Tang, Q., Ho, S. Y. W., Juna, F., Wang, Z., Arab, D. A., Cameron, S. L., Walker, J., Rentz, D., Evans, T. A., & Lo, N. (2018). Transoceanic Dispersal and Plate Tectonics Shaped Global Cockroach Distributions: Evidence from Mitochondrial Phylogenomics. Molecular Biology and Evolution, 35(4), 970-983. https://doi.org/10.1093/molbev/msy013Branco, S. M. de J., Silva, D. V. da, Lopes, U. V. & Corrêa, R. X. (2018). Characterization of the Sexual Self- and Cross-Compatibility in Genotypes of Cacao. American Journal of Plant Sciences, 9(9), Art. 9. https://doi.org/10.4236/ajps.2018.99131Bridgemohan, P., Singh, K., Cazoe, E., Perry, G., Mohamed, A., & Bridgemohan, R. S. (2017). Cacao floral phenology and pollination: Implications for productivity in Caribbean Islands. Journal of Plant Breeding and Crop Science, 9(7), 106-117. https://doi.org/10.5897/JPBCS2016.0598Carpenter, S., Groschup, M. H., Garros, C., Felippe-Bauer, M. L., & Purse, B. V. (2013). Culicoides biting midges, arboviruses and public health in Europe. Antiviral Research, 100(1), 102-113. https://doi.org/10.1016/j.antiviral.2013.07.020Choufani, J., El-Halabi, W., Azar, D., & Nel, A. (2015). First fossil insect from Lower Cretaceous Lebanese amber in Syria (Diptera: Ceratopogonidae). Cretaceous Research, 54, 106-116. https://doi.org/10.1016/j.cretres.2014.12.006Damm, S., Schierwater, B. & Hadrys, H. (2010). An integrative approach to species discovery in odonates: From character-based DNA barcoding to ecology. Molecular Ecology, 19(18), 3881-3893. https://doi.org/10.1111/j.1365-294X.2010.04720.xDNA Barcoding Program. (2017, agosto 22). ForestGEO. https://forestgeo.si.edu/researchprograms/dna-barcoding-programDellinger, A. S., Pérez-Barrales, R., Michelangeli, F. A., Penneys, D. S., FernándezFernández, D. M., & Schönenberger, J. (2021). Low bee visitation rates explain pollinator shifts to vertebrates in tropical mountains. New Phytologist, 231(2), 864-877. https://doi.org/10.1111/nph.17390Eagles, D., Deveson, T., Walker, P. J., Zalucki, M. P., & Durr, P. (2012). Evaluation of longdistance dispersal of Culicoides midges into northern Australia using a migration model. Medical and Veterinary Entomology, 26(3), 334-340. https://doi.org/10.1111/j.1365- 2915.2011.01005.xErickson, B. J., Young, A. M., Strand, M. A., & Erickson, E. H. (1987). Pollination biology of Theobroma and Herrania (Sterculiaceae). International Journal of Tropical Insect Science, 8(3), 301-310. https://doi.org/10.1017/S1742758400005282Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294-299.Freeman, J. A. (1945). Studies in the Distribution of Insects by Aerial Currents. Journal of Animal Ecology, 14(2), 128-154. https://doi.org/10.2307/1389Frimpong, E. A., Gordon, I., Kwapong, P. K., & Gemmill-Herren, B. (2009). Dynamics of cacao pollination: Tools and applications for surveying and monitoring cacao pollinators. International Journal of Tropical Insect Science, 29(2), 62-69. https://doi.org/10.1017/S1742758409990117Frimpong-Anin, K., Bosu, P., Adjaloo, M., Braimah, H. & Oduro, W. (2015). Some Facts About Cacao Pollination. Global Pollination Project-Ghana. ISBN: 9964-3-9352-0Gostel, M. R., & Kress, W. J. (2022). The Expanding Role of DNA Barcodes: Indispensable Tools for Ecology, Evolution, and Conservation. Diversity, 14(3), 213. https://doi.org/10.3390/d14030213Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307-321. https://doi.org/10.1093/sysbio/syq010Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270(1512), 313-321. https://doi.org/10.1098/rspb.2002.2218Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution, 35(2), 518-522. https://doi.org/10.1093/molbev/msx281Holzapfel, E., & Harrell, J. (1968). Transoceanic dispersal studies of insects. https://www.semanticscholar.org/paper/TRANSOCEANIC-DISPERSAL-STUDIES-OFINSECTS-Holzapfel-Harrell/5e5d6cffb83ae68da4ac989c56eb6684d6c001beHortal, J., de Bello, F., Diniz-Filho, J. A. F., Lewinsohn, T. M., Lobo, J. M. & Ladle, R. J. (2015). Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics, 46(1), 523-549. https://doi.org/10.1146/annurevecolsys-112414-054400Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics (Oxford, England), 17(8), 754-755. https://doi.org/10.1093/bioinformatics/17.8.754Katoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010Kaufmann, T. (1975). Studies on the ecology and biology of a cacao pollinator, Forcipomyia squamipennis I. & M. (Diptera, Ceratopogonidae) in Ghana. Bulletin of Entomological Research, 65(2), 263-268. https://doi.org/10.1017/S0007485300005940Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647-1649. https://doi.org/10.1093/bioinformatics/bts199Klein, A.-M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303-313. https://doi.org/10.1098/rspb.2006.3721Kobayashi, S., Denda, T., Placksanoi, J., Waengsothorn, S., Aryuthaka, C., Panha, S., & Izawa, M. (2019). The pollination system of the widely distributed mammal-pollinated Mucuna macrocarpa (Fabaceae) in the tropics. Ecology and Evolution, 9(11), 6276-6286. https://doi.org/10.1002/ece3.5201Kress, W. J., García-Robledo, C., Uriarte, M., & Erickson, D. L. (2015). DNA barcodes for ecology, evolution, and conservation. Trends in Ecology & Evolution, 30(1), 25-35. https://doi.org/10.1016/j.tree.2014.10.008Krosch, M. N., Baker, A. M., Mather, P. B., & Cranston, P. S. (2011). Systematics and biogeography of the Gondwanan Orthocladiinae (Diptera: Chironomidae). Molecular Phylogenetics and Evolution, 59(2), 458-468. https://doi.org/10.1016/j.ympev.2011.03.003Kumar, N. P., Rajavel, A. R., Natarajan, R., & Jambulingam, P. (2007). DNA Barcodes Can Distinguish Species of Indian Mosquitoes (Diptera: Culicidae). Journal of Medical Entomology, 44(1), 01-07. https://doi.org/10.1093/jmedent/41.5.01instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURCódigos de barras de ADNCOICacaoCeratopogonidaeFilogeniasDNA barcoding for identification and phylogenetic inference of (Diptera; Ceratopogonidae) pollinators of cacaobachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fFacultad de Ciencias NaturalesORIGINALDNA_barcoding_for_identification_and_phylogenetic_inference_of_Diptera_Ceratopogonidae_Pollinators_of_cacao.pdfDNA_barcoding_for_identification_and_phylogenetic_inference_of_Diptera_Ceratopogonidae_Pollinators_of_cacao.pdfapplication/pdf1488933https://repository.urosario.edu.co/bitstreams/29b8425d-402c-48d5-a0c7-86510805b3f4/downloadeee45e8efc0e929dc2d6c6e021bc2cbaMD51LICENSElicense.txtlicense.txttext/plain1483https://repository.urosario.edu.co/bitstreams/86fbce7b-a1df-4e01-a6ef-732aaa92f8c8/downloadb2825df9f458e9d5d96ee8b7cd74fde6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://repository.urosario.edu.co/bitstreams/76d77c59-b08e-4b1e-ae33-811d4d5c2678/download5643bfd9bcf29d560eeec56d584edaa9MD53TEXTDNA_barcoding_for_identification_and_phylogenetic_inference_of_Diptera_Ceratopogonidae_Pollinators_of_cacao.pdf.txtDNA_barcoding_for_identification_and_phylogenetic_inference_of_Diptera_Ceratopogonidae_Pollinators_of_cacao.pdf.txtExtracted texttext/plain53367https://repository.urosario.edu.co/bitstreams/76daf00c-92f7-40fb-ad96-5abdb4e27819/download78f16c04f203bce915e93a74a70c1061MD54THUMBNAILDNA_barcoding_for_identification_and_phylogenetic_inference_of_Diptera_Ceratopogonidae_Pollinators_of_cacao.pdf.jpgDNA_barcoding_for_identification_and_phylogenetic_inference_of_Diptera_Ceratopogonidae_Pollinators_of_cacao.pdf.jpgGenerated Thumbnailimage/jpeg2303https://repository.urosario.edu.co/bitstreams/b7a6c5b8-1248-4603-b95d-83d4dc2a6833/download47e891711904f6af0b79c8eb21dd9ddeMD5510336/42298oai:repository.urosario.edu.co:10336/422982024-02-28 03:00:20.317http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KPGJyLz4KUEFSQUdSQUZPOiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KPGhyLz4KRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCg== |