Separation of respiratory influences from the tachogram: a methodological evaluation

The variability of the heart rate (HRV) is widely studied as it contains information about the activity of the autonomic nervous system (ANS). However, HRV is influenced by breathing, independently of ANS activity. It is therefore important to include respiratory information in HRV analyses in order...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/26935
Acceso en línea:
https://doi.org/10.1371/journal.pone.0101713
https://repository.urosario.edu.co/handle/10336/26935
Palabra clave:
Algorithms
Heart rate
Signal filtering
Blood pressure
Respiration
Simulation and modeling
Breathing
Electrocardiography
Rights
License
Abierto (Texto Completo)
id EDOCUR2_bb8b8565e1f919cb4592225ddc0855f0
oai_identifier_str oai:repository.urosario.edu.co:10336/26935
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 49de398d-316e-4685-8f2f-7fa75a0a6468-11e0b4d1b-a735-4483-806c-1cc35d7d793b-1dc9f97ad-4948-43f6-a963-657ecf8a87d9-1373c77e3-5093-43fd-831b-0db88cefa50d-1141395126002020-08-19T14:40:34Z2020-08-19T14:40:34Z2014-07-08The variability of the heart rate (HRV) is widely studied as it contains information about the activity of the autonomic nervous system (ANS). However, HRV is influenced by breathing, independently of ANS activity. It is therefore important to include respiratory information in HRV analyses in order to correctly interpret the results. In this paper, we propose to record respiratory activity and use this information to separate the tachogram in two components: one which is related to breathing and one which contains all heart rate variations that are unrelated to respiration. Several algorithms to achieve this have been suggested in the literature, but no comparison between the methods has been performed yet. In this paper, we conduct two studies to evaluate the methods' performances to accurately decompose the tachogram in two components and to assess the robustness of the algorithms. The results show that orthogonal subspace projection and an ARMAX model yield the best performances over the two comparison studies. In addition, a real-life example of stress classification is presented to demonstrate that this approach to separate respiratory information in HRV studies can reveal changes in the heart rate variations that are otherwise masked by differing respiratory patterns.application/pdfhttps://doi.org/10.1371/journal.pone.0101713EISSN: 1932-6203https://repository.urosario.edu.co/handle/10336/26935engPLOS Public Library of ScienceNo. 7E101713PLoS OneVol. 9PLoS One, EISSN: 1932-6203, Vol.9, No.7 (July 2014); pp. E101713https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0101713&type=printableAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2PLoS Oneinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURAlgorithmsHeart rateSignal filteringBlood pressureRespirationSimulation and modelingBreathingElectrocardiographySeparation of respiratory influences from the tachogram: a methodological evaluationSeparación de las influencias respiratorias del tacograma: una evaluación metodológicaarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Widjaja, DevyVlemincx, ElkeVan Diest, IlseVan Huffel, SabineCaicedo Dorado, AlexanderORIGINAL10-1371_journal-pone-0101713.pdfapplication/pdf1195439https://repository.urosario.edu.co/bitstreams/85221acc-97b4-4bf3-9615-0ca28c887447/download4bb75598adc1c97b989a82ea1dda0d50MD51TEXT10-1371_journal-pone-0101713.pdf.txt10-1371_journal-pone-0101713.pdf.txtExtracted texttext/plain55522https://repository.urosario.edu.co/bitstreams/89248753-8628-4d80-9f30-f48e64650494/download882527f87002bf9394256b4adfdf8f7fMD52THUMBNAIL10-1371_journal-pone-0101713.pdf.jpg10-1371_journal-pone-0101713.pdf.jpgGenerated Thumbnailimage/jpeg4908https://repository.urosario.edu.co/bitstreams/97683a4d-3577-47eb-9639-affdc7c79285/downloadc084afa6b4e0b5fa67c715c7473b0534MD5310336/26935oai:repository.urosario.edu.co:10336/269352021-06-03 00:50:02.544https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Separation of respiratory influences from the tachogram: a methodological evaluation
dc.title.TranslatedTitle.spa.fl_str_mv Separación de las influencias respiratorias del tacograma: una evaluación metodológica
title Separation of respiratory influences from the tachogram: a methodological evaluation
spellingShingle Separation of respiratory influences from the tachogram: a methodological evaluation
Algorithms
Heart rate
Signal filtering
Blood pressure
Respiration
Simulation and modeling
Breathing
Electrocardiography
title_short Separation of respiratory influences from the tachogram: a methodological evaluation
title_full Separation of respiratory influences from the tachogram: a methodological evaluation
title_fullStr Separation of respiratory influences from the tachogram: a methodological evaluation
title_full_unstemmed Separation of respiratory influences from the tachogram: a methodological evaluation
title_sort Separation of respiratory influences from the tachogram: a methodological evaluation
dc.subject.keyword.spa.fl_str_mv Algorithms
Heart rate
Signal filtering
Blood pressure
Respiration
Simulation and modeling
Breathing
Electrocardiography
topic Algorithms
Heart rate
Signal filtering
Blood pressure
Respiration
Simulation and modeling
Breathing
Electrocardiography
description The variability of the heart rate (HRV) is widely studied as it contains information about the activity of the autonomic nervous system (ANS). However, HRV is influenced by breathing, independently of ANS activity. It is therefore important to include respiratory information in HRV analyses in order to correctly interpret the results. In this paper, we propose to record respiratory activity and use this information to separate the tachogram in two components: one which is related to breathing and one which contains all heart rate variations that are unrelated to respiration. Several algorithms to achieve this have been suggested in the literature, but no comparison between the methods has been performed yet. In this paper, we conduct two studies to evaluate the methods' performances to accurately decompose the tachogram in two components and to assess the robustness of the algorithms. The results show that orthogonal subspace projection and an ARMAX model yield the best performances over the two comparison studies. In addition, a real-life example of stress classification is presented to demonstrate that this approach to separate respiratory information in HRV studies can reveal changes in the heart rate variations that are otherwise masked by differing respiratory patterns.
publishDate 2014
dc.date.created.spa.fl_str_mv 2014-07-08
dc.date.accessioned.none.fl_str_mv 2020-08-19T14:40:34Z
dc.date.available.none.fl_str_mv 2020-08-19T14:40:34Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1371/journal.pone.0101713
dc.identifier.issn.none.fl_str_mv EISSN: 1932-6203
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/26935
url https://doi.org/10.1371/journal.pone.0101713
https://repository.urosario.edu.co/handle/10336/26935
identifier_str_mv EISSN: 1932-6203
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationIssue.none.fl_str_mv No. 7
dc.relation.citationStartPage.none.fl_str_mv E101713
dc.relation.citationTitle.none.fl_str_mv PLoS One
dc.relation.citationVolume.none.fl_str_mv Vol. 9
dc.relation.ispartof.spa.fl_str_mv PLoS One, EISSN: 1932-6203, Vol.9, No.7 (July 2014); pp. E101713
dc.relation.uri.spa.fl_str_mv https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0101713&type=printable
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv PLOS Public Library of Science
dc.source.spa.fl_str_mv PLoS One
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/85221acc-97b4-4bf3-9615-0ca28c887447/download
https://repository.urosario.edu.co/bitstreams/89248753-8628-4d80-9f30-f48e64650494/download
https://repository.urosario.edu.co/bitstreams/97683a4d-3577-47eb-9639-affdc7c79285/download
bitstream.checksum.fl_str_mv 4bb75598adc1c97b989a82ea1dda0d50
882527f87002bf9394256b4adfdf8f7f
c084afa6b4e0b5fa67c715c7473b0534
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167576214765568