On the asymmetric telegraph processes
We study the one-dimensional random motionX = X(t), t 0, which takes two different velocities with two different alternating intensities. The closed-form formulae for the density functions of X and for the moments of any order, as well as the distributions of the first passage times, are obtained. T...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/22232
- Acceso en línea:
- https://doi.org/10.1239/jap/1402578644
https://repository.urosario.edu.co/handle/10336/22232
- Palabra clave:
- Asymmetric telegraph process
First passage time
Kac's asymptotics
Kummer function
Modified Bessel function
Moments
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_ba034559c26b05a9ba93329cee27e4d2 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/22232 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
051eab7f-7e2b-4d50-b548-e1a1828900b8-13203526002020-05-25T23:55:50Z2020-05-25T23:55:50Z2014We study the one-dimensional random motionX = X(t), t 0, which takes two different velocities with two different alternating intensities. The closed-form formulae for the density functions of X and for the moments of any order, as well as the distributions of the first passage times, are obtained. The limit behaviour of the moments is analysed under nonstandard Kac's scaling. © Applied Probability Trust 2014.application/pdfhttps://doi.org/10.1239/jap/1402578644219002https://repository.urosario.edu.co/handle/10336/22232engApplied Probability Trust589No. 2569Journal of Applied ProbabilityVol. 51Journal of Applied Probability, ISSN:219002, Vol.51, No.2 (2014); pp. 569-589https://www.scopus.com/inward/record.uri?eid=2-s2.0-84903949376&doi=10.1239%2fjap%2f1402578644&partnerID=40&md5=1414bdb71f5a29ddf0cd419cd5d33cb5Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURAsymmetric telegraph processFirst passage timeKac's asymptoticsKummer functionModified Bessel functionMomentsOn the asymmetric telegraph processesarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501López, OscarRatanov, Nikita10336/22232oai:repository.urosario.edu.co:10336/222322022-05-02 07:37:18.095602https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
On the asymmetric telegraph processes |
title |
On the asymmetric telegraph processes |
spellingShingle |
On the asymmetric telegraph processes Asymmetric telegraph process First passage time Kac's asymptotics Kummer function Modified Bessel function Moments |
title_short |
On the asymmetric telegraph processes |
title_full |
On the asymmetric telegraph processes |
title_fullStr |
On the asymmetric telegraph processes |
title_full_unstemmed |
On the asymmetric telegraph processes |
title_sort |
On the asymmetric telegraph processes |
dc.subject.keyword.spa.fl_str_mv |
Asymmetric telegraph process First passage time Kac's asymptotics Kummer function Modified Bessel function Moments |
topic |
Asymmetric telegraph process First passage time Kac's asymptotics Kummer function Modified Bessel function Moments |
description |
We study the one-dimensional random motionX = X(t), t 0, which takes two different velocities with two different alternating intensities. The closed-form formulae for the density functions of X and for the moments of any order, as well as the distributions of the first passage times, are obtained. The limit behaviour of the moments is analysed under nonstandard Kac's scaling. © Applied Probability Trust 2014. |
publishDate |
2014 |
dc.date.created.spa.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2020-05-25T23:55:50Z |
dc.date.available.none.fl_str_mv |
2020-05-25T23:55:50Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1239/jap/1402578644 |
dc.identifier.issn.none.fl_str_mv |
219002 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/22232 |
url |
https://doi.org/10.1239/jap/1402578644 https://repository.urosario.edu.co/handle/10336/22232 |
identifier_str_mv |
219002 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
589 |
dc.relation.citationIssue.none.fl_str_mv |
No. 2 |
dc.relation.citationStartPage.none.fl_str_mv |
569 |
dc.relation.citationTitle.none.fl_str_mv |
Journal of Applied Probability |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 51 |
dc.relation.ispartof.spa.fl_str_mv |
Journal of Applied Probability, ISSN:219002, Vol.51, No.2 (2014); pp. 569-589 |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84903949376&doi=10.1239%2fjap%2f1402578644&partnerID=40&md5=1414bdb71f5a29ddf0cd419cd5d33cb5 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Applied Probability Trust |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167696625893376 |